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Underwater Wireless Channels

• Limited bandwidth and severe multipath propagation.

• Long delays (speed of sound in water is 1500m/s)

• Need for transmission of real-time data:

– e.g., images or video data to/from divers.

• Poor propagation occasionally cause weak SNRs.
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Erasure Channels
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• Packets are either lost completely (erased) or

received error-free
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How do we deal with erasures?

• Request a retransmission.

– Ideal for loss-less transmission.

– Not feasible for real time data such as voice and

video.

Alternate Approach:

• Reconstruct using available packets

– Requires adding redundancy to packets, i.e., coding
across packets.

This approach is called Multiple Description Coding.
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Transmitting Independent Packets
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Transmitting Correlated Packets
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Multiple Description (MD) Coding vs. Compression

• Compression (no coding across packets):

– Best reconstruction when all packets are received.

– Sharp degradation as packet losses increase.

• Multiple Description Coding:

– Graceful degradation as packet losses increase.

– Suboptimal when all packets are received.
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Multiple Description Coding
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Source: Length N vector XN of i.i.d. random variables.

Encoder: XN → {J1, . . . , JL} which are the L

“descriptions” of XN at rates R1,. . . RL per source

symbol.

Descriptions:
Jl = fl(XN), H(Jl) ≤ NRl, l = 1, . . . L.

Decoder: Consists of 2L − 1 sub-decoders: one for each

non-empty subset of the available descriptions.

Decoder Outputs: XN
S = gS({Jl : l ∈ S}) where

S ⊆ {1, . . . , L}, S 6= ∅.
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Example: Coding with 3 Descriptions
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• The source is i.i.d. vector XN (length N).

• The encoder outputs L descriptions J1, J2, J3 of XN .

• The decoder produces an output X̂N from the

available descriptions.
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Problem Statement

• Problem: What is the Rate-Distortion (R-D)
region?

• The rates (L parameters) are R1, . . . , RL.

• The distortions ((2L − 1) parameters) are

DS =
1
N

Ed(XN , XN
S ), S ⊆ {1, . . . , L},S 6= ∅

• The R-D region is (L + 2L − 1)-dimensional.
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• Why do we need the R-D region?

– Provides complete knowledge about tradeoff between

packet redundancy and fidelity of reconstruction.

– Helps design good MD coders.

• For L = 1, it is Shannon’s R-D region.
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Rate-Distortion Theory
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The R-D region is the set of achievable (R,D) as

N →∞.

14



Theorem 1. [Shannon] The R-D region is the convex

set R ≥ R(D) where

R(D) = min
X̂

I(X; X̂) s.t. Ed(X, X̂) ≤ D

minimized over all X̂ jointly distributed with X.

For the Gaussian Source: X ∼ N(0, 1), the

rate-distortion fucntion is

R(D) =
1
2

log
( 1
D

)
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Two-Description Coding
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The rates and distortions are:

R1 = 1
NH(J1) D1 = 1

NEd(XN , XN
1 )
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NEd(XN , XN
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12)
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Two-Description Coding

El Gamal and Cover (1982) found an achievable
region for L = 2:

R1 ≥ I(X;X1)

R2 ≥ I(X;X2)

R1 + R2 ≥ I(X;X1X2X12) + I(X1;X2)

DS ≥ Ed(X,XS), S = 1, 2, 12

where X1, X2, X12 are any r.v’s jointly distributed with

the source X.
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• The convex hull of this region is achievable by

time-sharing.

• This is an achievable region, not necessarily the R-D
region.

• Ozarow (1980) computed the R-D region for the

Gaussian Source.
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The Gaussian Source

The Gaussian rate region
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• Ahlswede (1987) showed tightness of the inner bound

by El Gamal and Cover in the “no excess rate” case

(R1 + R2 = R(D12)) for the joint description output:

X12.

• Zhang and Berger (1987) provided a stronger

achievable result than El Gamal and Cover for L = 2.

For the binary symmetric source with Hamming

distortion measure, their result provides a strict
improvement.
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Progressive Data Transmission

(J1, J2, J3)
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The decoding is progressive:

(J1) → D1 ≥ D(R1)

(J1, J2) → D12 ≥ D(R1 + R2)

(J1, J2, J3) → D123 ≥ D(R1 + R2 + R3)
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• Question: Can we attain all the minimum distortions

simultaneously?

• Answer: Not always. X is successively refinable if

the Shannon bounds are achievable with equality:

D1 = D(R1)

D12 = D(R1 + R2)

D123 = D(R1 + R2 + R3)
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Successive Refinement

• The Gaussian source is successively refinable:
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R-D region: R1 ≥ R(D1), R1 + R2 ≥ R(D12).

• This structure is a special case of MD coding with

X2 absent.
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Summary of New Results

• Achievable region for MD coding of an arbitrary source

(L ≥ 2).

• R-D region bounds for the Gaussian source.

• Special cases of Gaussian MD coding.

• Examples.
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Achievable Region for L ≥ 2

Theorem 2. The R-D region contains the rates and
distortions satisfying

∑
l∈S

Rl ≥ (|S| − 1)I(X;X∅)−H(XU : U ∈ 2S|X)

+
∑
T ⊆S

H(XT |XU : U ∈ 2T − T )

DS ≥ EdS(X,XS)

for every ∅ 6= S ⊆ L = {1, . . . , L} and some joint

distribution between outputs {XS} and the source X.
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• Best region is obtained by optimizing over the joint
p.d.f of (X, {XS : S ∈ 2L}).

• For a given p.d.f, the rate-region is a polyhedron:

– Every constraint is active (polymatroid structure).

• Region is an inner bound on the R-D region.

• Proof uses random coding.

• For L = 2, this produces the results of El Gamal and
Cover, and of Zhang and Berger.
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Outer Bound on the R-D Region

• Outer bounds: difficult to find for arbitrary sources.

– Proof depends strongly on properties of source.

• We focus on

– Gaussian source: X ∼ N(0, 1).
– Squared-error distortion: d(x, y) = |x− y|2.
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• An outer bound on the R-D region:

Theorem 3. The R-D region is contained in

∑
k∈K

Rk ≥ −1
2

log
[

min
{Km}M

m=1

inf
λ≥0

(
DK

∏M
m=1(DKm + λ)

(DK + λ)(1 + λ)M−1

)]
, ∀K ∈ 2L

minimized over all partitions {Km} of K.

• The outer bound is a polyhedron.

• We also have a stronger outer bound.
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L Channels and L + 1 Decoders
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Bounds on the R-D region

• Outer Bound: For the L-channel (L + 1)-receiver
problem, the outer bound reduces to

Rl ≥ −1
2

log Dl, (l = 1, . . . , L)

R1 + · · ·+ RL ≥ −1
2

log ϕL(D0, . . . , DL)

ϕL(D0, . . . , DL) = inf
λ≥0

[
D0

∏
(Dl + λ)

(D0 + λ)(1 + λ)L−1

]
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and fixed Dl: l = 0, 1, 2, 3.
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Example: outer bound for L = 3
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Inner Bound

Pick a joint Gaussian p.d.f. for (X, {XS : S ∈ 2L}):

Let (W1, . . . ,WL) be jointly Gaussian with covariance

matrix K.

Xl = E(X|X + Wl) ≡ αl(X + Wl), (l = 1, . . . , L)

X0 = E(X|X1, . . . , XL) ≡
L∑

l=1

βlXl

for appropriate αl, βl.
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• For given distortions D1,. . . , DL and D0, we optimize

over K to find the best rate region.

• The optimal solution takes the form:

K =


σ2

1 u u . . . u

u σ2
2 u . . . u

u u σ2
3 . . . u

... ... ... . . . ...

u u u . . . σ2
L
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Tightness of Bounds

The inner and outer bounds meet for some rates and

distortions.

Theorem 4. For any L ≥ 2 and distortions

D0, D1, . . . , DL, the best achievable sum rate meets the

outer bound:

L∑
l=1

Rl = 1
1
2

log ϕL(D0, . . . , DL).
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Example: 3-Channel 4-Decoder Problem

Take L = 3, D1 = D2 = D3 = 1/2 and D0 = 1/16.

Outer Bound:

Rl ≥ 0.5, l = 1, 2, 3

R1 + R2 + R3 ≥ 2.1755

Achievable Rates:

Rl ≥ 0.5, l = 1, 2, 3

R1 + R2 + R3 = 2.1755

Rl + Rm ≥ 1.1258, l < m
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Theorem 5. Suppose

DL +
(
1− L +

L−1∑
l=1

D−1
l

)−1
≥ 1 + D0.

then the outer and inner bounds meet everywhere.

Example: L = 3, D1 = D2 = 1/2, D3 = 3/4, and

D0 = 1/16:

The above inequality

D3 +
D1D2

D1 + D2 −D1D2
≥ 1 + D0

is satisfied.
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Successive Refinement on Chains

X123 . . .X
R1 R2 R3

Gaussian

X1 X12

D1 ≥ D(R1)

D12 ≥ D(R1 + R2)

D123 ≥ D(R1 + R2 + R3)

Proved using the achievability result.
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Successive Refinement on Trees
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Summary

• Multiple Description Coding:

– Discussed applications to real-time transmission over

underwater acoustic networks.

– Reviewed known MD coding results.

• Our new results:

– Achievable rate region for MDC with many channels.

– Outer bound on the R-D region for the Gaussian

source.

– Demonstrated tightness of bounds.
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