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The advent of iteratively decodable codes has allowed a decrease in tolerable signal-to-noise ratios (SNRs) in magnetic recording
systems, which typically translates into an increase in the recording densities. However, at such low SNRs, conventional timing recovery
loops suffer from frequent cycle slips. Typical timing recovery loops in magnetic recording applications perform data detection, timing
error detection, and loop filtering in a sequential manner. This sequence of operations in the timing recovery loop performs well if the
timing error is a small fraction of the bit interval. However, in the cycle-slip regions, the timing error is comparable to the bit interval,
and the loop fails. In this paper, we represent the timing error in magnetic recording systems by using a Markov model that does not
confine the timing error to only small fractions of the bit interval. By utilizing such a model, we give a trellis representation of the timing
error process. The trellis representation permits the formulations of two optimal baud-rate timing recovery loops, according to two
optimality criteria. We prove that both optimality criteria lead to solutions similar to the classical first-order phase-locked loop. The new
loops do not perform data detection, timing error detection, and loop filtering in a sequential manner. Instead, the loops perform data
detection and timing error detection jointly on a trellis, without the need for a loop filter. Simulation results show that the new timing
recovery loops outperform the standard second-order baud-rate Mueller and Müller phase-locked loop with fine-tuned loop parameters.
This performance gain is substantial if the timing error process is extremely noisy or if there is residual frequency offset resulting from
inaccurate acquisition from the sector preamble on a disk drive.

Index Terms—Intersymbol interference, phase-locked loop, timing recovery, trellis.

I. INTRODUCTION

T IMING recovery is crucial to every communication and
magnetic recording system, where the receiver needs to

figure out the best instants at which to sample the received (or
read-back) signal. In communication systems, the timing uncer-
tainty may come from the random delay of the received signal,
or from the slow drift of the receiver clock with respect to the
transmitter clock. In magnetic recording systems, the mechan-
ical motion fluctuation of the recording media during the writing
and reading processes will lead to timing uncertainty. The pur-
pose of the timing recovery unit (or synchronizer) is to estimate
the random timing uncertainty in order to adjust the sampler.
This problem has been well studied in the literature and en-
gineering practice, and several timing recovery schemes have
been proposed. A comprehensive exposition and classification
of these schemes can be found in [1].

Most often, timing recovery loops are classified as decision-
directed or nondecision-directed [1], depending on whether ten-
tative decisions about the transmitted data symbols are needed
for estimating the timing error. Kobayashi [2] derived a deci-
sion-directed receiver structure as an approximation of max-
imum-likelihood (ML) estimation [3]. Similar decision-directed
detection algorithms based on ML estimation have also been
studied by Qureshi and Newhall [4], and Ascheid and Meyr
[5]. Non-decision-directed timing recovery strategies can also
be derived using a similar ML criterion, where the log-likeli-
hood function is averaged over random data symbols with dif-
ferent a priori distributions. Related work can be found in [6]
and [7].
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Fig. 1. A receiver with the conventional Mueller and Muller phase-locked loop.
“Data detector” represents a short-delay Viterbi detector.

Fig. 2. Simple block diagram of the channel and signal model.

One of the most widely used digital decision-directed timing
error detector (TED), which operates on the baud-rate samples
of the baseband signal, was proposed by Mueller and Müller
(M&M) [8]. The M&M TED uses a weighted sum of the sam-
ples, whose expected value defines a timing function. A typical
timing recovery loop that contains such a TED consists of a data
detector, a TED, a loop filter (LF), and a voltage controlled os-
cillator (VCO), as shown in Fig. 1.

Adaptive Kalman filtering theory has been applied by
Driessen [9] and Patapoutian [10] to a specific linearized timing
error model. It was shown that the Kalman filter has the same
structure as the second order phase-locked loop (PLL) for such
a model, with time-varying loop coefficients. Recursive and
closed-form expressions of the Kalman gain are derived for
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both acquisition and tracking modes of the PLL. A compre-
hensive analysis and comparison of several symbol-rate timing
recovery schemes can be found in [11].

Another problem that is similar to the symbol timing re-
covery is the carrier phase recovery in communication systems
that utilize carrier modulated signals. Many similar signal
processing techniques can be applied here and have been thor-
oughly studied [12], [13]. Scharf et al. [14] derived a Viterbi
algorithm to jointly estimate the data sequence and phase error
sequence, where the phase error sequence was modeled as
an independent increment random process with modulo .
In [15], Dauwels and Loeliger studied the message passing
algorithms for joint decoding and phase estimation over factor
graphs. A key difference between the phase error studied in
[14], [15] and the timing error studied here is that phase error
only rotates the signal in the complex plane. However, timing
error may cause symbol deletion or insertion (cycle-slip), which
is much harder to correct. For example, a phase error of one
period is equivalent to no phase error, while a timing error
of one period means a cycle-slip.

In recent years, timing recovery has been recognized as
one of the key bottlenecks in designing efficient high-density
recording systems. Accordingly, several new approaches to
timing recovery (both in the acquisition mode and tracking
mode) have been proposed for magnetic data storage. New
iterative timing recovery schemes were proposed for symbol
detection in the presence of timing errors and intersymbol inter-
ference [16]–[18]. Such schemes utilize the power of iteratively
decodable codes to combat the residual timing error (especially
cycle-slips). These iterative timing recovery schemes showed
remarkable performance gains over the conventional detection
schemes. Further, novel training symbol placement methods
for frequency acquisition have been suggested in [19], and
other timing recovery schemes [20], [21] that do not rely on
the conventional PLL have also been proposed, especially for
recording channels with very low SNRs.

In this paper, we study timing recovery in the classical (i.e.,
noniterative) setting, where the synchronization is performed
in real-time by a timing recovery loop. Our goal is to design the
optimal baud-rate timing recovery loop for baseband commu-
nication channels typical for magnetic recording systems. Our
solutions are proposed for the timing error process that can be
modeled to be a discrete-time discrete-valued Markov random
process. Of course, this assumption is not valid in practice
where the timing error is typically continuous-valued. How-
ever, if we finely quantize the continuous-valued timing error,
we can closely approximate the continuous-valued random
process and thus achieve an approximately optimal timing
recovery loop.

The paper is organized as follows. The baseband signal and
timing error model typical for magnetic recording systems are
introduced in Section II. The problem is formulated into opti-
mization problems in Section III using two different criteria.
Sections IV and V provide solutions to the two formulations,
respectively. Section VI shows the simulation results. The com-
plexities of the proposed solutions are discussed in Section VII,
and Section VIII concludes the paper.

Notation: Throughout the paper, uppercase letters denote
random processes, while lowercase letters denote their realiza-
tions. The notation denotes the probability of the

Fig. 3. State transition diagram of the Markov timing error E .

event . Similarly, denotes the
conditional probability. When no confusion can arise, we will
use short notation and to denote
and , respectively. We will use to
denote the vector . Notation
denotes that the random variable is normal (Gaussian) with
mean and variance .

II. SIGNAL AND TIMING ERROR MODELS

Denote by the binary antipodal channel input symbol
at time . The channel response function

is modulated by the channel input sequence . To
make the analysis simple, we assume that is a sequence
of independent and identically distributed (i.i.d.) equiprobable
random variables.1 The received waveform is assumed to
be a baseband signal typical for magnetic recording systems

(1)

where is the symbol interval and is additive noise.
(Throughout the text, we use integer as the index for input
symbols, and integer as the index for output samples.) If no
timing error exists, the receiver will sample at ,
for . However, if timing uncertainty exists, the actual
sampling instant will be . The random variable
represents the unknown timing uncertainty of the th symbol in
the sequence, and is independent of the channel input .

We assume that the timing error is a discrete-time, discrete-
valued random process, that can take one of countably many
values , where is an arbitrary integer and is a fixed
positive integer. Clearly, is the number of quantization levels
in each symbol interval. We further assume that the timing error

is slowly varying with time, and can be represented by the
following independent increment random process:

(2)

if

if
if

(3)

The initial value of this random process is . The incre-
ments of the timing error, , are assumed to be i.i.d. and are
independent of all previous samples and previous timing er-
rors , for . Fig. 3 shows the state transition diagram of

. We consider a slowly time-varying process , which per-
mits the following assumption:

(4)

1Extensions to Markov processes are straightforward.
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When has nonzero mean, i.e., , the (2) and (3) model
a timing error process with frequency offset. If there is no fre-
quency offset, we have .

We want to underline that the Markov model given by (2)–(3)
and by Fig. 3 is only an example that we find very useful for
illustrating the principle of trellis-based timing recovery. If
needed, more accurate Markov models can easily be adopted
without changing the nature of the problem. For example,
without changing the structure of the solution that follows, we
can allow transitions to nonadjacent states, say from state 0 to
states or to states , thus effectively allowing
faster timing error processes to be tracked. Hence, the “band-
width” of the modeled process is by no means limited to the
choice of the quantization step .

Let us assume that the receiver has an estimate of . (Of
course, our task in this paper will be to design the estimator
that generates , but for the time being, let us assume that the
estimator is known.) In that case, the receiver samples the
received signal at time instants . Denote by the
th sample at the receiver

(5)

where is the th sample of the noise. For simplicity, we shall
assume that are i.i.d. Gaussian noise random
variables. The model in (5) assumes that the timing error is
introduced by the receiver (i.e., by the reading process in storage
channels). That is, we consider that the transmitted signal is a
series of perfectly synchronized pulses, while the receiver sam-
ples the received signal with timing error.

III. PROBLEM FORMULATION

A. Basic Problem Statement

The basic problem can be formulated as follows: upon re-
ceiving , we need to make an estimate of the timing error

. The value will be used to sample the received wave-
form at time instant .

Obviously, there are many choices of objective functions
when designing the estimator for . In this section, we
present two possible criteria. The first method is based on esti-
mating the most likely sequence , and the second is based
on estimating the most likely value without regarding the
entire sequence. These two problem formulations are covered in
detail in Sections III-C and III-D. However, before embarking
on these detailed problem formulations, we introduce some
more necessary notation.

B. More Notation

Definition 1: [Residual Timing Error]: The residual timing
error (with realization ) is defined as

(6)

Definition 2: [Finite Support Function ]: We assume that
the channel response function satisfies

for (7)

We denote the support interval of by .
By using (6) and (7), We can now rewrite (5) as

(8)

The upper limit of the summation in (8) will prove to be an
important variable, so we denote it by a single letter .

Definition 3 : The random variable , whose realization
is , is defined as

(9)

is random because the residual timing error is
random. However, is deterministic if (the realization
of ) and are known, as we can see from (9).

C. Problem Formulation Using an Optimal-Path Criterion

Denote by

(10)

the conditional probability of the event
given the observations of samples

and the prior timing estimates . Note that is a function of
prior observations , so we can simply omit it from the con-
ditioning. Nevertheless, we keep it as a “dummy” argument in
the conditioning on the left-hand side of (10) in order to em-
phasize the fact that are known before we make the

th estimate .
Let denote the es-

timated timing error sequence obtained by maximizing the
joint a posteriori probability in (10), after observing the first
samples

(11)

Observe that it is possible to have . Since the value
is fully determined if and are known, we take advantage

of this fact, and slightly abuse the notation to restate (11) as

(12)

From the sequence , we derive by simply equating

(13)

Our task is to find the estimate . Criterion (12) may sug-
gest that the complexity of this task grows with . However, as
we will show in Section IV, the solution can be
recursively obtained without explicitly solving for and ,
and the complexity at each step does not grow with the elapsed
time .



ZENG et al.: TRELLIS-BASED OPTIMAL BAUD-RATE TIMING RECOVERY LOOPS FOR MAGNETIC RECORDING SYSTEMS 3327

D. Problem Formulation Using an Optimal-State Criterion

In formulating the second criterion for estimating ,
we take advantage of the assumption that is a slowly
time-varying process. Thus, we can assign to the most
likely value of after observing . That is

(14)

where the second equality follows from (6) and the fact that
the value of is given in the conditioning, so we only need
to optimize over the variable . Equation (14) shows that the
optimal loop is actually formulated as a first-order PLL, where

represents the output of a TED. Note
that the formulation in (14) is simpler than the one in (12)–(13).
However, we shall see that the computational complexity
of solving (14) is higher than that of solving (12)–(13). In
Section V, we give a recursive trellis-based method for solving
the problem in (14).

IV. SOLUTION TO THE OPTIMAL-PATH ESTIMATION PROBLEM

A. The Conditional Density

We now study the a posteriori probability in (12) more care-
fully. From (2)–(4), we have

(15)

Equality (a) is the Bayes rule. Equalities (b) and (c) come from
the facts that the process is Markovian and the increment

is independent of all previous observations. Equalities (d)
and (e) are consequences of (3) and (4). The last equality is
derived by using (6). The result in (15) indicates that

• in order to maximize the a posteriori probability in (12), it
is sufficient to maximize , and

• the estimate given by (12) and (13) can be rewritten as

(16)

and

(17)

Fig. 4. Definition of the timing trellis states.

where follows from (2) since , as shown by
in (15). Here denotes the estimated sequence of

residual timing errors after observing the first samples .
Later, we will simply use when no confusion arises.

Equation (17) shows that, again, the optimal detector is actually
a first-order PLL, where represents the output of a TED.
In the next subsection, we explain how to efficiently implement
the TED by using state propagation rules in a joint timing and
inter-symbol interference (ISI) trellis.

B. Trellis-Based Solution

In this section, we illustrate how to compute in (17)
through the recursive maximization of the a posteriori proba-
bility given in (16). In the sequel, to simplify the notation, we
drop the argument in the parentheses of and set .
Since both the timing error and the channel have memory, it
is helpful to give a graphical interpretation of how the timing
error sequence and the channel state propagate. We first define
a timing trellis.

Timing Error States: From our previous assumption (3), the
sampling instants must fall on integer multiples of .
Now, we partition the time axis into nonoverlapping semi-open
intervals , where . Each interval corre-
sponds to a transmitted symbol. There are possible positions
(quantization levels) where a sample can be taken within each
interval.

We construct the timing trellis by representing each state (or,
node) in the trellis with three variables . The physical
interpretation of the state is: the th sample falls inside the th
input interval at the th quantization level,

, as illustrated in Fig. 4. We observe that
each state is in a one-to-one correspondence with the
residual timing error for the th sample, i.e.,

(18)

where . Conversely, for a given sample
, any value of also uniquely corresponds to a state .

Definition 4 [The th Plane]: We define the set of states
with the same index as the th plane. Different states

(nodes) in the th plane are mapped to different values of .
We next need to figure out how the timing states propagate

from the th (predecessor) plane to the th (successor)
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Fig. 5. Illustration of the state propagation in the timing trellis.

plane after the sample is obtained. From (2), (6), and (17),
we have

(19)

Note that when the sample is obtained, we can compute
, so can be regarded as a constant in (19). We observe

two things from (19). First, starting from a given predecessor
node in the th plane, we can only go to three possible
successor nodes in the th plane, corresponding to the three pos-
sible values of , respectively [see (3)]. Second, the branches
that link the states in the predecessor plane to the states in
the successor plane clearly depend on the value of . Thus,
the state propagation needs to be dynamically established at dif-
ferent steps , after computing .

For example, consider the case where we have levels
of quantization; see Fig. 5 for reference to this example. Sup-
pose that the predecessor state is , which means that
the th sample is taken at time . If the
best estimate of the residual timing error is , then the
possible successor states in the th plane are

, as shown in Fig. 5. However, if the best
estimate of the residual timing error is , then by
(18) and (19), the successor states in the th plane will be shifted
by 1 node. That is, they are

, as illustrated in Fig. 5.
Joint Data and Timing Error States: In order to construct a

graphical model that can jointly represent the timing error and
the transmitted data, we need to expand our previous definition
of the states in the timing trellis to a joint timing-data trellis.

From our finite-support assumption (7), at most

(20)

data symbols are needed to calculate the value of each sample
as shown by (8). They are . To account for
these data symbols as well as the timing error, we expand
the state variable into a vector . Since

, and are binary integers, we can
define a one-to-one mapping

(21)

where

(22)

Thus, in the new trellis, the state is defined as follows.
Definition5: [Joint Timing and ISI State]: A joint timing and

ISI state is denoted by the triplet .
With this definition, the full joint trellis has the following

properties.
• For each state (node) in the full trellis, the timing

state is captured by . Thus, the corre-
sponding residual timing error is

(23)

The ISI information of the state is captured by

(24)

• Each valid path through the trellis that leads to a state in
the th plane uniquely determines a data sequence
and a residual timing error sequence simultaneously.
Conversely, given a timing sequence and a data se-
quence , we can uniquely find a path leading to state

.
Recursive State Propagation: Let us denote as an arbi-

trary state (node) in the th plane of the full trellis, i.e.,
, where and .

Since the state sequence and the joint sequence
uniquely determine each other, we have

(25)

Thus, the estimation rules given by (16) and (17) are equivalent
to

(26)

(27)

where is obtained by substituting into (23).
We next manipulate the term on the right-hand side of (26) to

derive a recursive formula. Using the Bayes rule, we have

(28)

where

(29)

(30)
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(The proof is provided in the Appendix.) We notice that does
not depend on and can be viewed as a constant at the th step.
Since this constant does not have any effect on the maximiza-
tion in (26), we can simply ignore it. The recursive formula (28)
and the estimation rule (26) prompt the following state metric
definition in log-domain.

Definition 6: [Accumulated Metric ]: We define the
metric of an arbitrary state in the th
plane as

(31)

with the initial condition

if
otherwise

(32)

The term can be viewed as the branch metric
between states and in two adjacent planes, and is
the minimum accumulated metric among all the paths in the full
trellis that end in state .

Equations (28) and (31) indicate that our estimation rules (26)
and (27) are equivalent to

(33)

(34)

where is calculated by (23).
Recursive Estimation Algorithm I: We can now formulate the

recursive timing recovery algorithm based on the optimal-path
criterion.

1) The system is assumed to be perfectly synchronized at

time i = 0 (i.e., "0 = 0), and we assume ak = 0 for

k < q. The initial condition of our algorithm is (32). In

practice, this assumption is satisfied by using preambles.

(Initialization with nonperfect synchronization at time

i = 0 is also possible.)

2) Whenever the loop detector receives the ith sample ri,

we calculate all the state metrics c(si) in the ith plane

according to (31).

3) The next-step timing error estimate "̂i+1 is computed by

(33) and (34).

4) For all states si�1, delete c(si�1) from the memory.

5) Use "̂i+1 to take the (i+ 1)th sample, and go back to

step 2.

Comments: The above recursive estimation algorithm propa-
gates similarly as the standard Viterbi algorithm [22], however,
we never need to trace back as we do in the Viterbi algorithm.
Thus, a trellis structure is actually not necessary. At any step
, we only need to remember the th plane metrics and

thus conserve the memory. This explains step 4 in the above al-
gorithm. The complexity and memory cost of the algorithm is
discussed in Section VII.

V. SOLUTION TO THE OPTIMAL-STATE ESTIMATION PROBLEM

We consider the a posteriori probability in (14). From our
previous definition of the state , we get

(35)

The summation within the brackets in (35) can be derived re-
cursively by using (28)

(36)

where is given by (30). As before, does not depend on the
states and is considered as a constant at the th step. We there-
fore ignore this constant and introduce the following recursive
accumulated metric definition based on (36).

Definition 7: [Accumulated Metric ]: We define the
metric of an arbitrary state in the th
plane as

(37)

with the initial condition

if
otherwise

(38)

Based on the above definition and the result in (35), the esti-
mation rule given by (14) is equivalent to

(39)

Recursive Estimation Algorithm II: We now formulate the
recursive timing recovery algorithm based on the optimal-state
criterion.

1) The system is assumed to be perfectly synchronized at

time i = 0 (i.e., "0 = 0), and we assume ak = 0 for

k < q. The initial condition of our algorithm is (38). In

practice, this assumption is satisfied by using preambles.

(Initialization with nonperfect synchronization at time

i = 0 is also possible.)
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Fig. 6. The un-coded system used in simulation. LD represents the loop de-
tector. VD represents the Viterbi detector for data detection.

2) Whenever the loop detector receives the ith sample ri,

for i � 1, we calculate all the state metrics c
0(si) in

the ith plane according to (37). Normalize the state

metrics such that c
0(si) = 1.

3) The next-step timing error estimate "̂i+1 is computed by

(39).

4) For all states si�1, delete c
0(si�1) from the memory.

5) Use "̂i+1 to take the (i+ 1)th sample, and go back to

step 2.

Comments: We notice that the above algorithm actually uses
the same state (or trellis) structure as the one in Section IV.
The state propagation in the algorithm is similar to the forward
recursion of the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm
[23]. Since we do not need backward recursions, the previous
state metrics are always deleted in step 4. The complexity and
memory cost of this algorithm is discussed in Section VII.

VI. SIMULATION RESULTS

To assess the quality of the derived timing recovery methods,
both algorithms in Sections IV and V are compared to the
conventional M&M timing recovery loop as well as to the
perfect timing scenario. The data symbols are generated
by an equiprobable binary source, and are independent and
identically distributed (i.i.d.). The symbols are first passed
through the filter , as shown by Fig. 6. We
assume that is a truncated function of the form

, where is
the unit step function. If there is no timing error, the channel
is equivalent to the channel [24]. In the simulations, we
create waveforms according to (5), where the timing error

injected into the waveform is a Gaussian independent
increment process , and are
i.i.d. Gaussian random variables. Therefore, this timing error
process has a frequency offset

For the purpose of designing the loop detector for this timing
error, we approximate the timing error by the model in (2) and
(3). This discrete model has a frequency offset

In practice, the parameters and can be iteratively esti-
mated from the received signal (or training symbols) using the
Baum–Welch algorithm [25]. (Note that we could use a more

Fig. 7. Bit-error-rate (BER) performance using the sequence-based state prop-
agation detector. Timing error increments are i.i.d Gaussian random variables.

sophisticated Markov timing model, but it suffices to use the
simple one in (2) and (3) to illustrate the principle.) The final
residual frequency offset of the system is

(40)

This approximation is based on the assumption that
and . In our simulations, we set .
Therefore, the residual frequency offset is .
Since the method works at baud-rate, we compare it with
the standard second-order phase-locked loop (PLL) using the
Mueller and Müller (M&M) detector [8], for systems with and
without residual frequency offset.

Fig. 7 compares the bit-error-rate (BER) performance of the
optimal-path timing error detector when there is no residual
frequency offset, i.e., and , to the standard
first-order PLL with the M&M detector (a first-order PLL suf-
fices since there is no frequency offset). Both the filter coeffi-
cient in the M&M detector, as well as the delay length of the
Viterbi detector inside the PLL were exhaustively optimized
for every SNR, respectively. The quantization level for the pro-
posed loop detector is fixed to . We observe that for

, the proposed optimal-path timing error detector
barely outperforms the M&M phase-locked loop. However, as
the timing error increases to , there is a large per-
formance gain attained by the new detector in all SNR regions.

Fig. 8 compares the BER performance of the optimal-state
timing error detector when there is no residual frequency offset
to the standard first-order PLL with the M&M detector. The
simulation parameters were chosen to be identical to those of
Fig. 7. Again, we observe that for , the proposed
optimal-state timing error detector barely outperforms the con-
ventional PLL. However, as the timing error increases to

, there is a large performance gain attained by the new de-
tector in all SNR regions.

Fig. 9 compares the BER performance of the proposed re-
cursive timing error detectors when there is residual frequency
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Fig. 8. BER performance using the single-value-based state propagation de-
tector. Timing error increments are i.i.d Gaussian random variables.

Fig. 9. BER performance using the recursive detectors when there is residual
frequency offset in the system. Timing error increments are i.i.d Gaussian
random variables with nonzero mean.

offset, i.e., , to the standard second-order PLL with the
M&M detector. The parameters of the timing error increment
are set to and . Both filter coeffi-
cients in the M&M detector, as well as the delay length of the
Viterbi detector before the M&M detector were exhaustively op-
timized for every SNR, respectively. We observe that both of the
proposed recursive detectors are less sensitive to the frequency
offset, and provide large performance gains over the conven-
tional PLL.

Sector-by-sector simulation results show that the probability
of having a cycle-slip is greatly reduced by using the proposed
recursive timing error detectors. Fig. 10 compares the cycle-slip
rate (fraction of sectors that experience cycle-slips) of the pro-
posed timing recovery loops to the second-order PLL with the
M&M detector. We notice that the optimal-state detector out-
performs the optimal-path detector when there is residual fre-
quency offset in the system. The optimal-state algorithm has a
lower cycle-slip rate. A simple explanation to this is that in the
optimal-state algorithm, we explicitly calculate the probability
of each value of the timing error (or each state) at every step.
This is achieved by summing over all possible paths at each state

Fig. 10. Cycle-slip rate (CSR) performance using the recursive detectors when
there is residual frequency offset in the system. Timing error increments are i.i.d
Gaussian random variables with nonzero-mean.

during the state propagation, which is similar as the forward re-
cursion of the BCJR algorithm [23]. In the optimal-path algo-
rithm, what we compute is the probability of each joint data and
timing error sequence (or path). We only keep the most likely
path at each state during the state propagation, and delete the
other paths. Therefore, we may encounter state error propaga-
tion when running the optimal-path detector.

VII. DISCUSSION

As we have discussed in Sections IV and V, neither algo-
rithm requires backward recursions or trace-back operations
to make the decision. Hence, previous state metrics are always
deleted from the memory in step 4 of each algorithm. Therefore,
the memory costs of the proposed algorithms do not grow with
block length . Further, it is not necessary to evaluate all the
state metrics (or ) in the th plane in step 2. In prac-
tice, if we assume that the timing error estimate is not too bad,
i.e., for and is a fixed
integer, we only need to consider those states that
satisfy . Simulation results show that for most cases,
it is sufficient to choose without any loss in performance.
The amount of memory (i.e., the number of state metrics) re-
quired for both of the proposed algorithms is , which
is times the amount of memory of the conventional
Viterbi algorithm.

Now we look at the computational complexity of the two al-
gorithms. Obviously, the number of computations at each step is
proportional to the memory cost . However, for the op-
timal-path algorithm, we only need the operations of “addition”
and “comparison” during the state propagation if we operate in
the log-domain, as shown by (31). For the optimal-state algo-
rithm, turning to the log-domain will not help, because of the
“addition” in (37). Therefore, we will need the “multiplication”
operation, which is more complex in terms of hardware imple-
mentation.

Both algorithms adopt the simple Markov model shown
in Fig. 3, which only allows state transitions to the adjacent
neighboring states. More accurate Markov processes that allow
state transitions to nonadjacent states can be adopted without
changing the nature of the algorithms. Algorithms derived
based on such Markov models would be able to track faster
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changes of the timing errors, albeit at the cost of increasing the
complexity.

VIII. CONCLUSION

In this work, we proposed two optimization criteria for
timing error estimation from baud-rate samples, and derived
state propagation based timing recovery algorithms, under the
assumption that the timing error can be modeled as a discrete
random walk process. We compared the bit error rate perfor-
mance of the newly derived detectors to the conventional timing
recovery loop (with a Mueller and Müller loop detector), and
observed a considerable performance gain when the timing
error is large or when there is residual frequency offset in the
system. There is only a slight performance gain when the timing
error is small and when there is no residual frequency offset.
The performances of the proposed timing recovery methods in
coded systems that can operate at very low SNRs need to be
further studied.

APPENDIX

Proof of (28): By using the Bayes rule, we have

(41)

The last term in (41) can be further simplified as

(42)

Since contains both the timing and ISI information for the th
sample , we have

(43)

Next by using the one-to-one correspondence between the state
on one side and the timing error and ISI information as a pair

on the other, we have

(44)

(45)

where follows from the assumption that is Markov,
are i.i.d., and the fact that is determined by . Equality
is based on the observation that actually contains all the
information in the conditioning. By substituting (42), (43), and
(45) into (41), we obtain the recursive formula (28).
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