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ABSTRACT

We study two sub-Nyquist sampling schemes for multiband signals known as multicoset

sampling and multiple-input, multiple-output (MIMO) sampling. A multiband signal is one

whose Fourier transform is supported on a set F ⊆ R consisting of a finite union of intervals.

Unlike uniform sampling, multicoset sampling allows perfect reconstruction of a multiband

input at sampling rates arbitrarily close to its Landau minimum rate equal to the Lebesgue

measure of F . We derive perfect reconstruction conditions, an explicit interpolation formula,

and bounds on the aliasing error for signals not spectrally supported on F . We also examine the

performance of the reconstruction system when the input contains additive sample noise. Using

these measures of performance, we optimize the reconstruction system. We find that optimizing

these parameters improves the performance significantly. There is an increased sensitivity to

errors associated with nonuniform sampling, as opposed to uniform sampling. However, these

errors can be controlled by optimal design, demonstrating the potential for practical multifold

reductions in sampling rate. Multicoset sampling is applicable to Fourier imaging problems like

synthetic aperture radar and magnetic resonance imaging, where the objective is to image a

sparse object from limited Fourier data.

We then study the MIMO sampling problem, where a set of multiband input signals is

passed through a MIMO channel and the outputs are sampled nonuniformly. MIMO sampling

is motivated from applications like multiuser communications and multiple source separation.

MIMO sampling encompasses several sampling strategies as special cases, including multicoset

sampling and Papoulis’s generalized sampling. We derive necessary density conditions for sta-

ble reconstruction of the channel inputs from the output. These results generalize Landau’s

sampling density results to the MIMO problem. We then investigate a special case of MIMO

sampling called commensurate periodic nonuniform MIMO sampling, for which we present re-

construction conditions. Finally, we address the problem of reconstruction FIR filter design,

formulating it as a minimization and recasting as a standard semi-infinite linear program. Ow-

ing to the generality of the MIMO sampling scheme, the design algorithm readily applies to

several sampling schemes for multiband signals.
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CHAPTER 1

INTRODUCTION

1.1 Sub-Nyquist Sampling of Multiband Signals

The classical sampling theorem, attributed to Whittaker, Kotelńikov, and Shannon, states

that a low-pass signal can be recovered perfectly from its samples taken at a finite rate. Shan-

non’s original statement [1, pp. 11] of the classical sampling theorem is that “if a function f(t)

contains no frequencies higher than W cycles per second, it is completely determined by giving

its ordinates at a series of points spaced 1/2W seconds apart.” Since Shannon’s paper, there

has been a long history of research in the area producing several important results in sampling

of multiband signals and nonuniform sampling [2–5]. The term multiband generally refers to a

signal whose spectrum is supported on a set F ⊆ R consisting of a finite union of finite intervals.

Sometimes, however, F is any real measurable set of finite measure.

In the context of multiband sampling, Landau [6, 7] proved a fundamental result that the

sampling density needed for stable sampling and reconstruction of a signal is lower bounded

by the Lebesgue measure of the spectral support. Landau’s result applies to any arbitrary

nonuniform sampling scheme and arbitrary spectral support of finite measure. We can see

offhand that a multiband signal can be recovered from its uniform samples if the sampling

rate is large enough to prevent aliasing. The smallest such rate is called the Nyquist rate. For

many signals, especially those whose spectral supports are sparse, the Landau minimum rate is

significantly smaller than the Nyquist rate, and it is worth exploring efficient representations for

such signals using low sampling rates. This motivates the study of sub-Nyquist sampling and

the desire to approach Landau’s minimum sampling rate. Naturally, one needs to sample the

signal nonuniformly to hope for sub-Nyquist sampling. Thus, the emphasis in this dissertation

is to explore the advantages of nonuniform sampling which has to be addressed by more complex

reconstruction systems, instead of its role as a “necessary evil” in much of the previous work.

1



From a practical perspective, sub-Nyquist sampling is essential in many Fourier imaging

applications such as synthetic aperture radar (SAR) and magnetic resonance imaging (MRI),

where the physics of the problem gives us measurements of an unknown sparse object in its

Fourier domain [8–11]. The problem is to recover the unknown object from these measurements.

Very often, there is a cost associated with acquisition of samples, and it becomes desirable to

sample minimally and exploit the sparsity (i.e., multiband structure) in the object to form its

image. The Fourier imaging problem is precisely a dual of the sub-Nyquist sampling problem

with the roles of frequency and space interchanged.

In this dissertation, we investigate several issues pertaining to two sub-Nyquist sampling

schemes: multicoset sampling and multiple-input multiple-output (MIMO) sampling. Multicoset

sampling is essentially a periodic nonuniform sampling scheme that allows us to approach

Landau’s lower bound on the sampling density asymptotically as the period of the sampling

pattern goes to infinity. We study the perfect reconstruction problem for multicoset sampling

of multiband signals. We investigate the performance of multicoset sampling, and ways to

optimize it.

MIMO sampling is a very general sampling scheme where a set of multiband signals un-

dergoes time-invariant filtering through a MIMO channel, and the outputs are subsequently

sampled nonuniformly. Again, the objective is to recover the inputs from the output sam-

ples. The spectral supports of the inputs need not all be the same. This sampling scheme

is motivated by problems in multichannel deconvolution, where MIMO channels occur natu-

rally. Nonetheless, MIMO sampling is equally important from a theoretical viewpoint, as it

encompasses a large class of sampling schemes including Papoulis’s generalized sampling [12],

multicoset sampling, and vector sampling [13]. Our main contributions are necessary density re-

sults for MIMO sampling. These results are generalizations of Landau’s classical density results

[6, 7] for sampling and interpolation of multiband signals. We also provide theorems (sufficient

conditions) for perfect reconstruction reconstruction, and address the design of optimal finite

impulse response (FIR) reconstruction filters.

1.2 Layout

This dissertation is organized as follows. Chapters 2 and 3 deal with multicoset sampling

of multiband signals, and Chapters 4, 5, and 6 deal with MIMO sampling of multiband signals.

The term multiband signal always refers to one whose spectral support is a finite union of finite

disjoint intervals, except in the context of necessary density results (Chapter 4), where they can

2



be arbitrary measurable sets of finite measure. The chapters are written such that each chapter

may be read independently of the others. In every chapter, we introduce necessary definitions

and notation, and review some relevant results from the previous chapters.

In Chapter 2, we investigate the sub-Nyquist multicoset sampling of multiband signals.

We derive perfect reconstruction conditions and present an explicit interpolation equation.

We also study the performance analysis of the multicoset sampling scheme which includes

bounds on the aliasing error due to signal mismodeling, and sensitivity to noise as inferred

from the noise amplification factor when the sample measurements are contaminated by white

noise. These performance measures indicate that some multicoset sampling patterns are better

than others for a given class of multiband signals. Based on these results we investigate, in

Chapter 3, the problem of optimal sampling and reconstruction. Specifically, we show how to

choose the optimal reconstruction filters, the optimal base sampling period, and examine briefly

the problem of optimal sampling pattern design. We also study the suitability of multicoset

sampling for the so-called packable class of signals for which uniform sampling at the Landau

minimum density is possible.

In Chapter 4, we formulate the problem of MIMO sampling of multiband signals. We

first introduce some definitions pertaining to sampling stability and notions of lower and up-

per sampling density, and then we derive necessary conditions for stable sampling using the

mathematical framework of Hilbert spaces. These results include lower bounds on the sam-

pling densities of the sampling sets, and conditions on certain singular values of the channel

transfer function matrix. We also derive similar conditions for the dual problem of consistent

reconstruction, which is an analogue of the interpolation problem in [6]. All these results are

generalizations of Landau’s density results for classical multiband sampling.

In Chapter 5, we examine a special case of MIMO sampling where the channel outputs

are sampled either uniformly or on periodic nonuniform sampling sets. We present necessary

and sufficient conditions for stable and perfect reconstruction. Using these results we solve

the reconstruction filter design problem in Chapter 6. We present discrete time models for

the MIMO channel and conditions for perfect reconstruction for this problem. We formulate

the design problem as a minimization of an appropriate cost function, and then recast it as a

semi-infinite linear program. We solve it numerically for a few design examples. Finally, we

present concluding remarks and areas of possible future work in Chapter 7.

3



CHAPTER 2

SUB-NYQUIST MULTICOSET SAMPLING: PERFECT

RECONSTRUCTION AND ALIASING ERROR BOUNDS

2.1 Introduction

The classical sampling theorem states that a signal occupying a finite range in the frequency

domain can be represented by its samples taken at a finite rate. Often attributed to Whittaker,

Kotelńikov, and Shannon, a more precise statement of this so-called WKS sampling theorem

is that a real lowpass signal, whose Fourier transform is limited to the range (−f0, f0), can be

recovered from its samples taken uniformly at the rate fs = 2f0 (the Nyquist rate) or higher

[1].

Sampling a signal x(t) uniformly at fs causes the resulting spectrum to contain multiple

copies of the original spectrumX(f) located with uniform spacing of fs between adjacent copies.

Hence, the choice fs ≥ 2f0 guarantees no overlaps in the sampled spectrum, and thus allows

recovery of the original signal by a lowpass filtering operation. This is the key idea behind the

classical sampling theorem. For efficient sampling, it is desirable to attain the lowest sampling

rate possible, and this is characterized by the absence of gaps or overlaps [14] in the spectrum

of the sampled signal. Unfortunately, in the case of bandpass signals, it is not always possible

to eliminate gaps in the sampled spectrum. However, it is possible to minimize them. Some

results on bandpass sampling can be found in [2, 3]. Thus, while uniform sampling theorems

work well for lowpass, they are quite inefficient for representing certain bandpass signals and,

more generally, for multiband signals, i.e., signals containing several bands in the frequency

domain. We refer the reader to Papoulis [12] and Jerri’s tutorial [4] for some generalizations of

the WKS sampling theorem.

To quantify the sampling efficiency for signals with a given spectral support F , we define

its spectral span [F ] as the smallest interval containing F , and its spectral occupancy as Ω =

µ(F)/µ([F ]), where µ(·) denotes the Lebesgue measure. The Nyquist rate fnyq for signals with
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spectral support F is defined as the smallest uniform sampling rate that guarantees no aliasing,

i.e.,

fnyq = inf
{

θ > 0 : F ∩ (nθ ⊕F) = ∅, ∀n ∈ Z\{0}
}

,

where

θ ⊕F def
= {θ + f : f ∈ F}

is the translation of the set F by θ. Then, the Nyquist sampling rate satisfies µ(F) ≤ fnyq ≤
µ([F ]). We say that F tessellates R or F is packable if fnyq = µ(F), and nonpackable otherwise

(fnyq > µ(F)). In other words, the Nyquist rate for nonpackable signals exceeds the total length

of its spectral support. At the other extreme is the case fnyq = µ([F ]) (totally nonpackable),

where uniform sampling cannot exploit the presence of gaps in F .

The general case of interest here is that of F being nonpackable such that the Nyquist

rate for sampling x(t) with spectral support F is fnyq > µ(F). On the other hand, Landau [6]

showed that the sampling rate of an arbitrary sampling scheme for the class of multiband signals

with spectral support F is lower bounded by the quantity µ(F), which may be significantly

smaller than the Nyquist rate. Thus, the spectral occupancy Ω is a measure of the efficiency

of Landau’s lower bound over the Nyquist rate. Because Ω can be low for certain nonpackable

signals (in fact, it is easy to construct examples of nonpackable F with arbitrarily small Ω),

uniform sampling is highly inefficient for such signals. Figure 2.1 illustrates a typical case of such

a nonpackable multiband signal. The Nyquist rate for this signal is fnyq = µ([F ]) = 4 (hence F
is totally nonpackable), whereas the Landau lower bound is µ(F) = 2. The spectral occupancy

for this signal is Ω = 0.5, suggesting that it might be possible to sample and reconstruct the

signal twice as efficiently as sampling at the Nyquist rate. In this chapter, we examine the

problem of efficient sampling of nonpackable signals.

0 1 2 3 4

X(f)

Figure 2.1 Spectrum of a nonpackable multiband signal.

Our results apply to the class of continuous complex-valued bandlimited signals of finite

energy with spectral support F , namely, B(F) = {x ∈ L2(R)∩C(R) : X(f) = 0, f 6∈ F}, where

X(f) is the Fourier transform of x(t).
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2.1.1 Nonuniform sampling

Uniform sampling is not well suited for nonpackable signals. However, it turns out that there

is a clever way of sampling the signal x(t) called multicoset sampling or periodic nonuniform

sampling at a rate lower than the Nyquist rate, that captures enough information to recover x(t)

exactly. Multicoset sampling and reconstruction from the samples will be described more fully

in the following sections. First, we survey some known work on nonuniform sampling. Kahn

and Liu [15] show how to represent and reconstruct signals from a multiple-channel sampling

scheme. They provide conditions for exact reconstruction from the sampling trains and relate it

to the maximum number of overlaps. Their sampling scheme, which is essentially a filter bank,

is more general than nonuniform sampling since their “analysis filters” are not required to be

simple delays. They express the reconstruction as the solution to a matrix equation, but do

not provide an explicit interpolation formula. Cheung and Marks [16, 17] show that multicoset

sampling allows sampling of 2-D signals below their Nyquist density. A similar treatment for

1-D and 2-D signals was done by Feng and Bresler [18], and Bresler and Feng [19], respectively,

in the broader context of spectrum blind sampling. Filter bank theory and periodic nonuniform

sampling is also used to obtain sampling rate reductions in [20–23]. Shenoy [24] and Higgins [25]

apply multicoset sampling to multiband signals that do not tessellate under translation. Their

results indicate that signals with certain spectral supports require a single interpolation filter

as opposed to more than one in the other analyses of the problem. In other words, the sampling

expansion is composed of time-translates of a single function. Simplicity of its implementation

is an obvious advantage of their scheme. However, because it only works for a restricted class

of signals, we do not consider their scheme here, focusing instead on multicoset sampling.

Herley and Wong [23], following [15], use filter bank theory instead, to suggest a sampling

scheme for minimum rate sampling. They choose the analysis filters of the filter bank to be

simple delays, i.e., Hi(z) = z−i, and then show that some of the analysis channel outputs can

be discarded, and yet, the input signal can be reconstructed from the other channels. It is

clear that the reconstruction is performed by processing subsamples (obtained nonuniformly)

of the original sample train at the Nyquist rates. As the number of channels goes to infinity,

the average sampling rate converges to Landau’s minimum sampling rate, as expected. In fact,

all of the schemes proposed in [15–18, 23] achieve the Landau minimum rate asymptotically.

Although we do not adopt a filter bank approach and use a different notation, the work in [23]

will be the basis for all the analysis here.

In this chapter, we continue along the lines of [23] to examine the problem of nonuni-

form sampling. First, we present some new results about the sampling and reconstruction
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scheme itself. Herley and Wong [23] suggest using an iterative projection onto convex sets algo-

rithm (POCS) to design the reconstruction filters, rather than derive an explicit reconstruction

formula. Unlike their analysis, we provide exact expressions for the interpolation filters, or

equivalently the explicit reconstruction formula for the sampling scheme. Beyond their obvious

practical advantage, these expressions are useful for analytical purposes. For instance, they are

useful for (a) analyzing the reconstruction error of the system; (b) quantifying the effects of

signal mismodeling, i.e., computing the aliasing error and output noise; and (c) optimizing the

system for the given class of signals.

2.1.2 Error bounds

Bounds on sensitivity to mismodeling of the signal are important to any sampling scheme.

They are particularly important for the sampling schemes considered here because these schemes

achieve what is impossible with other schemes: approach the Landau lower bound arbitrarily

closely. This raises the question of a possibly increased sensitivity to signal mismodeling and

sample noise, leading to an increased reconstruction error. Using our new explicit reconstruction

formula, we derive bounds on the peak amplitude or the energy of the error signal. We compute

bounds on the aliasing error for input signals in the class of functions B([F ]), which is larger

than the class B(F). We find that the upper bound on the peak aliasing error takes the form

sup
t

|x(t) − x̂(t)| ≤ ψ∞

∫

[F ]\F
|X(f)|df,

as it usually does for various other schemes. The bounding constant ψ∞ can be used as a

performance measure of the system. Different systems can be compared based on their corre-

sponding bounding constants. In particular, Beaty and Higgins [26] derive a similar bound on

the aliasing error for packable signals. The bounding constant for their case is ψ∞ = 2. We

also derive a bound on the energy of the aliasing error which takes the form

‖x− x̂‖2 ≤ ψ2

√

∫

[F ]\F
|X(f)|2df.

Finally, we derive an expression for the output noise power when the input is contaminated by

additive white sample noise with variance σ2:

〈E|x(t) − x̃(t)|2〉t = ψnσ
2.

It turns out that the constants ψ∞, ψ2, and ψn depend on some parameters that are free to

be chosen. An optimal choice of these free parameters would minimize ψ∞, ψ2, or ψn. These

results can then applied to the design of sampling patterns, and this problem is addressed in

Chapter 3.
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2.2 Multicoset Sampling

We begin with a few definitions essential to the development and analysis of the sampling

scheme. The class of continuous complex-valued of finite energy, bandlimited to a real set F
(consisting of a finite union of bounded intervals) is denoted by B(F):

B(F) =
{

x ∈ L2(R) ∩ C(R) : X(f) = 0, f 6∈ F
}

, F =
n
⋃

i=1

[ai, bi), (2.1)

where

X(f) =

∫ ∞

−∞
x(t) exp(−j2πft)dt

is the Fourier transform of x(t). The span of F , denoted by [F ], represents the convex hull of

F , i.e., the smallest interval containing F .

Let x ∈ B(F). We shall assume, with no loss of generality, that inf F = 0. In multicoset

sampling, we first pick a suitable the sampling period T (such that uniform sampling of x at

rate 1/T causes no aliasing), and an integer L > 0. We then sample the input signal x(t)

nonuniformly at t = (nL+ ci)T for 1 ≤ i ≤ p, n ∈ Z. The set {ci} contains p distinct integers

chosen from the set L def
= {0, 1, . . . , L− 1}. The sampling process just described can be viewed

as first sampling the signal at the base sampling rate of 1/T and then discarding all but p

samples in every block of L samples periodically. The samples that are retained in each block

are specified by {ci}. The base sampling rate could be chosen equal to the Nyquist rate, i.e.,

1/T = fnyq, but never lower. However, we choose 1/T = µ([F ]), because, sampling at this rate

always guarantees no aliasing for any F .

For a given ci, it is clear that the coset of sampling instants t = (nL + ci)T, n ∈ Z is

uniform with inter-sample spacing equal to LT . We call this the ith active coset. We refer to

the set C = {ci : 1 ≤ i ≤ p} as an (L, p) sampling pattern, and the integer L as the period of

the pattern. Figure 2.2 shows two multicoset sampling patterns corresponding to parameters

(L, p) = (5, 3). All other patterns for these parameters can be obtained by cyclic shifts of the

patterns shown, namely C = {0, 1, 2} and C = {0, 1, 3}. Patterns related to each other by

cyclic shifts with or without reflections are essentially equivalent to each other in terms of the

associated reconstruction problems and their measures of performance.

Now, consider the following L discrete-time sequences obtained by zeroing out all samples

{x(nT )} except those at t = (mL+ l)T, m ∈ Z:

xl(n)
def
= x(nT )

∑

m∈Z

δ(n − (mL+ l)), 0 ≤ l < L,
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Figure 2.2 Two sampling patterns for (L, p) = (5, 3): (a) C = {0, 1, 2}, and (b) C = {0, 1, 3}.

where δ(0) = 1 and δ(n) = 0 for n 6= 0. It is clear that the sequence xci
(n) contains the samples

of the ith active coset with samples separated by L− 1 interleaving zeros. It is straightforward

to verify that the discrete-time Fourier transform of the lth sequence is

X l(e
j2πfT ) =

∞
∑

n=−∞

xl(n) exp(−j2πnfT )

=
1

LT

∑

r∈Z

X
(

f +
r

LT

)

exp
(j2πrl

L

)

, (2.2)

which, using the fact that X(f) = 0 for f /∈ [0, 1/T ), gives us

X l(e
j2πfT ) =

1

LT

L−1
∑

r=0

Xr(f) exp
(j2πrl

L

)

, f ∈ F0, (2.3)

where Xr(f) is defined as

Xr(f)
def
= X

(

f +
r

LT

)

χ(f ∈ F0), (2.4)

F0
def
=

[

0,
1

LT

)

, (2.5)

and χ(f ∈ H) denotes the indicator function of a set H:

χ(f ∈ H)
def
=











1 if f ∈ H,

0 if f /∈ H.

In other words, the spectral component Xr(f) is obtained by first using an ideal bandpass filter

to extract the signal in the frequency range r/LT ≤ f < r + 1/LT and then performing a

frequency-shift to the left by r/LT units. Denoting the inverse Fourier transform of Xr(f) by

xr(t), it is evident from the above definition that

x(t) =
L−1
∑

r=0

xr(t) exp
(j2πrt

LT

)

. (2.6)

The following is another result that can be deduced from Eq. (2.2) (or directly from the definition

of xl(nT )):

X l(e
j2π(f+r/(LT ))T ) = e−j2πlr/LX l(e

j2πfT ), r ∈ Z. (2.7)
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We use Eqs. (2.6) and (2.7) later in deriving the reconstruction equations. We now let l =

ci, i = 1, 2, . . . , p in Eq. (2.3) to get

Xci
(ej2πfT ) =

1

LT

L−1
∑

r=0

exp
(j2πcir

L

)

Xr(f), f ∈ F0. (2.8)

This is the main equation relating the spectral components Xr(f) to the information contained

in the observed samples. Note that Eq. (2.8) for f ∈ F0, contains all the relevant information

present in the samples since, from Eq. (2.7), Xci
(ej2πft) is essentially “periodic” with period

1/LT . Reconstruction of the original signal x(t) is achieved if we recover its spectral components

{xr(t)}.

2.3 Reconstruction

We now focus on the problem of reconstructing x ∈ B(F) from its multicoset samples. Herley

and Wong [23] considered the analogous problem for real signals, but did not, however, provide

an explicit reconstruction formula or system. We shall derive the reconstruction equations

formally and devise a multirate system to perform the reconstruction.

Our objective is to invert Eq. (2.8) to obtain Xr(f). The recovery of x(t) is then merely

an application of Eq. (2.6). Notice that, if C and F satisfy certain conditions, the inversion of

Eq. (2.8) can be accomplished even though there are fewer equations (p) than unknowns (L)

for each f ∈ F0. This is possible because the sampled signal belongs to B(F), which is smaller

than B([F ]).

Let F be the union of n bounded intervals as in Eq. (2.1), with the additional assumption

that

0 = a1 < b1 < a2 < b2 < · · · < an < bn =
1

T

holds, with no loss of generality. Consider the finite set Γ defined below:

Γ
def
=

{

ai −
⌊LTai⌋
LT

: 1 ≤ i ≤ n
}

∪
{

bi −
⌊LTbi⌋
LT

: 1 ≤ i ≤ n
}

, (2.9)

where ⌊·⌋ is the floor function. Let Γ = {γ1, γ2, . . . , γM} be the elements of Γ arranged in

increasing order. We have γ1 = 0 as a consequence of a1 = 0. We define γM+1 = 1/LT to

obtain

0 = γ1 < γ2 < · · · < γM+1 =
1

LT
,

and a collection of intervals {Im} that partitions the set F0

Im = [γm, γm+1), 1 ≤ m ≤M.
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We prove the following fact involving the indicator function of F and the sets {Im} in Ap-

pendix A:

Lemma 2.1. For each r ∈ L and m ∈ {1, 2, . . . ,M} the function χ(f + r/LT ∈ F) is constant

on the interval Im.

Equivalently, the theorem states that each subcell of the form (r/LT ) ⊕ Im, r ∈ L is

either fully contained in F or disjoint from it. This interpretation of the theorem motivates

the following definition of the spectral index sets Km and their complements Kc
m for m ∈

{1, 2, . . . ,M}:
Km

def
=

{

r ∈ L :
r

LT
⊕ Im ⊂ F

}

and Kc
m

def
= L\Km.

The index set Km tells us which subcells in the collection {(r/LT ) ⊕ Im : r ∈ L} are “active”,

while Kc
m indicates which of them are not. The following theorem, which is a restatement of

the main theorem in [23] using our notation, provides a necessary condition for reconstruction:

Theorem 2.1. Equation (2.8) admits a unique solution for Xr(f) only if the indicator function

of F satisfies

q(f)
def
=

L−1
∑

r=0

χ
(

f +
r

LT
∈ F

)

≤ p, f ∈ F0. (2.10)

Furthermore, an equality in Eq. (2.10) is necessary for attaining Landau’s lower bound on the

sampling rate.

To make the dissertation self-contained, we provide a proof of Theorem 2.1 in Appendix A.

Equation (2.10) reduces to

p ≥ max
m

qm, where qm = q(f), f ∈ Im (2.11)

because q(f) is constant on each Im by Lemma 2.1. Evidently, qm is the cardinality of the

set Km. We denote the elements of Km and Kc
m by {km(l) : 1 ≤ l ≤ qm} and {kc

m(l) : 1 ≤
l ≤ L− qm}, respectively. Later, we shall see that for a suitable choice of C, Eq. (2.11) is also

sufficient for unique reconstruction. In the following example, we show how to construct the

relevant K-sets for the spectrum illustrated in Figure 2.3.

Example 2.1. Let the spectral support of our class of signals be F = [0, 1.3)∪[2.7, 3.7)∪[4.5, 5).

Comparing this with Eq. (2.1), we find that

a1 = 0, a2 = 2.7, a3 = 4.5, b1 = 1.3, b2 = 3.7, and b3 = 5.

The indicator function χ(f ∈ F) of the set F is shown in Figure 2.3(a). The length of F is

µ(F) = 2.8 and its span is [F ] = [0, 5). It can be checked easily that F is nonpackable and
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hence the Nyquist rate for signals in B(F) is 1/T = µ[F ] = 5. Yet Landau’s lower bound gives

a rate of 2.8 and the corresponding occupancy is Ω = 2.8/5 = 0.56. Suppose we pick L = 5. We

see that Eq. (2.9) yields Γ ≡ {γ0, γ1, γ2, γ3} = {0, 0.3, 0.5, 0.7}, containing M = 4 elements,

from which we construct sets Im that partition F0 = [0, 1/LT ) = [0, 1):

I1 = [0, 0.3), I2 = [0.3, 0.5), I3 = [0.5, 0.7), I4 = [0.7, 1).

The following are immediately apparent:

q1 = 3, K1 = {0, 1, 3}, Kc
1 = {2, 4}.

q2 = 2, K2 = {0, 3}, Kc
2 = {1, 2, 4}.

q3 = 3, K3 = {0, 3, 4}, Kc
3 = {1, 2}.

q4 = 3, K4 = {0, 2, 4}, Kc
4 = {1, 3}.

Figure 2.3(b) shows the left-hand side of Eq. (2.10) plotted on the interval [0, 1). Note that this

function is piecewise constant, equal to qm on each of the intervals {Im} which are color-coded

for convenience. Figure 2.3(c) shows the indicator function of F color-coded to show the active

subcells derived by translating Im.

In direct analogy to Eq. (2.4), we define

Xkm(l)(f)
def
= X

(

f +
km(l)

LT

)

χ(f ∈ Im). (2.12)

However, beware of this definition since it is not equal to Eq. (2.4) evaluated at r = km(l). The

extra factor of χ(f ∈ Im) in Eq. (2.12) makes it different. The spectral component Xkm(l)(f) is

obtained by shifting the values of X(f) on the subcell (km(l)/LT )⊕Im to the origin. For each

m, we define a p× qm matrix Am, and vectors y(f) ∈ C
p, x+

m(f) ∈ C
qm, and x−m(f) ∈ C

L−qm

as follows:

[y(f)]i = T
√
LXci

(ej2πfT )χ(f ∈ F0),

[x+
m(f)]l = Xkm(l)(f),

[x−m(f)]l = Xkc
m(l)(f),

[Am]il =
1√
L

exp
(j2πcikm(l)

L

)

.

(2.13)

Note that Am is the submatrix of the L× L DFT matrix WL obtained by extracting its rows

indexed by C, and columns indexed by Km. We denote this by Am = W L(C,K). Next, using
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Figure 2.3 (a) Indicator function of the spectral support F of span 1/T = 5. (b) Left-hand
side of Eq. (2.10). (c) Active spectral subcells.

the fact that x−m(f) = 0 whenever x ∈ B(F), we can rewrite Eq. (2.8) in matrix form over each

subcell Im as follows:

y(f) = Amx
+
m(f), ∀f ∈ Im, 1 ≤ m ≤M. (2.14)

At this point, we introduce the following two definitions that characterize the sampling

pattern C, of size p, in terms of the L× L DFT matrix W L.

Definition 2.1. Given an index set K with |K| = q ≤ p, we call C a K-reconstructive sampling

pattern if the matrix W L(C,K) has full column rank.

Definition 2.2. A pattern C with |C| = p ≥ q is (p, q) universal if the matrix W L(C,K) has

full column rank for every index set of q elements, i.e., whenever |K| = q. A (p, p)-universal

pattern is simply called universal.

For fixed values of p and q, the second definition is stronger than the first. For every

L and p ≤ L, there always exists a (p, p) universal pattern. The bunched sampling pattern

C = {0, 1, . . . , p − 1} is one such example because the resulting matrix A = W L(C,K) is
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a Vandermonde matrix for any choice of K. This guarantees rank(A) = q for any spectral

support with q ≤ p active cells.

Equation (2.11), along with the assumption that Am has full rank for each m (i.e., C being

Km-reconstructive for each m) is necessary and sufficient for reconstruction. A simpler sufficient

condition is universality of C. For convenience we assume throughout that C is universal. This

guarantees the existence of a left-inverse A−1
m of Am. Therefore, inverting Eq. (2.14) gives

x+
m(f) = A−1

m y(f)

x−m(f) = Cmy(f)
f ∈ Im, m ∈ {1, . . . ,M}, (2.15)

where, in order that x−m(f) = 0 hold, Cm is any (L− qm) × p matrix satisfying

CmAm = 0 (2.16)

for each m. The matrices A−1
m and Cm are nonunique unless p = qm. In other words, there

is some freedom that can be used in designing a reconstruction system. The actual choice of

matrices does not affect the reconstruction, but does influence the bounds on aliasing error as

described later. This suggests that finding the optimal matrices is of interest. These equations

specify all the information required to reconstruct the spectrumX(f) on all its spectral subcells,

and hence x(t) itself.

The interpolation equation may be calculated from Eq. (2.15) in a rather messy but straight-

forward manner. The result is summarized in the following theorem, which we prove in Ap-

pendix A.

Theorem 2.2. Let x ∈ B(F) be sampled on an (L, p) multicoset pattern C. Let Km, m =

1, 2, . . . ,M denote the spectral index sets of F . Then, if C is Km-reconstructive for each m,

x(t) can be uniquely interpolated from its multicoset samples according to the following formula:

x(t) =

p
∑

i=1

∞
∑

n=−∞

xci
(nT )φi(t− nT )

≡
p

∑

i=1

∞
∑

j=−∞

x
(

(ci + Lj)T
)

φi

(

t− (ci + Lj)T
)

, (2.17)

where the functions φi(t), i = 1, . . . , p have Fourier transforms Φi(f) that are piecewise constant

on [F ]:

Φi(f) =











T
√
L[A−1

m ]lie
j2π

cikm(l)

L if f ∈ km(l)/(LT ) ⊕ Im,

T
√
L[Cm]lie

j2π
cikc

m(l)

L if f ∈ kc
m(l)/(LT ) ⊕ Im.

(2.18)
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Corollary 2.1. The result in Theorem 2.2 holds if maxm qm ≤ p, and C is universal.

Theorem 2.2 also holds for multicoset sampling of wide sense stationary stochastic processes

if the infinite summation in Eq. (2.17) is intrepreted as converging to the left-hand side in the

mean square sense. The analysis for this problem is similar to the classical analysis for lowpass

sampling of wide sense stationary processes [27].

The reconstruction scheme is illustrated in Figure 2.4. In the figure, Ψi(z) is a digital filter

whose impulse response is φi(nT ). The filters used are ideal. In practice, causal, possibly FIR

approximations are used, introducing some delay and distortion. The analysis of the resulting

error is analogous to the truncation error in classical cardinal series expansion and is beyond the

scope of this dissertation. However, we do consider the FIR filter design problem in Chapter 6.

In the rest of the chapter, we assume that the filters are ideal and concentrate on the aliasing

errors due to signal mismodeling.
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Figure 2.4 Multicoset sampling and reconstruction. The block “I” is an ideal sinc interpolator.

2.4 Error Bounds

For a system designed to sample and reconstruct signals in B(F), it is necessary that

Eq. (2.11) hold. In this case the reconstruction of x(t) would be exact. However, if x /∈ B(F)

then the signal x̃(t) reconstructed using the right-hand side of Eq. (2.17) would be in error.

For example, this would happen if, while designing the system, we underestimate the spectral

support of signals we expect to encounter; i.e., if we choose to ignore certain frequencies that

contain negligible signal energy. The purpose of this section is to obtain bounds on the aliasing

error e(t) = x̃(t) − x(t) resulting from an underestimation of the spectral support.

In the following analysis X(f) need not vanish on [F ]\F , although we assume, for simplicity,

that X(f) = 0 for f /∈ [F ]. In other words, the spectral span [F ] is specified correctly, but the
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multiband structure to which x(t) is bandlimited within [F ] may be misspecified. We shall first

derive bounds on the sup-norm and the L2 norm of the aliasing error e(t) for the nonuniform

sampling process described in the last section.

Recall that Kc
m = {kc

m(l) : 1 ≤ l ≤ L − qm} tells us exactly which spectral subcells in

the collection {(r/LT ) ⊕ Im : r ∈ L} are inactive. Now, for each m ∈ {1, 2, . . . ,M}, let

Bm = W L(C,Km) denote the p × (L − qm) submatrix of the L × L DFT matrix W L, whose

rows and columns are indexed by C and Kc
m, respectively, i.e.,

[Bm]il =
1√
L

exp
(j2πcik

c
m(l)

L

)

. (2.19)

We can then rewrite Eq. (2.8) in matrix form as

y(f) = Amx
+
m(f) +Bmx

−
m(f), f ∈ Im, (2.20)

where x−m(f) is the (L − qm) × 1 vector defined in Eq. (2.13). Note that if x(t) ∈ B(F), then

x−m(f) would vanish. Denoting the reconstructed signal by x̃(t), it follows immediately from

Eqs. (2.15), (2.16), and (2.20) that

x̃+
m(f) = x+

m(f) +A−1
m Bmx

−
m(f),

x̃−m(f) = CmBmx
−
m(f)

(2.21)

for f ∈ Im, where x̃+
m(f) and x̃−m(f) have definitions analogous to x+

m(f) and x−m(f), respec-

tively. Define matrices Dm and Fm (of sizes qm×(L−qm) and (L−qm)×(L−qm), respectively)

for each m as follows:

Dm = A−1
m Bm,

Fm = CmBm − I.
(2.22)

These definitions will be used in the following subsections, where we present bounds on the

peak aliasing error, the aliasing error energy and evaluate the performance of the system in the

presence of input noise.

2.4.1 Sup-norm of the error

The following theorem provides the time-domain expression for the aliasing error.

Theorem 2.3. The aliasing error e(t) takes the form

e(t) =

M
∑

m=1

L−qm
∑

l=1

ηm,l(t)xkc
m(l)(t),
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where ηm,l(t) for each 1 ≤ m ≤ M and 1 ≤ l ≤ L− qm are continuous, LT -periodic functions

defined as

ηm,l(t) =

L−qm
∑

r=1

[Fm]rle
j2πkc

m(r)t

LT +

qm
∑

r=1

[Dm]rle
j2πkm(r)t

LT .

Furthermore, the peak value of e(t) satisfies the tight bound

sup
t

|e(t)| ≤ ψ

∫

[F ]\F
|X(f)|df, ψ

def
= max

m

(

max
1≤l≤L−qm, t∈[0,LT ]

|ηm,l(t)|
)

.

We prove this theorem in Appendix A. The tightness of this bound is proved by demon-

strating an input signal that satisfies the equality in the bound. Note that the constant ψ can

be bounded from above as follows:

ψ = max
m,l,t

∣

∣

∣

∣

L−qm
∑

r=1

[Fm]rl exp
(j2πkc

m(r)t

LT

)

+

qm
∑

r=1

[Dm]rl exp
(j2πkm(r)t

LT

)

∣

∣

∣

∣

≤ max
m

[

max
l

( L−qm
∑

r=1

|[Fm]rl| +
qm
∑

r=1

|[Dm]rl|
)

]

= max
m

∥

∥

∥

∥

(

Dm

Fm

)∥

∥

∥

∥

1

,

where ‖·‖1 is the maximum-column-sum norm for matrices (or the ℓ1 norm for column vectors.)

Hence, we obtain the weaker, but more tractable bound

sup
t

|e(t)| ≤ ψ∞

∫

[F ]\F
|X(f)|df, where ψ∞ = max

m

∥

∥

∥

∥

(

Dm

Fm

)∥

∥

∥

∥

1

. (2.23)

2.4.2 L2-norm of the error

Theorem 2.4. The energy of the aliasing error is bounded by

∫ ∞

−∞
e2(t)dt ≤ max

m
[λmax(F

∗
mFm +D∗mDm)]Eout,

∫ ∞

−∞
e2(t)dt ≥ min

m
[λmin(F

∗
mFm +D∗mDm)]Eout,

with both bounds being tight, where Eout is the out-of-band energy:

Eout =

∫

[F ]\F
|X(f)|2df.
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Once again, the proof can be found in Appendix A. We are particularly interested in the

upper bound on the L2-norm of the error

‖e‖2 =

√

∫

|e(t)|2dt.

It is clearly related to the spectral norm of the matrix composed of Fm and Dm as

‖e‖2 ≤ ψ2

√

Eout, where ψ2 = max
m

∥

∥

∥

∥

(

Dm

Fm

)∥

∥

∥

∥

2

. (2.24)

2.4.3 Performance in the presence of noise

We now consider the effect of additive white sample noise representing, for example, quan-

tization noise or sensor measurement noise associated with obtaining samples. We assume that

the input signal is a wide sense stationary process with its power spectral density supported on

F . The sampled signal can be modeled as

x̄(nT ) = x(nT ) + w(nT ),

where w(n) is a noise process with E[w(mT )w(nT )] = σ2δ(m−n), and x(t) is the actual signal

we would like to be sampling. Owing to its linearity, Eq. (2.17) directly gives us the following

expression for the output noise w̃(t) which is independent of x(t):

w̃(t) =

p
∑

i=1

∞
∑

j=−∞

w((ci + Lj)T )φi(t− (ci + Lj)T ).

We now have the following result for the noise power amplification, which is proved in Ap-

pendix A.

Theorem 2.5. The output noise w̃(t) is periodically stationary, with average power given by

〈E|w̃(t)|2〉t = σ2ψn, where ψn = T
M
∑

m=1

η(Im)(‖A−1
m ‖2

F + ‖Cm‖2
F ),

and ‖ · ‖F denote the Frobenius norm.

2.5 Summary

In this chapter, we have presented the analysis of a scheme for sampling multiband signals

below the Nyquist rate. The sampling scheme uses multicoset sampling and achieves the Landau

minimum sampling rate in the limit L → ∞, where L is the period of the sampling pattern.
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However, for many spectra, the minimum rate can be achieved for a finite L. Typically, this

scheme is useful for sampling signals with sparse and nonpackable spectra.

We determined necessary and sufficient conditions for reconstructing multiband signals from

their multicoset samples and derived an explicit reconstruction formula. There are free param-

eters in the reconstruction equation when the Landau minimum rate is not achieved for the

particular value of L. We computed bounds on the aliasing error occurring in the event that

the signal lies outside the valid class of multiband signals, and the sensitivity of the system to

input sample noise. The constants in the bounds and the noise-sensitivity factor reveal that

some sampling patterns are better than others. In other words, these bounds, which quantify

the goodness of sampling patterns, can be viewed as cost functions to minimize to optimize the

sampling pattern and the choice of free parameters in the reconstruction formula.
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CHAPTER 3

OPTIMAL MULTICOSET SAMPLING AND

RECONSTRUCTION

3.1 Introduction

There has been a long history of research [2–5] devoted to sampling theory, with perhaps

the most fundamental and important piece of work in this area being the classical sampling

theorem. Also known as the Whittaker-Kotelńikov-Shannon (WKS) theorem, it states that a

lowpass signal bandlimited to the frequencies (−f0, f0) can be reconstructed perfectly from its

samples taken uniformly at no less than the Nyquist rate of 2f0 [1]. Another important result

in sampling theory due to Landau is a lower bound on the sampling density required for any

sampling scheme that allows perfect reconstruction [6]. For multiband signals, this fundamental

lower bound is given by the total length (measure) of support of the Fourier transform of the

signal. Landau’s bound applies to an arbitrarily sampling scheme: uniform or not, and the

minimum rate may not be achievable except asymptotically. Landau’s bound is often much

lower than the corresponding Nyquist rate. This motivates the study of sub-Nyquist sampling

of multiband signals and their perfect reconstruction, c.f. [15–18, 20, 24, 28].

From a practical viewpoint, sub-Nyquist sampling is very important in several Fourier imag-

ing applications such as sensor array imaging, SAR and MRI, where the physics of the problem

provides us samples of the unknown sparse object in its Fourier domain [8–11]. Our objective

then, is to reconstruct the object from the Fourier data. Often times, it is expensive or phys-

ically impossible to collect many samples, and it becomes necessary to sample minimally and

exploit the sparsity (i.e., multiband structure) in the object to form its image. These problems

are, of course, duals to the problem considered here since the sparsity is in the spatial domain

and sparse sampling in the frequency domain.

For a given signal x(t), its spectral support F is defined as the set of frequencies where the

Fourier transform X(f) does not vanish, and the spectral span [F ] is defined as the smallest
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interval containing F . We consider here only spectral supports that can be expressed as a finite

union of finite intervals, called bands. The set of multiband signals bandlimited to F is denoted

by B(F). Landau’s lower bound for these signals is µ(F), where µ(·) denotes the Lebesgue

measure. However, in general, the Nyquist rate fnyq for sampling x ∈ B(F) without aliasing

(overlap between translates of F by multiples of fnyq) is equal to the width of its spectral span:

fnyq = [F ]. Hence, for multiband signals with sparse spectral supports [F ], the Nyquist rate

can be much larger than the lower bound µ(F).

A favorable case is when the widths of the bands and the gaps between them satisfy special

relationships, so that there is no overlap between uniform translates of F by multiples of a

quantity f0 < µ([F ]). In these cases, when the spectral support is packable, fnyq = f0 < µ([F ]).

The most favorable situation of these is when F tiles the real line under uniform translations,

i.e., is packable without gaps, or “F is an explosion of the interval” [2]. In this (very special)

case, fnyq = µ(F), i.e., Landau’s lower bound is achievable by uniform sampling.

Instead, the case of interest to us in this chapter is the general case, with µ(F) < fnyq ≤
µ([F ]). Without loss of generality, we focus on the extreme (worst) case of nonpackable F , such

that fnyq = µ([F ]).1 For such multiband signals, it has been shown that perfect reconstruction

is possible from nonuniformly spaced samples taken at a sub-Nyquist average rate approaching

the Landau lower bound [15–18, 20, 28]. This discussion and intentional use of nonuniform

sampling are fundamentally distinct from other extensive recent work on nonuniform sampling

in which it is usually regarded as a “necessary evil,” imposed by sampling jitter or other physical

limitations [29–32]. In fact, the work in [29–32] typically addresses signals with lowpass spectral

supports, which, being packable, are best sampled uniformly, as we show later.

We note that the related problem of perfect reconstruction in filter banks (c.f. [33]) is

fundamentally different from the problem considered here. In the filter bank work, all samples

at the Nyquist rate are assumed available, and the analysis stage can be designed together with

the synthesis stage. In contrast, in our problem, Nyquist-rate acquisition is too expensive or

even impossible, and only the minimum number of samples of the continuous time signal is

acquired. As shown later, the filter bank interpretation for this is that the analysis filters are

restricted to the form of z−k where k ∈ Z.

Given the obvious advantages of such reduced sampling rates (e.g., by a factor of 10, in one of

the examples in this chapter), one would expect extensive use and applications of these methods.

However, a very high sensitivity to errors has been observed in some cases [16, 18]. In fact, it

1Intermediate cases with µ(F) < fnyq < [F ] are reduced to this case by first sampling the signal at fnyq and
then considering the problem of further downsampling the discrete-time signal, which now has a nonpackable
spectral support.
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turns out that unless the sampling and reconstruction system is very carefully designed and

optimized, the sensitivity to small errors can be so great, that although perfect reconstruction

is possible with perfect data, the signal is corrupted beyond recognition in most practical

situations.

The goal of this chapter is to explore these limitations and develop systematic design meth-

ods to minimize the sampling rate and at the same time to minimize the error sensitivity of

the system. This will provide the necessary tools for practical applications of minimum-rate

sub-Nyquist sampling. We consider the problem of periodic nonuniform sampling and recon-

struction of multiband signals. We focus primarily on the results presented in Chapter 2, where

we derived an explicit reconstruction formula and a multirate realization for a sampling scheme

called multicoset sampling that allows us to approach the Landau minimum rate arbitrarily

closely. As an important tool for systematic feasibility evaluation and design of the system, we

derived estimates of the error resulting from signal mismodeling. More precisely, we derived

bounds on (a) the peak value and energy of the aliasing error resulting when the input signal

x(t) lies in B([F ]), rather than B(F), and (b) the output noise variance when the input samples

contain additive white noise of variance σ2.

In this chapter, we use these various bounds to optimize the performance of the sub-Nyquist

sampling and reconstruction system by minimizing the sensitivity bounds. It turns out that

the reconstruction system that provides perfect reconstruction of signals x(t) ∈ B(F) in the

modeled class has free parameters, which can be chosen to optimize the sensitivity bounds. We

present closed-form, or otherwise efficient approximation numerical algorithms to solve these

optimization problems. Likewise, we use the bounds to determine the best sampling pattern

among all patterns that achieve a given sampling rate for a given F .

In addition, we solve the problem of an optimal choice of the base sampling frequency

to minimize the average sampling rate achievable by a design with a given sampling period

L. This allows us to minimize the sampling rate for a given system complexity, rather than

asymptotically, with L → ∞. This problem is related to the problem of pairing band-edges of

F [28]. We provide a simple algorithm to solve the problem, whether or not Landau’s lower

bound is attainable for the particular F and choice of L.

We derive additional relationships and bounds that allow us to quantify the performance loss

in terms of increased error sensitivity due to nonpackability of the spectral support, and compare

uniform and nonuniform sampling patterns for packable spectra. Not surprisingly perhaps, we

find that uniform sampling is more suitable for packable spectra. Most importantly however, we

find that the sensitivity penalty for sub-Nyquist sampling of signals with nonpackable spectra
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can be controlled by optimal design, and by backing off slightly from the minimum rate. The

resulting low error sensitivities with multifold reductions from the Nyquist rate in our numerical

examples suggest that these techniques have considerable practical potential.

3.2 Multicoset Sampling

3.2.1 Signals and data

Let the class of continuous complex-valued signals of finite energy, bandlimited to a subset

F of the real line (consisting of a finite union of bounded intervals) be denoted by B(F):

B(F) =
{

x(t) ∈ L2(R) ∩ C(R) : X(f) = 0, f 6∈ F
}

, F =

n
⋃

i=1

[ai, bi),

where

X(f) =

∫

R

x(t) exp(−j2πft)dt.

The span of F , denoted by [F ], is the convex hull of F or the smallest interval containing F .

Definition 3.1. The spectral support F is said to be packable at rate f0 if

F ∩ (F ⊕ nf0) = ∅, ∀n ∈ Z\{0},

where ⊕ is the translation operator defined by

f ⊕F = {f + x : x ∈ S}

for any real set F and f ∈ R.

In other words, F is packable at rate f0 if signals with spectral support F can be sampled

uniformly at rate f0 without inducing aliasing. Hence, F is always packable at rate µ([F ]). We

call F nonpackable if it is not packable at any rate smaller that µ([F ]). We assume that F is

nonpackable and that inf F = a1 = 0 and supF = bn: there is no loss of generality here because

any signal spectrum whose span [F ] is known can be shifted to the origin by multiplication of

the signal in the time domain by a suitable complex exponential. Since multiplication and

sampling in the time domain commute, we are justified in making the assumption.

We now describe multicoset sampling. Given a bandlimited signal x ∈ B(F), we obtain its

samples taken on a periodic nonuniform grid consisting of the sampling locations (nL+ci)T , for

n ∈ Z and i = 1, . . . , p, where {ci} is a set of p distinct integers in the set L = {0, 1, . . . , L− 1},
and 1/T is the base frequency which is at least equal to the Nyquist rate for x(t): 1/T ≥ µ([F ]).

This is illustrated in Figure 3.1. In Section 3.4, we address the problems of selecting the optimal

base frequency 1/T and sampling pattern {ci}.
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p

x(t)

1t=(nL+c )T 

t=(nL+c )T 

Figure 3.1 Model for multicoset sampling.

3.2.2 Definitions and notation

This section is largely a collection of definitions and notations needed to describe the various

error bounds derived in Chapter 2. For any real set S ∈ R, denote its indicator function by

χ(f ∈ S)
def
=











1 if f ∈ S,

0 otherwise,

and for the given spectral support F =
⋃

i[ai, bi), define the finite set

Γ
def
=

{

ai −
⌊LTai⌋
LT

: 1 ≤ i ≤ n
}

∪
{

bi −
⌊LTbi⌋
LT

: 1 ≤ i ≤ n
}

, (3.1)

where ⌊·⌋ is the floor function. Suppose Γ = {γ1, γ2, . . . , γM} is the enumeration of the elements

of Γ in increasing order, then γ1 = 0 as a consequence of a1 = 0. Furthermore, defining

γM+1 = 1/(LT ), we see that

0 = γ1 < γ2 < · · · < γM+1 = (LT )−1,

and a collection of intervals {Im} that partitions the set F0 = [0, 1/(LT )) is given by

Im = [γm, γm+1), 1 ≤ m ≤M.

As discussed in Chapter 2, the reason we partition F0 in this manner is that χ(f ∈ F)

is constant (either 0 or 1) for f ∈ Im ⊕ r/(LT ), and each pair of indices m and r. In other

words each subcell of the form Im ⊕ r/(LT ), for l ∈ L and 1 ≤ m ≤ M is either disjoint from

or fully contained in F . Now define spectral index sets Km and their complements K̄m for

m ∈ {1, 2, . . . ,M} as follows:

Km
def
=

{

r ∈ L :
r

LT
⊕ Im ⊂ F

}

, K̄m = L\Km.
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The set Km contains the indices of subcells in the collection {r/(LT ) ⊕ Im : r ∈ L} that are

contained in F . The following example illustrates the construction of these sets.

Example 3.1. Suppose we want to design sampling patterns for a class of bandlimited signals

B(F) with

F =
[

0,
21

400

)

∪
19
⋃

m=1

[21m

400
,
21m

400
+

1

400

)

,

which is nonpackable with [F ] = [0, 1) and Ω = 0.1. Hence, the Nyquist rate equals µ([F ]) = 1,

and the Landau minimum rate is µ(F) = 0.1. For the choice L = 20, we find that M = 19 and

Γ = {m/200 : m = 0, . . . , 19}. Hence, the subcells in F0 = [0, 1/20) and the spectral index sets

are given by

Im =











[0, 2/400) if m = 1,

[M/400, (m+ 1)/400) 2 ≤ m ≤ 19,

Km =











{0, 1} if m = 1,

{0,m} 2 ≤ m ≤ 19.

Denote the number of elements of Km by qm = |Km|. Then |K̄m| = L− qm. Observe that

q(f) = qm for all f ∈ Im, where

q(f)
def
=

L−1
∑

r=0

χ
(

f +
r

LT
∈ F

)

, f ∈ F0. (3.2)

Next, define the following matrices for each m:

Am = W L(C,Km) of size: p× qm,

Bm = W L(C, K̄m) of size: p× (L− qm),
(3.3)

whereW L is the L×L unitary DFT matrix whose (m,n) entry isW L,mn = 1/
√
L exp(j2πmn/L),

and W L(C,K) denotes the submatrix of W L obtained by selecting its rows indexed by C and

columns by K. Observe that Am and Bm satisfy

AmA
∗
m +BmB

∗
m = I. (3.4)

These matrices play in important role in the error bounds, as we shall see later. A necessary and

sufficient condition for reconstruction of every signal x ∈ B(F) is the existence of left-inverses

A−1
m for each Am such that A−1

m Am = I. This in turn requires that Am have full rank for

each 1 ≤ m ≤ M . This motivates the definition of two notions of goodness that characterize

sampling patterns.
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Definition 3.2. Given an index set K with |K| = q ≤ p, we call C a K-reconstructive sampling

pattern if the matrix W L(C,K) has full column rank.

Definition 3.3. A pattern C with |C| = p ≥ q is (p, q) universal if the matrix W L(C,K) has

full column rank for every index set K of q elements, i.e., whenever |K| = q. A (p, p)-universal

pattern is simply called universal.

The existence of a universal pattern is demonstrated by the bunched sampling pattern C =

{0, 1, . . . , p − 1}. It is universal because the resulting matrix W (C,K) has a Vandermonde

structure for any |K| = p. A (p, q) universal pattern is K-reconstructive for every K with |K| ≤ q,

so that the second definition is stronger than the first for fixed p and q. Therefore, as shown

in Chapter 2, the set C has to be Km-reconstructive for each m, for perfect reconstruction.

However, for simplicity we assume in the rest of this chapter that C is universal with p ≥
maxm qm. This automatically satisfies the reconstruction condition. In view of Eq. (3.2), this

condition reduces to p ≥ maxf q(f). Hence, the average sampling rate favg satisfies

favg =
p

LT
≥ 1

LT
max
f∈F0

L−1
∑

r=0

χ
(

f +
r

LT
∈ F

)

. (3.5)

The equality in Eq. (3.5) is achieved for universal sampling patterns C with p = maxm qm.

The condition p ≥ maxm qm guarantees that Am has full column rank for each m. Under this

condition, we obtain the following explicit reconstruction formula for x(t) from its multicoset

samples:

x(t) =

p
∑

i=1

∞
∑

j=−∞

x
(

(ci + Lj)T
)

φi

(

t− (ci + Lj)T
)

,

where the functions φi(t), i = 1, . . . , p are (nonunique) interpolation filters. These filters can

be parameterized in terms of matrices A−1
m of size qm × p and Cm of size (L− qm)× p, defined

by:

A−1
m Am = Iqm and CmAm = 0. (3.6)

It is clear that these matrices are nonunique if p > qm, and this reflects the nonuniqueness

of the interpolation filters. A multirate realization of the reconstruction scheme is illustrated

in Figure 3.2. The analysis part, to the left of the broken line, is a model for the multicoset

sampling process of the continuous-time signal (Figure 3.1). In other words, the simple structure

of the analysis part of the filter bank is dictated by the assumption that only samples on the

multicoset grid are available, while the synthesis part has a fully general structure. The digital
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filters Ψi(z), i = 1, . . . , p on the synthesis side are related to the interpolation filters by:

Ψi(z) =
∑

n∈Z

φi(nT )z−n.

The exact expressions for these interpolation filters in terms of AL
m and Cm are given in

Chapter 2. We summarize the bounds below, as they will be the basis for all the results in this

chapter.

LL

LL

LL

Σ
~x(t)t=nT

x(t) I

z
-cz c

z c

z c

z
-c

z
-c Ψ

Ψ

Ψ

11

i i

1

(z)

(z)

(z)

i

p p p

Figure 3.2 Multicoset sampling and reconstruction. The block “I” is an ideal sinc interpolator.

All our error bounds are expressed in terms of A−1
m , Cm and Sm defined as:

Sm =

(

A−1
m Bm

CmBm − Iqm

)

. (3.7)

3.2.3 Error bounds

Assume that x(t) lies in B([F ]) rather than in the class of signals for which it was designed,

namely B(F). Thus x(t) has out-of-band frequency components. This causes the reconstructed

signal x̃(t) to be in error, which for simplicity we call the aliasing error. The following are some

error bounds derived in Chapter 2. The peak value of e(t) is bounded:

sup
t

|e(t)| ≤ ψ∞

∫

[F ]\F
|X(f)|df, where ψ∞ = max

m
‖Sm‖1 , (3.8)

while the energy of e(t) and an upper bound on it are given by

∫ ∞

−∞
|e(t)|2dt =

M
∑

m=1

∫

Im

(x−m(f))∗(S∗mSm)x−m(f)df, (3.9)

∫ ∞

−∞
|e(t)|2dt ≤ ψ2

2

∫

[F ]\F
|X(f)|2df, ψ2 = max

m
‖Sm‖2 . (3.10)

where x−m(f), defined for f ∈ Im, are vectors containing the out-of-band signal components:

x−m(f) =
{

X
(

f +
k

LT

)

: k ∈ K̄m

}

, f ∈ Im.
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Suppose the input samples x(nT ) contain additive white noise w(n) with variance σ2 repre-

senting, for instance, sensor noise or quantization error associated with sampling. Then the

corresponding output noise has average power equal to

〈E|w̃(t)|2〉t = σ2ψn, ψn = T

M
∑

m=1

µ(Im)
(

‖A−1
m ‖2

F + ‖Cm‖2
F

)

. (3.11)

The bounds in Eqs. (3.10) and (3.11) are tight because there exist nonzero input signals that

satisfy the bounds with equality, however Eq. (3.8) need not be a tight bound. All three bounds

depend only on a measure of the out-of-band signal content, which is either the magnitute of

the spectrum |X(f)| or its square integrated over the out-of-band region [F ]\F .

3.3 Optimal Reconstruction

The multiplying constants ψ∞, ψ2 in the bounds in Eqs. (3.8) and (3.10) are nondecreasing

functions of the 1- and 2-norms, respectively, of the matrix Sm for each m. Hence, our problem

is to ensure that Sm has the smallest norm possible for each m. This is clearly a collection of

mutually independent problems. So, for the sake of readability, we drop the index m everywhere

from now on with the understanding that the solution needs to be applied to each m. Given

sampling pattern C and a spectral index set K, our objective is to pick appropriate matrices

A−1 and C that satisfy A−1A = I and CA = 0 (viz. Eq. (3.6)) and minimize the norm of

S =

(

A−1B

CB − I

)

, (3.12)

where “norm” means either ‖ · ‖2 (spectral norm) or ‖ · ‖1 (maximum-column-sum norm). The

other possibility is to minimize the output noise power in Eq. (3.11). A close look at this

expression reveals that we need to minimize (for each fixed m) the quantity ‖A−1‖2
F + ‖C‖2

F

over all valid matrices A−1 and C.

Note that if p = q, the matrix A is square and hence the left-inverse A−1 is unique. Also

the only matrix C that would satisfy CA = 0 is trivial, namely C = 0. In other words, there

are no free parameters when p = q. Therefore, the reconstruction system only needs to be

optimized when p > q. We assume that p > qm in the rest of the section. The other point

to note is that the optimization needs to be carried out for each value of the index m, the

subscript we have chosen to omit. We will see in a moment that the selection of the best A

and C to minimize (a) the spectral norm of S, and (b) the output noise power in Eq. (3.11)

can be solved analytically. Minimizing the quantity ‖S‖1 is a little harder however, requiring

the use of numerical methods.
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3.3.1 Minimizing the aliasing error energy

The following lemmas (whose proofs can be found in Appendix A) address the problem of

minimizing the bounding constant ψ2 for the aliasing error energy in Eq. (3.10):

Lemma 3.1. The solution X⋆ to the problem

min
X

‖R+XQ‖2,

for given R and Q with compatible dimensions, is X⋆ = −RQ†, where Q† is the pseudo-inverse

of Q. Furthermore, X⋆ simultaneously minimizes all singular values of R+XQ.

Lemma 3.2. Let
(

A B
)

be a p×L submatrix of the L×L DFT matrix W whose entries are

Wmn = exp(−j2πmn/L), with possible rearrangements of the columns. Suppose that A, with

q ≤ p columns, has full rank. Then the minimization of the largest singular value of S,

min ‖S‖2 ≡ min

∥

∥

∥

∥

(

A−1B

CB − I

)∥

∥

∥

∥

, (3.13)

performed over all matrices A−1 and C that satisfy A−1A = I and CA = 0, has the solution

A−1
⋆ = A† = (A∗A)−1A∗ and C⋆ = B∗(I −AA†), (3.14)

and the corresponding minimum value of the objective function is

‖S⋆‖2 =











√

λmax((A
∗A)−1) if p < L,

0 if p = L.
(3.15)

Furthermore, the solution in Eq. (3.14) simultaneously minimizes all singular values of S, and

therefore also its Frobenius norm.

Next we address the problem of optimizing the actual reconstruction in terms of the aliasing

error energy.

Theorem 3.1. The choice of optimal matrices A−1
⋆ and C⋆ in Lemma 3.2 minimizes the actual

aliasing error energy for each x(t) ∈ B([F ]) as well as the aliasing error bound in Eq. (3.10).

Proof. Equation (3.14) clearly minimizes the constant ψ2 in Eq. (3.10), or equivalently the

bound itself. Moreover, Lemma 3.2 says that the solution in Eq. (3.14) minimizes all the

eigenvalues of S∗S. Hence, S∗S − S∗⋆S⋆ is nonnegative definite for any feasible S. Examining

the expression for the actual aliasing error energy (Eq. (3.9)), we see that the quantity in

Eq. (3.14) is indeed the best solution.
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Remark. Suppose that p < L. Then for the choice A−1 = A† and C = 0, Eq. (3.12) yields

S =
(

A†B
−I

)

, whose spectral norm can be shown to be

‖S‖2 =

√

λmax(A
†B(A†B)∗ + I) =

√

λmax(A
†(A†)∗)

=
√

λmax((A
∗A)−1) ≡ ‖S⋆‖2.

using Eq. (3.4). Thus the pair (A−1,C) = (A†,0) produces the optimal constant multiplier

ψ2 in Eq. (3.10), but does not minimize the actual aliasing error energy. In other words these

matrices produce the same worst case, but not the same case-by-case performance as the optimal

matrices in Eq. (3.14).

3.3.2 Minimizing the output noise power

We seek the optimal matrices A−1 and C that satisfy A−1A = I and CA = 0 and

minimize ψn in Eq. (3.11), or equivalently, ‖A−1‖2
F + ‖C‖2

F . This is a fairly easy problem

because C and A−1 are independent of each other and the objective function is separable.

Therefore, we need to compute minA−1 ‖A−1‖2
F and minC ‖C‖2

F individually. For the second

term C⋆ = 0 is clearly the unique solution, while for the first term, we use the representation

A−1 ≡ A† + XP where P is the projection operator onto the null space of A∗, namely

P
def
= (I−AA†) = (I−A(A∗A)−1A∗). This representation is justified in the proof of Lemma 3.2

in Appendix A. This yields the following minimization

min
A−1

‖A−1‖2
F = min

X
‖A† +XP ‖2

F .

Applying Lemma 3.1, we obtain the minimizing solution X⋆ = −A†P † ≡ −A†P = 0. There-

fore, A−1
⋆ = A†. Finally,

‖A†‖F = [tr(A†(A†)∗)]
1
2 =

√

tr((A∗A)−1). (3.16)

3.3.3 Minimizing the peak aliasing error

The relevant quantity to minimize in order to obtain the tightest bound in Eq. (3.8) is the

1-norm of the matrix S defined in Eq. (3.12):

min
C,A−1

∥

∥

∥

∥

(

A−1B

CB − I

)∥

∥

∥

∥

1

subject to

(

A−1

C

)

A =

(

I

0

)

. (3.17)

The problem of choosing A−1 and C to minimize ‖S‖1, unlike the spectral or Frobenius norms

of S cannot be solved analytically. We resort to numerical methods instead. As shown in the
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proof of Lemma 3.2, we can represent A−1 and C as follows:

A−1 = A† +X1P and C = X2P , (3.18)

where X1 is a q × p matrix, and X2 a (L − q) × p matrix. We can now rewrite Eq. (3.17) in

an unconstrained form as

min
X1,X2

∥

∥

∥

∥

(

A†B

−I

)

+

(

X1

X2

)

PB

∥

∥

∥

∥

1

≡ min
X

‖S0 +XM‖1, (3.19)

where S0 =
(

A†B
−I

)

, X =
(

X1
X2

)

, and M = PB. This problem may be solved approximately

using a linear program. We first rewrite Eq. (3.19) as follows

min d subject to d ≥ ‖zi‖1, Z = S0 +XM .

Each constraint ‖z‖1 ≤ d can be approximated by the set of linear inequalities:

K
∑

k=1

umik exp(−j2πk/K) = zmi, ∀m, i

L
∑

m=1

K
∑

k=1

umik ≤ d, ∀i

umik ≥ 0, ∀m, i, k.

This region is clearly a subset of ‖zi‖ ≤ d, but it can be verified easily that it is a superset of the

region ‖zi‖ ≤ d/ cos(π/K). Hence, the approximate linear program produces an answer that

is accurate to within a factor of cos(π/K) of the correct answer. Hence, the normalized error

is bounded by 1 − cos(π/K) ≤ π2/(2K2), and the approximation is quite good for moderately

large K. This is essentially like approximating circles by K-sided polygons. The optimization

in Eq. (3.19) can also be solved using semi-infinite linear programming [34].

3.3.4 Lower bounds on ψ∞, ψ2, and ψn

The choice of sampling pattern C that minimizes the optimal constants ψ∞, ψ2, and ψn is

a difficult problem. It is therefore useful to know, even before attempting such a design, how

small these constants can be made. In this section we present lower-bounds on these “error

gain constants” ‖S‖2, ‖A−1‖F , and ‖S‖1. These are the relevant quantities that affect the

bounds in Eqs. (3.8), (3.10), and the noise power in Eq. (3.11). All bounds presented here are

independent of the sampling pattern and only depend on L, p, and q.

31



Suppose we denote the (real positive) eigenvalues of the q× q matrix A∗A by λ1, λ2, . . . , λq

in decreasing order. Then we have from Eq. (3.15) that

‖S‖2
2 ≥ ‖S⋆‖2

2 = λmax((A
∗A)−1) =

1

λq
, (3.20)

where S⋆ is optimized to obtain the lowest aliasing error energy. Of course λq > 0, since A is

assumed to have full rank. Notice that we can use the fact that |Aij| = 1/
√
L to bound the

average eigenvalue λ̄am = tr(A∗A)/q:

λ̄am =
1

q

q
∑

i=1

p
∑

j=1

|Aij |2 =
p

L
. (3.21)

This result along with Eq. (3.20) and λq ≤ λ̄am yields

‖S‖2 ≥
√

L

p
. (3.22)

Our next bound on ‖A†‖F provides an estimate for the worst-case output noise power. Equa-

tion (3.16) implies that

‖A†‖2
F = tr((A∗A)−1) =

q
∑

i=1

λi
−1 = q/λ̄hm,

where λ̄hm is the harmonic mean of the eigenvalues. Using the standard inequality λ̄hm ≤ λ̄am

and Eq. (3.21), we immediately obtain

‖A†‖2
F = tr((A∗A)−1) ≥ qL

p
. (3.23)

We refer the reader to [35] for some stronger bounds on the eigenvalues of these matrices, but

they hold only for special sampling patterns and bandpass spectral supports. Our next theorem

concerns the tightness of the bounds in Eqs. (3.22) and (3.23):

Theorem 3.2. The bounds in Eqs. (3.22) and (3.23) are tight in the sense that they hold when

C is a uniform sampling pattern and F is packable corresponding to C.

Proof. Assume that C = {0, a, 2a, . . . , (p− 1)a}, i.e., ci = (i− 1)a, where a = L/p is an integer.

This corresponds to subsampling x(nT ) by a factor of a. Let Im and Km denote the spectral

subcells and index sets corresponding to F . Let m be a fixed index and Km = {k1, h2, . . . , kqm}.
We see that packablility of F implies that ki−kj cannot be a multiple of p, for i 6= j. Otherwise,

the subcells Im ⊕ (ki/LT ) and Im ⊕ (kj/LT ) would overlap in the spectrum of x(nT ) when

subsampled by a = L/p. Therefore, the (i, l) entry of Am is

Am,il =
1√
L

exp
(

j2π
(i − 1)akl

L

)

=
1√
ap

exp
(

j2π
(i − 1)κl

p

)

,

32



where κl ∈ {0, 1, . . . , p − 1} is such that κl ≡ kl (mod p). Evidently {κl} are distinct because

F is packable. We see that
√
aAm is a submatrix of the p × p DFT matrix consisting of

all its rows and q of its columns. It immediately follows that λmax(A
∗
mAm) = 1/a = L/p

and tr(A∗mAm) = qm/a = qmL/p. Hence, the optimal matrices satisfy ‖Sm⋆‖2 =
√

L/p and

‖A†‖2
F = qmL/p.

Finally, we provide a lower-bound on ‖S‖1 just as in the case of the spectral norm. From

the definition of the 1-norm we have

‖S‖1 = max
s

L
∑

r=1

|Srs| ≥ max
s

(

L
∑

r=1

|Srs|2
)

1
2
,

where the last step follows from the positivity of terms in the sum. Therefore,

‖S‖1 ≥
(

max
s

L
∑

r=1

|Srs|2
) 1

2 ≥
( 1

L− q

L−q
∑

s=1

L
∑

r=1

|Srs|2
) 1

2

=
1√
L− q

‖S‖F . (3.24)

Observe that ‖S‖2
F = ‖A−1B‖2

F +‖CB−I‖2
F ≥ ‖A†B‖2

F +‖B∗PB−I‖2
F which follows from

the fact that the solution in Eq. (3.14) minimizes the Frobenius norm of S. Therefore,

‖S‖2
F ≥ tr(A†BB∗(A†)) + tr((B∗PB − I)2)

= tr((A∗A)−1 − I) + tr(I −B∗PB).

The expressions in the last step were obtained using the facts that BB∗ = I − AA∗ and

(I−B∗PB) is a projection operator. These are justified in the proof of Lemma 3.2. Therefore,

using the identities

PBB∗ = P (I −AA∗) = P

and

tr(P ) = tr(I −AA†) = p− tr(A†A) = p− q

we conclude that

‖S‖2
F ≥ tr((A∗A)−1) − q + (L− q) − tr(PBB∗)

= tr((A∗A)−1) − q + (L− q) − (p− q).

Combining the last inequality with Eqs. (3.24) and (3.23) we finally obtain

‖S‖1 ≥ 1
√

(L− q)

√

qL

p
− q + L− p =

√

(L− p)(q + p)

(L− q)p
. (3.25)
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When p = q, we can obtain a stronger bound than Eq. (3.25) when p = q. Observe that the

matrices A−1 and C = 0 are unique. Therefore,

‖S‖1 =

∥

∥

∥

∥

(

A−1B

−I

)∥

∥

∥

∥

1

= 1 + ‖A−1B‖1 ≥ 1 +
‖B‖1

‖A‖1
= 2. (3.26)

This bound, although applicable only for p = q, is indeed stronger than Eq. (3.25), whose

right-hand side evaluates to
√

2 for p = q.

3.3.5 Which criterion to optimize?

As seen in Section 3.3, each of the three criteria leads to a different optimal choice for A−1

and C. Furthermore, the computation of those matrices is more difficult in one of the cases

(minimizing the peak error). Therefore, the following question arises: suppose that A−1 and

C are chosen to optimize one of the criteria. Then, how far from the optimum would the

other criteria be for this choice? First of all, it is not fair to compare the optimum matrices

corresponding to the criteria ψ2 and ψn because the two problems have different underlying

settings: the error energy is due to input signal mismodeling, while the output noise power

is due to additive sample noise. Yet, we have seen that the “least-squares” solution A† is

the optimal choice for A−1 for both criteria, although the optimal choices for C are different.

However, it is more meaningful to compare the optimal matrices for the criteria ψ2 and ψ∞

because the two problems are similar: the imperfections in the input signal in both cases are due

to mismodeling. It is therefore reasonable to expect the optimal matrices that minimize ‖S‖1 to

be close to those that minimize ‖S‖2 for which, of course, we have the analytical least-squares

solution in Eq. (3.14). A question that springs to the mind is whether or not the least-squares

solution is a good enough approximation to the exact solution for the 1-norm problem. The

answer partially lies in the following result, which is a bound on the improvement factor that

the solution to Eq. (3.19) can offer over the least-squares solution in Eq. (3.14). Observe that

Eq. (3.19) can be rewritten in a slightly different constrained form as

min ‖S‖1 subject to Sξ = Slsξ, ∀ξ such that PBξ = 0, (3.27)

where Sls =

(

A†B

B∗PB − I

)

,

because we can write (S−Sls) = XPB for a suitableX owing to the fact thatA−1 = A†+X1P

and C = X2P for suitable X1 and X2. Note that Sls is the optimal matrix for the 2-norm

minimization. Therefore, Eq. (3.27) yields

‖S‖1‖ξ‖1 ≥ ‖Slsξ‖1, ∀ξ ∈ N(PB) =⇒ ‖S‖1 ≥ max
ξ∈N(P B)

ξ6=0

‖Slsξ‖1

‖ξ‖1
. (3.28)
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where N(·) denotes the null space. In the proof of Lemma 3.2, we show that N(PB) = R(K)

where K
def
= (I − B∗PB) is an orthonormal projector. Furthermore SlsK = Sls is easy to

check. Hence, for ease of computation, we can weaken the bound in Eq. (3.28) by maximizing

over the set consisting of the L− q columns of K, rather than the subspace N(PB) = R(K).

Thus, letting {ki} denote the columns of K, we obtain

‖S‖1 ≥ max
i

‖Slski‖1

‖ki‖1
≥ maxi ‖Slski‖1

maxi ‖ki‖1
=

‖SlsK‖1

‖K‖1
=

‖Sls‖1

‖K‖1
,

implying that ‖Sls‖1 ≤ ‖S‖1‖K‖1. In other words, using the least-squares solution in Eq. (3.14)

instead of the solution to Eq. (3.19) cannot amplify ‖S‖1 by a factor of more than ‖K‖1 ≥ 1.

We can apply these results to the norms of Sm and A−1
m for each m to obtain lower bounds

on (a) the constants present Eqs. (3.8) and (3.10); and (b) the average output noise power in

Eq. (3.11). Without explicitly deriving them, we summarize the bounds below in terms of Ω,

L, p and q′ = maxm qm:

‖e‖∞ ≤ ψ∞

∫

[F ]\F
|X(f)|df,

‖e(t)‖2 ≤ ψ2

(

∫

[F ]\F
|X(f)|2df

) 1
2
,

〈E|w̃(t)|2〉t = ψnσ
2,

where

ψ∞ = max
m

‖Sm‖1 ≥
√

(L− p)(q′ + p)

(L− q′)p
, (3.29)

ψ2 = max
m

‖Sm‖2 ≥
√

L

p
, (3.30)

ψn = T
∑

m

µ(Im)‖A†m‖2
F ≥ Ω

L

p
. (3.31)

In each of the first two equations, we have a lower bound and an upper bound that cannot

be combined. However, note that the bounds for ‖e(t)‖∞ or ‖e(t)‖2 are tight. Hence, the lower

bounds on ψ∞ and ψ2 tell us how large the aliasing error can be in the worst cases for the

corresponding bounds. However, they do not tell how large or small the errors in other cases.

Also note that the constants ψω, (ω = 2,n,∞) decrease as expected for a fixed {qm} when

p is increased. If we increase L, p, and qm in such a way that p/L and q/L remain constant

(as would happen if one attempts to approach the Landau rate by increasing L), we find that

these bounds are invariant. These bounds represent errors inherent to any sampling procedure,

whether uniform or not, for any multiband signals, packable or not. In Section 3.5, we study the
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increase in error sensitivity incurred for nonpackable signals that are sampled at a sub-Nyquist

rate.

3.4 Optimal Sampling

In this section, we discuss two important issues pertaining to optimal sampling, namely,

determining the optimal base sampling frequency and sampling pattern design. The first one is

concerned with choosing the period T that produces the lowest average sampling rate for given

F and L. The second issue is concerned with finding a good sampling pattern C that optimizes

the aliasing error bounds or sensitivity to noise. Our study of this latter problem is somewhat

numerical in nature.

3.4.1 Optimizing the choice of T

In all our previous analysis, we set the base sampling frequency 1/T = fnyq for conve-

nience. This is equivalent to sampling the original signal uniformly at the Nyquist rate prior

to discarding some some samples. Clearly, we could have chosen a slightly larger rate than

the Nyquist rate and still obtained similar results. In this section, we examine the problem of

choosing, for given L and F , the optimal value T⋆ for T that minimizes the average sampling

rate. We also provide a polynomial-time algorithm to find T⋆, whose value may be larger than

1/fnyq, and we show this by example. This problem is related to that of pairing band edges

that Herley and Wong [28] suggest. They provide a necessary and sufficient condition on the

band edge frequencies ai and bi of the spectral support F , for achieving the Landau minimum

rate. They also show that for sufficiently large L, with LT fixed, the minimum rate can be

approached arbitrarily closely. In our case, however, we fix L as it determines the complexity of

the reconstruction. Our variable is T , and the problem is to compute the optimal base sampling

frequency 1/T

All the results derived for the specific case 1/T = fnyq, the Nyquist rate, extend to

the general case 1/T ≥ fnyq provided that we replace the spectral span [F ] everywhere by

[0, 1/T ). We already know that for given L and T , the smallest average sampling rate (equal

to maxm qm/(LT )) is given by the right-hand side of Eq. (3.5):

favg(T,L) =
1

LT
max

f∈
[

0, 1
LT

)

L−1
∑

r=0

χ
(

f +
r

LT
∈ F

)

.
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Therefore, we seek the solution to

T⋆ = arg min
0<T≤T0

favg(T,L), where T0 =
1

fnyq
, (3.32)

for a fixed L. For spectral supports expressible as F =
⋃n

i=1[ai, bi), we have seen that the

construction of the sets Im and Km can be done in polynomial time. Therefore, the computa-

tion of favg(T,L) requires polynomial time also. The minimization in Eq. (3.32), however, is

performed over a continuous parameter T . The following theorem allows us to transform the

minimization problem to an exhaustive search over a finite set of values for T .

Theorem 3.3. For a spectral support of the form F =
⋃n

i=1[ai, bi), the optimum T⋆ in Eq. (3.32)

must satisfy
1

LT⋆
=
bj − ai

k

for some integers i, j and k such that 1 ≤ i ≤ j ≤ n, and 0 < k ≤ LT0(bj − ai) ≤ L.

The proof can be found in Appendix A. Theorem 3.3 enables us to generate no more than

n(n+ 1)(L− 1)/2 possible candidates for T⋆, which may then be used to minimize the average

sampling rate. It turns out that T⋆ = T0 is optimal for the spectral support F of Example 2.1.

However, as the following example shows, spectral supports exist for which T = T0 is highly

suboptimal:

Example 3.2. For a given L, consider the spectral support,

F =

L−1
⋃

r=0

[r, r + ǫ) ∪ [L− ǫ, L),

where ǫ < 1/(L + 1) is a small positive number. For the choice T = T0 = 1/L we have

1/(LT ) = 1 and

L−1
∑

r=0

χ
(

f +
r

LT
∈ F

)

=























L if 0 ≤ f < ǫ,

0 if ǫ ≤ f < 1 − ǫ,

1 if 1 − ǫ ≤ f < 1.

Since L pieces of the spectrum overlap, we require p = L and this makes the average sampling

rate equal to p/(LT ) = L. Next, for the optimal choice T = T⋆ = (L(1 + ǫ))−1 we have

L−1
∑

r=0

χ
(

f +
r

LT
∈ F

)

=











1 if f ∈ [0, ǫ) ∪ [1 − Lǫ, 1 − Lǫ+ ǫ) ∪ [1 − Lǫ+ 2ǫ, 1 + ǫ),

0 if f ∈ [ǫ, 1 − Lǫ) ∪ [1 − Lǫ+ ǫ, 1 − Lǫ+ 2ǫ).
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Therefore, p⋆ = 1 is required and the average sampling rate p⋆/(LT ) = (1 + ǫ). Hence, the

choice T = T⋆ can improve the sampling rate over the choice T = T0 by a factor of L/(1 + ǫ),

which is nearly as large as it can get because this factor never exceeds L, as shown below:

p⋆

LT⋆
≥ p⋆

LT0
≥ 1

L

( p

LT0

)

,

which follows from T⋆ ≤ T0 and p⋆ ≥ 1 ≥ p/L. Although Example 3.2 is an extreme situation,

it shows that optimizing T may be of significance, with the largest gains occurring typically for

signals with sparse spectral supports.

3.4.2 Sampling pattern design

We now examine the problem of designing good sampling patterns. We propose to use the

following minimizations as empirical design criteria:

C⋆ = arg min
C
ψω(C, {Km}M

m=1) for ω = 2,∞, n,

where ψω(C, {Km}) are maxm ‖S⋆m‖2, maxm ‖S⋆m‖1, and T
∑

m µ(Im)‖A†m‖2
F for ω = 1, 2, n,

respectively, and the subscript “⋆” denotes optimality of Sm with respect to the matrices A−1
m

and Cm, which is discussed in the previous section. The functions ψω(C, {Km}) are invariant

under cyclic shifts of C in {0, 1, . . . , L− 1}, and this follows easily from the definitions of these

functions.

Example 3.1 (Continued). For the chosen spectral support and L = 20, we have qm = 2 for

all m. Hence, p ≥ 2 is necessary and sufficient for perfect reconstruction from the multicoset

samples. For example, an exhaustive search over all sampling patterns for p = 5 yields

ψ2⋆ = min
C
ψ2(C, {Km}) = 2.9032 at Ca = {0, 1, 2, 13, 16},

ψn⋆ = min
C
ψn(C, {Km}) = 0.4769 at Cb = {0, 4, 7, 14, 15},

ψ∞⋆ = min
C
ψ∞(C, {Km}) = 2.2583 at Cc = {0, 1, 2, 8, 17},

where minC ψ∞(C, {Km}) is computed using the approximate linear program formulation with

K = 12, and hence cannot be claimed to be truly optimal. In this example, the three design

criteria produce different optimal sampling patterns. Table 3.1 shows the three objective func-

tions evaluated for each of these three candidate optimal patterns. It is evident that none of

the three candidate sampling patterns is simultaneously optimal for all three design criteria.

However all three candidates solutions are close to optimal for each of the criteria, and we lose
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little in terms of optimality by restricting our attention to any one of the criteria. For example,

we can pick ψn as it is the easiest to compute.

Let ψ2⋆ = minC ψ2(C, {Km}) and ψn⋆ = minC ψn(C, {Km}) denote the optimal constants for

a given p. Define the following quantities

η2 = ψ2⋆

√

p

L
, ηn = ψn⋆

p

ΩL
, η∞ = ψ∞⋆

√

(L− q′)p

(L− p)(q′ + p)
,

which are obtained by normalizing the quantities ψ2⋆, ψn⋆, and ψ∞⋆ by their lower bounds in

Eqs. (3.29), (3.30), and (3.31). Figure 3.3 illustrates (for 2 ≤ p ≤ 20) the behavior of η2 and

ηn. These are computed by first finding ψ2⋆ and ψn⋆ using an exhaustive search algorithm over

all sampling patterns of size p, followed by normalization. Due to the higher computational

complexity, we computed η∞ only for 2 ≤ p ≤ 5 as summarized in Table 3.2.

Table 3.1 Design criteria evaluated at the candidate optimal sampling patterns: Ca =
{0, 1, 2, 13, 16}, Cb = {0, 4, 7, 14, 15}, and Cc = {0, 1, 2, 8, 17}. The boxed entries are optimal in
their respective rows.

Criterion C = Ca C = Cb C = Cc

ψ2 2.9032 3.0641 3.5241

ψn 0.4811 0.4769 0.4918

ψ∞ 2.3929 2.6479 2.2583

Table 3.2 Normalized error gain constant η∞ for 2 ≤ p ≤ 5.
p 2 3 4 5

η∞ 9.8256 3.3764 2.3049 2.0908

Figure 3.3 shows that the optimal error gain constants η2 and ηn approach their lower bounds

rather quickly when p is increased. This behavior suggests the following design recommendation:

for given F with occupancy Ω and given L, choose p = LΩ + 1 or p = LΩ + 2. This results in

sampling rate p/L slightly larger than Ω, but provides significant reduction in error sensitivities.

Table 3.2 shows that η∞ also approaches its lower bound but more slowly.

3.5 Comparisons

The goal of this section is to compare uniform and nonuniform sampling below the Nyquist

rate for packable and nonpackable supportsF . Some of the comparisons are numerical examples.
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Figure 3.3 Normalized error gain constants η2 and ηn shown as functions of the number of
multicoset samples p in each period.
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We shall the following two questions: (a) For packable spectra, both uniform and nonuniform

sampling at the same average rate is possible. How does the reconstruction error compare

between the two options? (b) What is the penalty for nonpackability: given F (1) packable and

F (2) nonpackable, such that µ(F (1)) = µ(F (2)), which are sampled at the same rate—uniformly

and nonuniformly, respectively—how do the error bounds compare?

3.5.1 Uniform sampling versus nonuniform sampling for packable F

Recall that a signal x ∈ B(F) is packable at rate 1/T ′ < µ([F ]) if F ∩ (F ⊕ n/T ′) = ∅ for

all n 6= 0. Dodson and Silva [36] proved the following sampling theorem for packable signals.

Theorem 3.4. Suppose F is packable at rate 1/T ′ for some T ′ > 0, then x ∈ B(F) has the

sampling representation

x(t) =
∑

m∈Z

x(mT ′)ϕ(t−mT ′;F), (3.33)

with the sum converging uniformly and absolutely for t ∈ R.

The following theorem, due to Beaty and Higgins [26], is a bound on the peak value of the

aliasing error for signals with finite energy and packable F .

Theorem 3.5. Suppose that x(t) ∈ L2(R) ∩ C(R) with X(f) ∈ L1(R) is sampled at the rate

1/T ′ that satisfies F ∩ ((n/T ′) ⊕F) = ∅, ∀n 6= 0. Then the aliasing error e(t) satisfies

|e(t)| ≤ 2

∫

R\F
|X(f)|df. (3.34)

Incidentally, this equation is identical to the bound for the aliasing error in classical Shan-

non sampling of lowpass signals. Although valid for all x ∈ F , Eq. (3.34) will be used only

for the class signals x ∈ B([F ]) in order to compare with the bound in Eq. (3.8) which applies

to signals in B([F ]). It turns out that uniform patterns are indeed the best patterns suited

for packable spectra because the aliasing error bounds in Eqs. (3.8) and (3.34) have identi-

cal forms, with the only difference being the premultiplying constants: the constant is 2 in

Eq. (3.34), but maxm ‖Sm‖1 in Eq. (3.8). Since the lower bound in Eq. (3.26) implies that

ψ∞ = maxm ‖Sm‖1 ≥ 2 for p = max qm, we see that for packable signals uniform sampling

is most appropriate. Theorem 3.2 verifies this claim for the other two performance criteria

because the constants ψ2 and ψn attain their respective lower bounds for uniform sampling. In

summary, for packable signals, uniform sampling is the best.
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3.5.2 Penalty for nonpackability

What is the penalty in error sensitivity for Nonpackability? Unfortunately the answer to

this question is not easy to deduce analytically. From various numerical computations, it seems

that there is a price to pay for nonpackability of F . We provide an example here to support

the conjecture.

Example 3.2. Consider spectral supports F (1), F (2) and F (3):

F (1) = [0, 7),

F (2) = [0, 3) ∪ [5, 6) ∪ [12, 13) ∪ [14, 16),

F (3) = [0, 3) ∪ [6, 8) ∪ [13, 16).

For L = 16 and base sampling rate 1/T = 16, all their subcell decompositions contain only

one subcell, i.e., M = 1. The corresponding index sets are K(1)
1 = {0 → 7}, K(2)

1 = {0 →
2, 5, 11, 12, 14, 15}, and K(3)

1 = {0 → 2, 6, 7, 13 → 15}. The spectral supports have the same

measure, and the K-sets have q = 8 elements each. While K(1) and K(2) are packable, K(3) is

not. Upon minimizing the quantity ψω(C,K(i)) (using a forward selection greedy algorithm) for

i = 1, 2, 3, and ω = n, 2,∞, we obtain the following optimal sampling patterns C(i)
⋆ω of size p = 8

(corresponding to half the Nyquist rate) and objective functions ψ
(i)
⋆ω

def
= ψ⋆ω(C(i)

⋆ω , {K(i)
m }):

• For i = 1, 2, we obtain C(i)
⋆n = C(i)

⋆2 = C(i)
⋆∞ = {1, 3, 5, 7, 9, 11, 13, 15} with the corresponding

objective functions being ψ
(i)
⋆n = 1.0, ψ

(i)
⋆2 = 1.4142, and ψ

(i)
⋆∞ = 2.0. Note that these values

agree with the results of Theorem 3.2.

• For i = 3, we obtain C(3)
⋆n = C(3)

⋆2 = {2, 4, 5, 6, 9, 12, 14, 15}, and C(3)
⋆∞ = {1, 4, 5, 6, 9, 12, 13, 14}.

The objective functions take the values ψ
(1)
⋆n = 1.9291, ψ

(i)
⋆2 = 3.3598, and ψ

(i)
⋆∞ = 4.8284

at optimality.

Hence, the price to pay to sample a signal with a nonpackable spectrum at the Landau rate

manifests itself in the output noise and aliasing error bounds: they are larger for nonpackable

spectra.

Remark. Example 3.2 also illustrates the point made in the last subsection that uniform

sampling is generally better suited for packable signals than nonuniform patterns. The fact

that the sampling patterns for the packable spectra, (C(1)
⋆ω and C(2)

⋆ω ) turn out to be uniform

clearly supports the claim.
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3.6 Summary

We presented solutions to the problems of optimal sub-Nyquist sampling and reconstruction.

We showed how to determine optimal matrices to obtain the best performance in terms of the

aliasing error bounds or the noise sensitivity (the measures of performance) that were derived

in Chapter 2. We provided explicit solutions for most of these problems.

The error bounds reveal a dependence on the sampling pattern C. We examined the problem

of designing sampling patterns that optimize the performance measures. We used an exhaustive

search algorithm in one example and a forward selection greedy algorithm in another to pick

optimal sampling patterns for a few design examples. An exhaustive search over all sampling

patterns is computationally very expensive for even moderately large L, while a greedy search

is not guaranteed to produce the best pattern. Nevertheless, the greedy algorithm did produce

very good results. The problem of designing sampling patterns efficiently is still an open

problem. We also showed how to choose the optimal base sampling frequency that minimizes

the average sampling rate for a given sampling period L. This is an important issue because

sampling at a base frequency equal to the Nyquist rate may be severely suboptimal for certain

spectral supports.

We made comparisons to determine whether nonuniform sampling is appropriate for pack-

able signals. Our findings are that (a) for packable spectral supports, uniform sampling pattern

yields a better performance than a general nonuniform sampling pattern, and (b) for non-

packable signals, where uniform sampling is not applicable, there is a penalty associated with

nonuniform sampling. The error bounds are larger for this case relative to uniform sampling

of a packable signal of the same occupancy. We find that the sensitivity penalties (error gain

constants) for sub-Nyquist sampling of signals with nonpackable spectra can be controlled by

optimal design and by backing off slightly from the minimum rate. The resulting low error

sensitivities and the significant reduction in the sampling rate over the Nyquist rate of our

numerical examples suggest that these techniques have considerable practical potential. Most

of the results presented for 1-D signals should be extensible to two and higher dimensions with

little difficulty. In contrast, determining the optimal base sampling lattice in higher dimensions

would be a harder problem.
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CHAPTER 4

MIMO SAMPLING: NECESSARY DENSITY CONDITIONS

AND STABILITY ISSUES

4.1 Introduction

Multichannel deconvolution or multichannel separation of a convolutive mixture is an impor-

tant problem arising in several applications and has attracted substantial interest recently. The

problem, simply stated, deals with a MIMO channel whose outputs can be observed, and the

primary goal is to invert or equalize the channel to recover the original input signals. In general,

the channel inputs have overlapping spectra and share a common bandwidth. For example, the

problem of separation multiple speakers in a room with multiple microphones is an acoustic

source separation problem. The various acoustic sources can be modeled as multiband signals

with overlapping spectra, and the microphone signals can be modeled as the outputs of a linear

MIMO channel. Multiuser or multiaccess communications, multichannel image restoration, and

geophysical data processing are examples of other applications where MIMO equalization arises

[37–43].

We assume that the channel characteristics are either known or can be estimated accurately

using known test input signals. In practice, digital processing is used to perform the channel

inversion, whereas the channel inputs and outputs are continuous-time signals. Consequently,

the channel outputs need to be sampled prior to processing. In other words, the objective is to

reconstruct the channel inputs from the sampled output signals. Therefore, the MIMO channel

inversion problem can be restated as one in sampling theory, and we call this sampling scheme

MIMO sampling. We shall study this problem entirely from the perspective of sampling theory,

although the problem could, equally well, be viewed as one of channel equalization.
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4.1.1 Problem formulation

MIMO sampling can be described as follows. Let xr(t), r = 1, . . . , R, be a collection of

multiband signals whose spectral supports are measurable sets Fr ⊆ R of finite measure. These

R signals are the inputs to a MIMO channel consisting of linear time-invariant filters (see

Figure 4.1) producing P output signals yp(t), p = 1, . . . , P . In other words

yp =

R
∑

r=1

gpr ∗ xr, p = 1, . . . , P,

where ∗ denotes convolution, and gpr ∈ L2(R) are the channel filter impulse responses. The

outputs yp(t) are subsequently sampled on either a uniform or a nonuniform grid Λp = {λnp :

n ∈ Z}. We then attempt to reconstruct the channel inputs from the output samples. This

sampling scheme is very general and subsumes various other sampling schemes as special cases.

For instance Papoulis’s generalized sampling [12] is essentially a single-input, multiple-output

(SIMO) sampling scheme, i.e., R = 1. A natural generalization of Papoulis’s sampling expansion

to vector valued inputs considered by Seidner and Feder [13] is also a special case where all

input channels have identical lowpass spectra, i.e., Fr = [−B,B]. See [44] for an interesting

SIMO sampling scheme applicable to general signal spaces including wavelet and spline spaces.

However, we restrict our attention to multiband signal spaces alone.

R
P

x  (t)

x (t)1

y (t)1

y  (t)

t= λn,1

t= λn,PChannel
MIMO

Figure 4.1 MIMO sampling.

Landau [6, 7] proved the following fundamental result for sampling and interpolation of

multiband signals. Let X(f) denote the Fourier transform of a signal x(t), and

B(F) = {x ∈ L2(Rd) ∩ C(Rd) : X(f) = 0, ∀f /∈ F},

the class of continuous L2(Rd) signals bandlimited to a measurable F ⊆ R
d. Suppose that a

function x ∈ B(F) with F ⊆ R
d is sampled at a discrete set of points Λ = {λn : n ∈ Z} ⊆

R
d. Then, for stable reconstruction of x(t) from its samples x(λn), it is necessary that the

density of Λ be no less than the measure of F , i.e., Λ must be sufficiently dense in order to
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stably reconstruct the input. A dual problem is that of interpolation where we seek necessary

conditions on Λ that guarantee that

∃x ∈ B(F) s.t. x(λn) = cn (4.1)

whenever {cn} ∈ l2. Equation (4.1) is called the interpolation condition, and a necessary

condition for this problem is that the density of Λ be no more than the measure of F . Roughly

speaking, the samples of x(t) on the set Λ can take arbitrary values only if Λ is sufficiently

sparse. Alternatively, the density of Λ can be interpreted as a lower bound on the size of the

class of multiband signals with spectral support F , in which a solution to the interpolation

problem is guaranteed to exist, where “size” refers to the Lebesgue measure of the spectral

support F .

Gröchenig and Razafinjatovo [45] recently provided a simpler proof of Landau’s result. Their

technique also allowed them to prove necessary density conditions for some derivative sampling

schemes. However, all their results, unlike Landau’s, are applicable only when the boundary of

the set F has zero measure. The purpose of this chapter is to extend the idea of [45] to prove

more general results for MIMO sampling while removing the restriction on the boundaries of

the spectral supports. We consider only single variate functions in our analysis (d = 1), and the

results easily extend to multivariate functions. The questions that we address are the following:

(a) what are the necessary density conditions on the sampling densities of {Λp} for stable

reconstruction of the MIMO inputs xr ∈ B(Fr) from the MIMO output samples {yp(λnp)}?
and (b) what are the necessary conditions on the sampling densities of {Λp} such that

∃xr ∈ B(Fr) s.t. yp(λnp) = cnp (4.2)

for any sequence {cnp : n ∈ Z, p = 1, . . . , P} ∈ l2? Problem (b) is analogous to Landau’s

interpolation problem for classical single input sampling, and Eq. (4.2) is the analogue of the

interpolation condition in Eq. (4.1). However, we call Eq. (4.2) the consistency condition1

rather than the interpolation condition. Roughly speaking, this condition implies that the

channel outputs on the sets Λp can take arbitrary values, and this requires that Λp be sufficiently

sparse. Equivalently, these conditions can be interpreted as minimum size requirements on the

sets Fr.

Note that although the sampling theorems for special cases considered in [12, 13] provide

sufficient densities for uniform or periodic sampling, these are not shown to be necessary for

arbitrary, nonuniform sampling of the channel outputs. In Section 4.2, we introduce some
1Equation (4.2) does not describe an interpolation problem because the multichannel samples are not samples

of the input signals themselves.
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notation and review some mathematical background. In Section 4.3, we establish necessary

conditions on {Λp} for stable MIMO sampling and consistent MIMO reconstruction. For stable

reconstruction, we prove that the sum of densities of Λp is lower bounded by the sum of the

measures Fr. Similarly, for the consistency problem, the sum of densities of Λp is upper bounded

by the sum of the measures of Fr. Apart from these natural generalizations of Landau’s results,

we also derive necessary conditions on the joint density for each subcollection of sampling sets,

as well as conditions on the channel transfer function. These bounds provide an outer bound

on the region of achievable densities. We provide examples to illustrate the results.

4.2 Preliminaries

The class of continuous L2(R) signals bandlimited to a measurable F ⊆ R is denoted by

B(F) = {x ∈ L2(R) ∩ C(R) : X(f) = 0, ∀f /∈ F}, (4.3)

where X(f) is the Fourier transform of a signal x(t):

X(f) =

∫

R

x(t)e−j2πftdt.

The space B(F) is a separable Hilbert space. Let µ(·) denote the Lebesgue measure, and χ(·),
the indicator function. For instance, χ(f ∈ F) takes the value 1 on the set F , and 0 elsewhere.

Let φF (t) denote the inverse Fourier transform of χ(f ∈ F):

φF (t) =

∫

F
ej2πftdf.

Denote the time-shift operator by Θτ , i.e., Θτf(t) = f(t− τ). Let ∅ denote the empty set, and

Sc, the complement of a set S in the appropriate universal set.

We now introduce some notation pertaining to matrices. We denote the class of complex-

valued matrices of size M ×N by C
M×N . Let er ∈ C

R×1 denote the rth standard basis vectors,

i.e., er has a 1 at the rth position, and zeros elsewhere. For a given matrix A, let AH denote

its conjugate-transpose, AR,C , its submatrix corresponding to rows indexed by the set R and

columns by the set C. Also let A•,C denote the submatrix formed by keeping all rows of A, but

only columns indexed by C, and letAR,• denote the submatrix formed by retaining rows indexed

by R and all columns. We use a similar notation for vectors. Hence, XR is the subvector of X

corresponding to rows indexed by R. We always apply the subscripts before superscripts. So

AH
R,C is the conjugate-transpose of AR,C . When dealing with singleton index sets: R = {r} or

C = {c}, we omit the curly braces for readability. Therefore, Ar,• and A•,c are the rth row and
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the cth column of A, respectively. Let λmax(A) and λmin(A) denote the largest and smallest

eigenvalues of A. Let σmax(A) denote the largest singular value of matrix A, and σmin(A),

the smallest nonzero singular value of a A if A 6= 0. If A = 0, we take σmin(A) = ∞. The

following proposition, which is proved in Appendix A, is used later to characterize the region

of achievable densities.

Proposition 4.1. Let G ∈ C
R×ρ, and let A and B be subsets of {1, . . . , R}. Then

rank(GA,•) + rank(GB,•) ≥ rank(GA∪B,•) + rank(GA∩B,•). (4.4)

4.2.1 Stable sampling and consistency

The following material on frames is standard (c.f. [2, 46]). Let H is a separable Hilbert space

equipped with an inner product 〈·, ·〉. A sequence {ψn} ⊆ H is called a frame if there exist

constants A,B > 0 such that

A‖x‖2 ≤
∑

n

|〈ψn, x〉|2 ≤ B‖x‖2, (4.5)

for all x ∈ H. The constants A and B are called the lower and upper frame bounds. If A = B,

then the frame is a tight frame. The frame operator S, defined as

Sx =
∑

n

〈x, ψn〉ψn, ∀x ∈ H,

is a bounded linear operator satisfying AI ≤ S ≤ BI, where I is the identity operator. Let

ψ̃n = S−1ψn. Then {ψ̃n} is also a frame (the dual frame) for H with frame bounds B−1 and

A−1. Then any x ∈ H can be expanded as

x =
∑

n

〈x, ψ̃n〉ψn =
∑

n

〈x, ψn〉ψ̃n. (4.6)

If {ψn} is a frame, then for any sequence {cn} ∈ l2, we have
∥

∥

∥

∑

n

cnψn

∥

∥

∥

2
≤ B

∑

n

|cn|2. (4.7)

A sequence {ψn} ⊆ H is called a Riesz basis if it is fully equivalent to an orthonormal basis

for H, i.e., if there exists a bounded invertible operator T and an orthonormal basis {en} such

that ψn = Ten. A Riesz basis is a frame, and hence Eqs. (4.6) and (4.7) hold. In fact, for a

Riesz basis, we can replace Eq. (4.7) by the following stronger condition:

A
∑

n

|cn|2 ≤
∥

∥

∥

∑

n

cnψn

∥

∥

∥

2
≤ B

∑

n

|cn|2. (4.8)

48



Conversely, if {ψn} is a complete sequence in H, then it is a Riesz basis for H whenever

Eq. (4.8) holds for finite sequences [46]. The dual frame {ψ̃n} of a Riesz basis {ψn} is called

the biorthogonal basis of {ψn}, and it is also a Riesz basis for H.

A sequence {ψn} ⊆ H is called a Riesz-Fischer sequence if the moment problem

〈x, ψn〉 = cn (4.9)

has a solution x ∈ H whenever {cn} ∈ l2. If {ψn} is a Riesz-Fischer sequence, then there exists

a solution x to Eq. (4.9) such that

‖x‖2 ≤ 1

a
‖c‖2

for some a > 0 called the bound of the Riesz-Fischer sequence. A necessary and sufficient

condition for {ψn} to be a Riesz-Fischer sequence with bound a is that

∥

∥

∥

∑

n

cnψn

∥

∥

∥

2
≥ a

∑

n

|cn|2 (4.10)

for every finite sequence {cn}. Finally, note that the moment problem in Eq. (4.9) has a unique

solution if {ψn} is a complete Riesz-Fischer sequence in H. Every Riesz basis is a Riesz-Fischer

sequence, but the converse is not true. However, if a Riesz-Fischer sequence is also a frame,

then it is a Riesz basis. The notions of frames and Riesz-Fischer sequences are used in much of

our analysis in Section 4.3.

In the context of classical multiband sampling, the class of input signals is the separable

Hilbert space H = B(F) having the following inner product:

〈x, y〉 =

∫

R

x(t)y(t)dt, ∀x, y ∈ B(F).

Obviously, the norm on H is defined as ‖x‖ =
√

〈x, x〉.
A discrete set Λ = {λn : n ∈ Z} is called a stable set of sampling for B(F) if there exist

A,B > 0 such that

A‖x‖2 ≤
∑

n∈Z

|x(λn)|2 ≤ B‖x‖2, ∀x ∈ B(F). (4.11)

First notice that x(λn) = 〈x,Θλn
φF 〉. Using this fact and Eq. (4.11), we see that {Θλn

φF :

n ∈ Z} is a frame for B(F) with frame bounds A and B. Denoting its dual frame by {φ̃n} and

using Eq. (4.6), we obtain the following interpolation equation to reconstruct x:

x =
∑

n∈Z

〈x,Θλn
φF 〉φ̃n =

∑

n∈Z

x(λn)φ̃n. (4.12)
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The following argument shows that Eq. (4.12) is a stable reconstruction formula. Suppose

that a perturbation {δzn} ∈ l2 is added to zn = x(λn). Then, owing to linearity of Eq. (4.12),

the resulting perturbation δx in the reconstruction is given by

δx =
∑

n∈Z

δznφ̃n.

Using Eq. (4.7) and noting that the upper frame bound for the dual frame is 1/A, it follows

that

‖δx‖2 =
∥

∥

∥

∑

n

bnφ̃n

∥

∥

∥

2
≤ 1

A

∑

n

|bn|2. (4.13)

Finally, from Eqs. (4.11) and (4.13) we conclude that

‖δx‖
‖x‖ ≤

√

B

A

‖δz‖
‖z‖ .

The ratio K =
√

B/A ≥ 1 is called the condition number of the sampling scheme, and K2 is a

bound on the amplification of the normalized perturbation energy. Similarly, it can be shown

that a perturbation of δx in x ∈ H produces a perturbation of δz ∈ l2 in zn = x(λn) such that

‖δz‖
‖z‖ ≤

√

B

A

‖δx‖
‖x‖ .

Thus, the stability condition in Eq. (4.11) guarantees that the errors in the sampled signal or

its samples cannot produce arbitrarily large errors in the reconstructed signal.

The set Λ is called a set of interpolation if there exists x ∈ B(F) such that x(λn) = cn

whenever {cn} ∈ l2. This condition is clearly equivalent to {Θλn
φF : n ∈ Z} being a Riesz-

Fischer sequence in B(F). Finally, if Λ is a set of both sampling and interpolation, then

{Θλn
φF : n ∈ Z} is a Riesz basis for B(F). The theory of frames thus provides a convenient

tool to study sampling [47].

We shall now generalize the above notions of stable sampling and interpolation for the

MIMO problem. Recall that the channel input and output signals are related to each other as

y(t) = g ∗ x(t) =

∫

R

g(t− τ)x(τ)df,

where x is the input vector whose components are multiband signals xr ∈ B(Fr), and y is the

channel output in vector form. The class of input signals is the separable Hilbert space

H = B(F1) × · · · × B(FR) (4.14)

equipped with the inner product

〈x,z〉 =

∫

R

zH(t)x(t)dt =

R
∑

r=1

∫

R

zr(t)xr(t)dt, ∀x,z ∈ H. (4.15)
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The norm on H is clearly defined as ‖x‖ =
√

〈x,x〉. In the rest of this chapter let R and P
denote index sets for the components of the channel inputs and outputs, i.e.,

R = {1, . . . , R} and P = {1, . . . , P}.

Suppose that

Cf = {r : f ∈ Fr}, (4.16)

then it is clear that XCf (f) captures all the nonzero elements of X(f). Hence, the channel

output in the frequency domain can be expressed as

Y (f) = G(f)X(f) = G•,Cf (f)XCf (f), (4.17)

where G(f), the Fourier transform of g(t), is called the channel transfer function matrix.

Definition 4.1. A collection of discrete sets Λp = {λnp : n ∈ Z}, p ∈ P is called a stable

collection of MIMO sampling with respect to G(f) for the space H if there exist A,B > 0 such

that

A‖x‖2 ≤
P

∑

p=1

∑

n∈Z

|yp(λnp)|2 ≤ B‖x‖2 (4.18)

for every x ∈ H, where Y (f) = G(f)X(f).

It is clear that we can write yp(λnp) = 〈x,Θλnp
ψp〉 for appropriate ψp ∈ H. In fact a simple

calculation reveals that

Ψp(f) =

R
∑

r=1

Gpr(f)χ(f ∈ Fr)er, (4.19)

where er is the rth standard basis vector.

Now, Eq. (4.18) is equivalent to the condition that {Θλnp
ψp : n ∈ Z, p ∈ P} is a frame

for H. This observation, as in the case of classical sampling, implies that we can perform the

reconstruction of the channel inputs from the output samples using the dual frame as the set

of interpolating functions. Also, the stability condition in Eq. (4.18) guarantees that the errors

in the sampled signal or its samples do not produce arbitrarily large errors in the reconstructed

signals. The condition number for the MIMO sampling scheme is K =
√

B/A ≥ 1.

Definition 4.2. A collection of discrete sets Λp = {λnp : n ∈ Z}, p ∈ P is called a collection of

consistent reconstruction with respect to G(f) for the space H if there exists a solution x ∈ H
to the problem yp(λnp) = cnp for every {cnp} ∈ l2, where Y (f) = G(f)X(f).
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Equivalently, {Λp : p ∈ P} is a collection of consistent reconstruction with respect to G(f)

for the space H if {Θλnp
ψp : n ∈ Z, p ∈ P} is a Riesz-Fischer sequence in H. For any finite

sequence {cnp}, observe that

∥

∥

∥

∑

n,p

cnpΘλnp
ψp

∥

∥

∥

2
= max

x∈BH

∣

∣

∣

∑

n,p

cnp〈x,Θλnp
ψp〉

∣

∣

∣

2

= max
x∈BH

∣

∣

∣

∑

n,p

cnpyp(λnp)
∣

∣

∣

2
,

where BH = {x ∈ H : ‖x‖ ≤ 1} is the unit ball in H. In view of Eq. (4.10), it is clear that

{Θλnp
ψp : n ∈ Z, p ∈ P}

is a Riesz-Fischer sequence in H if and only if

max
x∈BH

∣

∣

∣

∑

n,p

cnpyp(λnp)
∣

∣

∣

2
≥ a

∑

n,p

|cnp|2 (4.20)

for every finite sequence {cnp}. It turns out that the above characterization of consistent MIMO

reconstruction is easier to use than Definition 4.2. Finally, we point out that if a collection of

discrete sets Λp = {λnp : n ∈ Z}, p ∈ P is a collection of both stable sampling and consistent

reconstruction, then {Θλnp
ψp : n ∈ Z, p ∈ P} is a Riesz basis for H.

4.2.2 Notions of sampling density

A discrete subset Λ = {λn : n ∈ Z} ⊆ R is called uniformly discrete with separation δ if

|λm − λn| ≥ 2δ, ∀m 6= n.

Let the maximum and minimum number of sampling points of Λ found in any interval of length

2γ be denoted by

ν+
γ (Λ) = sup

τ∈R

#(Λ ∩Bγ(τ)) and ν−γ (Λ) = inf
τ∈R

#(Λ ∩Bγ(τ)), (4.21)

respectively, where #(S) denotes the cardinality of a set S, and

Bγ(τ) = {σ ∈ R : |σ − τ | ≤ γ}

is a closed interval of length 2γ centered at t. For a discrete set Λ, the upper and lower densities

are defined as

D+(Λ) = lim sup
γ→∞

ν+
γ (Λ)

2γ
and D−(Λ) = lim inf

γ→∞

ν−γ (Λ)

2γ
, (4.22)
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respectively. See [47] for several other notions of density for nonuniform sampling. Although

traditionally written as “lim inf” and “lim sup,” the limits in Eq. (4.22) can be replaced by

simple limits [47]. If the lower and upper densities coincide, this density is called the uniform

density and is denoted by D(Λ). Note that this does not mean that the sampling points in Λ

are uniformly spaced. Any large interval of size l contains approximately lD(Λ) points of Λ. If

Λ is uniformly discrete, then D+(Λ) is finite. However, the converse statement is not true, but

the following is a slightly weaker result that generally suffices:

Proposition 4.2. A discrete set Λ has D+(Λ) < ∞ if and only if Λ can be expressed as a

union K uniformly discrete sets {Λk : k = 0, . . . ,K − 1}, such that D±(Λk) = D±(Λ)/K. The

smallest such K is given by

K0(Λ) = inf
δ>0

ν+
δ (Λ).

In addition, for any ǫ > 0, we can choose K such that each Λk has a separation of δ > 0

satisfying

D+(Λ) ≤ K

2δ
≤ D+(Λ) + ǫ.

Proposition 4.2 is proved in Appendix A.

When dealing with a collection of sampling sets, as in the MIMO setting, it is useful to define

joint densities for the collection. These are generalizations of the densities defined earlier.

Definition 4.3. Given a finite collection of discrete sets Λp, p = 1, . . . , P , their joint upper and

lower densities are defined as

D+(Λ1, . . . ,ΛP ) = lim sup
γ→∞

ν+
γ (Λ1, . . . ,ΛP )

2γ
, (4.23)

D−(Λ1, . . . ,ΛP ) = lim inf
γ→∞

ν−γ (Λ1, . . . ,ΛP )

2γ
, (4.24)

respectively, where

ν+
γ (Λ1, . . . ,ΛP ) = sup

τ∈R

P
∑

p=1

#(Λp ∩Bγ(τ)),

ν−γ (Λ1, . . . ,ΛP ) = inf
τ∈R

P
∑

p=1

#(Λp ∩Bγ(τ))

are the maximum and minimum number of sampling points of the collection {Λp : p = 1, . . . , P}
found in any interval of length 2γ.
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If these densities coincide, then {Λ1, . . . ,ΛP } has uniform joint density of

D(Λ1, . . . ,ΛP ) = D±(Λ1, . . . ,ΛP ).

If each Λp has uniform density, then so does the collection {Λ1, . . . ,ΛP }. However, the converse

is not true. From these definitions it is clear that

D+(Λ1, . . . ,ΛP ) ≤
P

∑

p=1

D+(Λp),

D−(Λ1, . . . ,ΛP ) ≥
P

∑

p=1

D−(Λp).

Moreover, if each Λp has uniform density, the collection {Λp} also has uniform joint densities

given by

D(Λ1, . . . ,ΛP ) =

P
∑

p=1

D(Λp).

We use the above properties later without explicitly stating them. The following proposition is

proved in Appendix A.

Proposition 4.3. The lim sup in Eq. (4.23) and the lim inf in Eq. (4.24) can be replaced by

simple limits. In fact,

ν+
γ (Λ1, . . . ,ΛP ) ≥ 2γD+(Λ1, . . . ,ΛP ), (4.25)

ν−γ (Λ1, . . . ,ΛP ) ≤ 2γD−(Λ1, . . . ,ΛP ) (4.26)

for all γ > 0.

4.3 Necessary Density Conditions

Our aim in this section is to prove necessary density conditions for MIMO sampling of

multiband signals. These results are analogous to Landau’s density result for nonuniform

sampling of multiband signals [6, 7]. Gröchenig and Razafinjatovo [45] provided a simpler proof

of Landau’s result, and their ideas were based on a method due to Ramanathan and Steger [48].

This idea allowed them to prove some results for derivative sampling. With some modifications,

the results in [45] can also be extended to SIMO sampling and interpolation. However, these

results apply only to signals in the class of multiband signals B(F) for which µ(∂F) = 0, i.e.,

the boundary of F has measure zero. Most sets of practical interest satisfy this condition,

while several pathological sets such as nowhere dense sets are excluded. Unfortunately, the
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condition also excludes some reasonable sets. For example, let F = [0, 1] ∩Qc, where Q is the

set of rationals. Then ∂F = [0, 1], implying that µ(∂F) = 1. But B(F) = B([0, 1]) since F
differs from [0, 1] by a set of measure zero. In other words their results do not apply to some

elementary classes of signals under a simple disguise.

4.3.1 A comparison theorem

In this section we present the main technical result, which is a modification of a similar

comparison theorem presented in [45]. We use the theorem to compute necessary density con-

ditions for the stable MIMO sampling and consistent reconstruction. However, the theorem is

very general, involving arbitrary signal spaces, and can potentially be used for proving necessary

density conditions for sampling problems in wavelet or spline spaces.

Lemma 4.1. Let h ∈ B([ν1, ν2]). Then,

h#(t)
def
= sup
|τ−t|≤1

|h(τ)|,

satisfies h# ∈ L2(R) and ‖h#‖2 ≤ C‖h‖2 for some C = C(ν2 − ν1) > 0 that depends only on

the difference (ν2 − ν1). Moreover, if Λ = {λm : n ∈ Z} ⊆ R is a discrete set with D+(Λ) <∞,

then
∑

|λn−σ|≥Γ

|h(λn)|2 ≤ C ′
∫

|t−σ|≥Γ−1
|h#(t)|2dt (4.27)

for all σ ∈ R, Γ ≥ 0, and some C ′ = C ′(Λ) > 0. In particular

∑

n∈Z

|h(λn)|2 ≤ C ′C‖h‖2.

Proof. For every η > 0, let Sη(f) be a Schwartz function such that Sη(f) = 1 for f ∈ [0, η].

Define C(η) = ‖s#η ‖2
1. Then S(f) = Sν2−ν1(f − ν1) is also a Schwartz function such that

S(f) = 1 on [ν1, ν2]. Since h ∈ B([ν1, ν2]), we have h = h ∗ s. Hence,

h#(t) = sup
τ∈B1(t)

∣

∣

∣

∫

R

s(τ − σ)h(σ)dσ
∣

∣

∣

≤
∫

R

sup
τ∈B1(t)

|s(τ − σ)| · |h(σ)|dσ

=

∫

R

s#(t− σ)|h(σ)|dσ = s# ∗ |h|.

Clearly s#(t) ∈ L1(R) because s(t) is a rapidly decaying function of t. Therefore,

‖h#‖ ≤ ‖s# ∗ |h|‖ ≤ ‖s#‖1 · ‖h‖,
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holds for all h ∈ B(F). It is clear that ‖s#‖2
1 = ‖s#ν2−ν1

‖2
1 = C(ν2 − ν1). Thus ‖h#‖2 ≤

C(ν2 − ν1)‖h‖2. Suppose D+(Λ) < ∞, then by Proposition 4.2 we can express Λ as a union

of K uniformly discrete sets {Λk : k = 1, . . . ,K} each with separation δ > 0. Without loss of

generality, assume that δ < 1. Let the elements of Λk be denoted by {λnk : n ∈ Z}. Then, for

any σ ∈ R, we have

∑

|λn−σ|≥Γ

|h(λn)|2 =
K

∑

k=1

∑

|λnk−σ|≥Γ

|h(λnk)|2

≤
K

∑

k=1

∑

|λnk−σ|≥Γ

1

2δ

∫

|t−λnk |≤δ
|h#(t)|2dt

because |h(λn)| ≤ h#(t) for all t such that |t− λnk| ≤ δ ≤ 1. Thus,

∑

|λn−σ|≥Γ

|h(λn)|2 ≤ 1

2δ

K
∑

k=1

∫

|t−σ|≥Γ−δ
|h#(t)|2dt

≤ K

2δ

∫

|t−σ|≥Γ−1
|h#(t)|2dt.

This bound has the required form if we set C ′ = K/(2δ) that, evidently, depends only on Λ.

Lemma 4.1 says that the samples of a bandlimited signal on a sampling set of finite upper

density cannot be arbitrarily large. As we shall see later, it is a simple but powerful result.

We now introduce a few quantities relevant to the main result that follows shortly. Define

the following separable Hilbert spaces:

Hβ =
(

B([−β, β])
)R
, β > 0,

H∞ =
(

L2(R)
)R
,

and let the inner product on both spaces be defined as in Eq. (4.15). Note that Hβ is the

space of vector functions whose R components are bandlimited to the frequencies [β, β]. Let

PS : H∞ → S denote the orthogonal projection operator onto a closed subspace S ⊆ H∞.

Definition 4.4. A subspace S ⊆ H∞ is called shift-invariant if Θσx ∈ S for all σ ∈ R whenever

x ∈ S.

Evidently H∞ and Hβ are shift-invariant spaces. We write x ⊥ S whenever 〈x,z〉 = 0

for all z ∈ Hβ. The following properties of a closed shift-invariant subspace S ⊆ H∞ can be

verified easily.
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Proposition 4.4. Suppose that x ∈ Hβ, σ ∈ R, and S ⊆ H∞ is a closed shift-invariant

subspace. Then (a) x ⊥ S =⇒ Θσx ⊥ S, and (b) PSΘσx = ΘσPSx, i.e., translation

commutes with orthogonal projection onto S.

Proof. (a) Suppose that x ⊥ S. Then 〈Θσx,z〉 = 〈x,Θ−σz〉 = 0 whenever z ∈ S and σ ∈ R

because Θ−σz ∈ S. Hence, Θσx ⊥ S. To prove (b), note PSΘσx− ΘσPSx ∈ S. For arbitrary

z ∈ S, we have

〈PSΘσx− ΘσPSx,z〉 = 〈PSΘσx,z〉 − 〈ΘσPSx,z〉

= 〈Θσx, PSz〉 − 〈x, PSΘ−σz〉

= 〈Θσx,z〉 − 〈x,Θ−σz〉 = 0,

proving that PSΘσx = ΘσPSx.

Lemma 4.2. Let S ⊆ H∞ be a closed subspace, and Σ ⊆ R. Then,

lim sup
β→∞

sup
σ∈Σ

‖Θσx− PSΘσPHβ
x‖ ≤ sup

σ∈Σ
‖Θσx− PSΘσx‖

for all x ∈ H∞.

Proof. For any x ∈ H∞ and ǫ > 0, there exists β0 > 0 such that

‖x− PHβ
x‖ =

∫

|f |≥β
‖X(f)‖2df ≤ ǫ, ∀β ≥ β0 (4.28)

because X(f) is square-integrable. Now, using the fact that PS is a projection operator we

obtain

‖Θσx− PSΘσPHβ
x‖ ≤ ‖Θσx− PSΘσx‖ + ‖PSΘσx− PSΘσPHβ

x‖

≤ ‖Θσx− PSΘσx‖ + ‖Θσx− ΘσPHβ
x‖

= ‖Θσx− PSΘσx‖ + ‖x− PHβ
x‖

for all σ ∈ Σ. In view of Eq. (4.28) and the above inequality, we conclude that

lim sup
β→∞

sup
σ∈Σ

‖Θσx− PSPHβ
Θσx‖ ≤ sup

σ∈Σ
‖Θσx− PSΘσx‖ + ǫ.

The result follows immediately because ǫ > 0 is arbitrary.

Theorem 4.1 (Comparison Theorem). Let HS and HL be closed subspaces of H∞, and let

Σ1, . . . ,ΣQ, and Λ1, . . . ,ΛP be discrete subsets of R such that all D+(Λp) < ∞. Suppose that

s1, . . . , sQ and l1, . . . , lP are such that

{Θσsq : σ ∈ Σq, q = 1, . . . , Q} ⊆ HS
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is a Riesz-Fischer sequence in HS with bound a > 0, and that

{Θλlp : λ ∈ Λp, p = 1, . . . , P} ⊆ HL

is a frame for HL. Then

D±(Λ1, . . . ,ΛP ) ≥ D±(Σ1, . . . ,ΣQ) −
Q

∑

q=1

αqD
+(Σq), (4.29)

if all D+(Σq) <∞, where

αq =
1√
a

sup
σ∈Σq

‖Θσsq − PHL
Θσsq‖.

In particular, D+(Σq) <∞ is guaranteed whenever all αq < 1.

Let Σq = {σnq : n ∈ Z} and Λp = {λnp : n ∈ Z} be enumerations of the discrete sampling

sets Σq and Λp, and Σ′q ⊆ Σq, a finite subset of Σq. Define

H′S = span{Θσsq : σ ∈ Σ′q, q ∈ Q}, (4.30)

where Q = {1, . . . , Q}. Then H′S is a closed finite dimensional subspace of HS . Since

{Θσsq : σ ∈ Σq, q ∈ Q}

is a Riesz-Fischer sequence with bound a, we have from Eq. (4.10) that

∥

∥

∥

Q
∑

q=1

∑

n∈Nq

cnqΘσnqsq

∥

∥

∥

2
≥ a

Q
∑

q=1

∑

n∈Nq

|cnq|2,

where

Nq = {n : σnq ∈ Σ′q}

is a finite set. In other words, {Θσsq : σ ∈ Σ′q, q ∈ Q} is a (Riesz) basis for H′S , with lower

frame bound a. Then its biorthogonal basis, denoted by {s̃nq : n ∈ Nq, q ∈ Q}, has an upper

frame bound of 1/a, and hence Eq. (4.8) implies that

‖s̃nq‖2 ≤ 1/a. (4.31)

By hypothesis, {Θλlp : λ ∈ Λp, p ∈ P} is a frame for HL. Denoting its dual frame by

{l̃np : n ∈ Z, p ∈ P} ⊆ HL and using Eq. (4.7), we obtain

∥

∥

∥

∑

n,p

cnpl̃np

∥

∥

∥

2
≤ B

∑

n,p

|cnp|2 (4.32)
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for all {cnp} ∈ l2 and some constant B > 0. Now, define the following finite-dimensional

subspaces:

WS
γ (τ) = span{Θσsq : σ ∈ Bγ(τ) ∩ Σ′q, q ∈ Q} ⊆ H′S ,

WL
γ (τ) = span{l̃np : n ∈ Ip(γ, τ), p ∈ P} ⊆ HL,

where

Ip(γ, σ) = {n : λnp ∈ Bγ(σ)}, γ > 0, τ ∈ R. (4.33)

Also let PS
γ (τ) : H∞ → WS

γ (τ) and PL
γ (τ) : H∞ → WL

γ (τ) denote orthogonal projection

operators onto these subspaces. Before presenting the proof Theorem 4.1, we introduce some

additional definitions and prove some preliminary results.

Lemma 4.3 (Homogeneous Approximation Property). Let f ∈ Hβ for some β > 0 and

ǫ′ > 0. Then there exists Γ = Γ(f , ǫ′, {lp}) > 0 such that

sup
σ∈Bγ (τ)

‖(I − PL
γ+Γ(τ))PHL

Θσf‖ ≤ ǫ′

for all γ ≥ 0 and τ ∈ R.

Proof. Let σ ∈ Bγ(τ). Then, using Eq. (4.33) and the triangle inequality, we have

Ip(Γ, σ) ⊆ Ip(γ + Γ, τ), ∀Γ > 0. (4.34)

Expanding PHL
Θσf with respect to the dual frame {l̃np}, we obtain

PHL
Θσf =

P
∑

p=1

∑

n∈Z

〈PHL
Θσf ,Θλnp

lp〉l̃np

=
P

∑

p=1

∑

n∈Z

〈Θσf ,Θλnp
lp〉l̃np,

where the last step follows because Θλnp
lp ∈ HL. Using the above representation, and the fact

that PL
γ+Γ(τ) is an orthogonal projection, we have

‖(I − PL
γ+Γ(τ))PHL

Θσf‖ ≤
∥

∥

∥
PHL

Θσf −
P

∑

p=1

∑

n∈Ip(γ+Γ,τ)

〈Θσf ,Θλnp
lp〉l̃np

∥

∥

∥

=
∥

∥

∥

P
∑

p=1

∑

n/∈Ip(γ+Γ,τ)

〈Θσf ,Θλnp
lp〉l̃np

∥

∥

∥
.
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Combining this with Eq. (4.32) we get

‖(I − PL
γ+Γ(τ))PHL

Θσf‖2 ≤ B

P
∑

p=1

∑

n/∈Ip(γ+Γ,τ)

|〈Θσf ,Θλnp
lp〉|2

≤ B
P

∑

p=1

∑

n/∈Ip(Γ,σ)

|〈Θσf ,Θλnp
lp〉|2,

where the last step follows from Eq. (4.34). Letting
←
l p,r(t) = lp,r(−t) and

hp(t) =

R
∑

r=1

fr ∗
←
l p,r(t) =

R
∑

r=1

∫

R

lp,r(τ − t)fr(τ)dτ,

where the bar denotes complex conjugation, we obtain

‖(I − PL
γ+Γ(τ))PHL

Θσf‖2 ≤ B

P
∑

p=1

∑

n/∈Ip(Γ,σ)

|hp(λnp − σ)|2.

Observe that hp ∈ B([−β, β]) because f ∈ Hβ. By hypotheses, the sets {Λp} have finite upper

densities. Hence, applying Lemma 4.1, we obtain

‖(I − PL
γ+Γ(τ))PHL

Θσf‖2 ≤ BC ′
P

∑

p=1

∫

|t−σ|≥Γ−1
|h#

p (t− σ)|2dt

= BC ′
P

∑

p=1

∫

|t|≥Γ−1
|h#

p (t)|2dt (4.35)

for some C ′ = C ′({Λp}) > 0 and all σ ∈ Bγ(τ). Since each h#
p ∈ L2(R), the right-hand side of

Eq. (4.35) can be made smaller than ǫ′ for sufficiently large Γ. The choice of Γ clearly depends

only on ǫ′, f , {lp : p ∈ P}, and {Λp : p ∈ P}. It depends on β through f .

The homogenous approximation property roughly states that if we choose Γ > 0 sufficiently

large then, for every σ such that |σ−τ | ≤ γ, the projection of Θσf onto HL can be approximated

well by a vector in WL
γ+Γ(τ). The approximation is homogenous in the sense that the choice of

Γ does not depend on σ, τ , or γ.

Proof of the Comparison Theorem. Define

s′qσβ = PHL
ΘσPHβ

sq, β > 0, σ ∈ R.

Let Γ = Γ(ǫ, β) be chosen such that the homogeneous approximation property (Lemma 4.3)

holds for ǫ′ = ǫ
√
a and f = PHβ

sq for each q. We write Γ = Γ(ǫ, β) to show its dependence
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on these parameters. However, Γ also depends on {sq}, {lp}, a, and {Λp}, but we do not state

these explicitly because they are fixed quantities. Therefore,

‖(I − PL
γ+Γ(τ))s′qσβ‖ ≤ ǫ

√
a (4.36)

for all γ ≥ 0, τ ∈ R, and σ ∈ Bγ(τ). Define

s′′qσβ = Θσsq − s′qσβ = Θσsq − PHL
ΘσPHβ

sq.

Then, using Eq. (4.36), we obtain

‖(I − PL
γ+Γ(τ))Θσsq‖ ≤ ‖(I − PL

γ+Γ(τ))s′qσβ‖ + ‖(I − PL
γ+Γ(τ))s′′qσβ‖

≤ ǫ
√
a+ ‖s′′qσβ‖ (4.37)

for all γ ≥ 0, τ ∈ R, and σ ∈ Bγ(τ). Let Tγ(τ) : WS
γ (τ) → WS

γ (τ) be defined as Tγ(τ) =

PS
γ (τ)PL

γ+Γ(τ). We shall compute lower and upper bounds on the real part of the trace of

Tγ(τ). First observe that

ℜ trTγ(τ) =

Q
∑

q=1

∑

σnq∈Σ′
q∩Bγ(τ)

ℜ〈Tγ(τ)Θσnqsq, s̃nq〉, (4.38)

where ℜ(·) denotes the real part. We can rewrite each term in the summation as

ℜ〈Tγ(τ)Θσnqsq, s̃nq〉 = ℜ〈PL
γ+Γ(τ)Θσnqsq, P

S
γ (τ)s̃nq〉

= ℜ〈Θσnqsq, P
S
γ (τ)s̃nq〉 + ℜ〈(PL

γ+Γ(τ) − I)Θσnqsq, P
S
γ (τ)s̃nq〉

= 1 + ℜ〈(PL
γ+Γ(τ) − I)Θσnqsq, P

S
γ (τ)s̃nq〉

≥ 1 − ‖(PL
γ+Γ(τ) − I)Θσnqsq‖‖s̃nq‖.

Since σnq ∈ Bγ(τ), we can use Eqs. (4.31) and (4.37) and the above inequality to obtain

ℜ〈Tγ(τ)Θσnqsq, s̃nq〉 ≥ 1 −
(ǫ
√
a+ ‖s′′q,σnq ,β‖)√

a
≥ 1 − ǫ− α′q(β), (4.39)

where

α′q(β) =
1√
a

sup
σ∈Σq

‖s′′qσβ‖ =
1√
a

sup
σ∈Σq

‖Θσsq − PHL
ΘσPHβ

sq‖. (4.40)

In view of Eq. (4.40) and Lemma 4.2, we have

lim sup
β→∞

α′q(β) ≤ 1√
a

sup
σ∈Σq

‖Θσsq − PHL
Θσsq‖ = αq. (4.41)
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Combining Eqs. (4.38) and (4.39) gives us a lower bound on the real part of the trace of Tγ(τ):

ℜ trTγ(τ) ≥
Q

∑

q=1

(1 − ǫ− α′q(β))#(Σ′q ∩Bγ(τ)). (4.42)

For the upper bound, observe that ‖Tγ(τ)‖ ≤ ‖PS
γ (τ)‖‖PL

γ+Γ(τ)‖ ≤ 1. Therefore,

ℜ trTγ(τ) ≤ rankTγ(τ) ≤ dimWL
γ+Γ(τ) ≤

P
∑

p=1

#(Λp ∩Bγ+Γ(τ)). (4.43)

Combining Eqs. (4.42) and (4.43), we obtain

P
∑

p=1

#(Λp ∩Bγ+Γ(τ)) ≥
Q

∑

q=1

(1 − ǫ− α′q(β))#(Σ′q ∩Bγ(τ)) (4.44)

for all γ, β ≥ 0, τ ∈ R, and Γ > Γ(ǫ, β). Suppose that D+(Σq) <∞ for all q, then any interval

of Σq is guaranteed to contain a finite number of points. So, we can take Σ′q = Σq ∩ [−T, T ].

Dividing Eq. (4.44) by 2γ and letting T → ∞ we get

1

2γ

P
∑

p=1

#(Λp ∩Bγ+Γ(τ)) ≥ 1

2γ

Q
∑

q=1

(1 − ǫ− α′q(β))#(Σq ∩Bγ(τ)). (4.45)

Taking the supremum (or infimum) of Eq. (4.45) over τ and letting γ → ∞, we obtain

D±(Λ1, . . . ,ΛP ) ≥ (1 − ǫ)D±(Σ1, . . . ,ΣQ) −
Q

∑

q=1

α′q(β)D+(Σq).

Since ǫ, β > 0 are arbitrary, we obtain

D±(Λ1, . . . ,ΛP ) ≥ D±(Σ1, . . . ,ΣQ) −
Q

∑

q=1

lim sup
β→∞

α′q(β)D+(Σq).

Using Eq. (4.41), we obtain the desired inequality in Eq. (4.29). Now suppose that D+(Σq) <∞
is not a given hypotheses, but all αq < 1. Then, from Eq. (4.41), we conclude that 1−ǫ−α′q(β) >

0 for all q and some ǫ, β > 0. Under this condition, Eq. (4.44) implies 1 − ǫ− α′q(β) > 0 for all

q and some ǫ, β > 0, and hence

#(Σ′q ∩Bγ(τ)) ≤ 1

(1 − ǫ− α′q(β))

P
∑

p=1

#(Λp ∩Bγ+Γ(τ)), q ∈ Q. (4.46)

The right-hand side of this expression is finite because D+(Λp) <∞. If any interval I = Bγ(τ)

contained infinitely many points of Σq, then exists a Σ′q ⊆ Σq such that I contains an arbitrarily

large (but finite) number of points of Σ′q. This would clearly violate Eq. (4.46). Thus each
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interval contains finitely many points of Σq. Letting Σ′q = Σq ∩ [−T, T ] with T → ∞ in

Eq. (4.46), taking the supremum of this equation over τ , and then letting γ → ∞ produces

D+(Σq) <∞ because the sets Λp have finite upper densities.

Note that HL and HS are arbitrary subspaces in H∞. However, the comparison theorem

is most powerful when we let the spaces be nearly the same. In this case, the coefficients αq

would be small, thereby yielding the following density bound:

D±(Λ1, . . . ,ΛP ) ≥ D±(Σ1, . . . ,ΣQ) − ǫ,

where ǫ > 0 is a small quantity representing the summation in Eq. (4.29) involving the terms

αq. The import of this statement is roughly that a frame, being an overcomplete sequence in

a Hilbert space H, is “denser” (contains more vectors) than a Riesz-Fischer sequence H. By

using an appropriate limiting argument, we can then show that ǫ > 0 can be made arbitrarily

small, yielding

D±(Λ1, . . . ,ΛP ) ≥ D±(Σ1, . . . ,ΣQ).

We illustrate the use of this theorem in the next section, where we derive necessary density

conditions for the MIMO sampling problem.

4.3.2 Density conditions for stable sampling

Theorem 4.1 now allows us to prove the necessary density results for stable sampling in the

MIMO setting.

Theorem 4.2. Suppose that Fr, r ∈ R are real sets of finite measure, and Λp, p ∈ P are

discrete sets with D+(Λp) < ∞ that constitute a stable collection of MIMO sampling with

respect to G(f) for H = B(F1) × · · · × B(FR). Then for every Π ⊆ P,

D−({Λp : p ∈ Π}) ≥
R

∑

r=1

µ(Fr) −
∫

R

rank
(

GΠc,Cf (f)
)

df, (4.47)

where Cf = {r : f ∈ Fr} and Πc denotes the complement of Π in P. Furthermore, if

ess inf
f∈F

σmin

(

GΠc,Cf (f)
)

= 0, F =
⋃

r∈R

Fr, (4.48)

for some Π 6= P, then the inequality in Eq. (4.47) is strict.

Proof. Note that F is the set where Cf is not empty. Let Π ⊆ P be a fixed subset. We consider

two cases: first suppose that either Π = P or Eq. (4.48) does not hold. In this case take D0 = ∅.
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Otherwise Π 6= P, so we can define

K = max
p∈Πc

C ′(Λp)C(1), (4.49)

where C ′ and C are quantities defined in Lemma 4.1. Let ǫ0 > 0 be such that Kǫ20 ≤ A/2,

where A is the lower stability bound in Eq. (4.18). Since Eq. (4.48) is satisfied in the second

case, there exists a set D0 such that µ(D0) > 0 and

σmin

(

GΠc,Cf (f)
)

≤ ǫ0, ∀f ∈ D0. (4.50)

Without loss of generality, assume that D0 ⊆ [ν, ν + 1] for some ν ∈ R. In fact, Eq. (4.50) is

satisfied in both cases. Let the cardinality of the set Cf be denoted by |Cf |, i.e.,

|Cf | =
R

∑

r=1

χ(f ∈ Fr). (4.51)

Let the dimension of the null space of GΠc,Cf (f) be denoted by

ρ(f) = |Cf | − rank
(

GΠc,Cf (f)
)

, (4.52)

and let the columns of U ′(f) ∈ C
|Cf |×ρ(f) form an orthonormal basis for the null space of

GΠc,Cf (f). For f ∈ D0, let U ′′(f) ∈ C
|Cf |×1 be a unit-norm right singular vector of GΠc,Cf (f)

corresponding to its smallest nonzero singular value. We can always choose U ′(f) and U ′′(f)

to be measurable functions. Clearly, U ′′(f) is orthogonal to the columns of U ′(f) for f ∈ D0.

Therefore,

U (f) =











[

U ′(f) U ′′(f)
]

if f ∈ D0,

U ′(f) otherwise,

has orthonormal columns for all f . Let Gr be the set where U(f) contains r columns, i.e.,

Gr = {f : ρ(f) + χ(f ∈ D0) = r}, r ∈ R. (4.53)

The sets {Gr} are clearly disjoint sets of finite measure. Therefore, for any δ > 0, there exist

finite collection of disjoint intervals {Irk : r ∈ R, k = 1, . . . ,Kr} such that the sets

G′r
def
=

Kr
⋃

k=1

Irk, r ∈ R (4.54)

approximate Gr in the sense that µ(G′r ∩ Gc
r) ≤ δ/R2 and µ(G′rc ∩ Gr) ≤ δ/R2. It follows that

R
∑

r=1

rµ(G′r ∩ Gc
r) ≤

R
∑

r=1

rδ

R2
≤ δ. (4.55)
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It is also clear that |µ(G′r) − µ(Gr)| ≤ δ/R2. Consequently, we have

∣

∣

∣

∣

R
∑

r=1

rµ(Gr) −
R

∑

r=1

rµ(G′r)
∣

∣

∣

∣

≤ δ. (4.56)

Now, define W r(f) ∈ C
R×r on G′r for each r as follows:

W r(f) =











I•,CfU(f) if f ∈ G′r ∩ Gr,
(

e1, · · · ,er

)

if f ∈ G′r ∩ Gc
r ,

(4.57)

where I is the R × R identity matrix. Note that the columns of W r(f) form an orthonormal

set of vectors for each f ∈ G′r. For each r ∈ R, let k and m be indices such that 1 ≤ k ≤ Kr

and 1 ≤ m ≤ r. For convenience let q(r, k,m) denote an invertible mapping from the triplet

(r, k,m) to a single index q:

q(r, k,m) : {(r, k,m) : r ∈ R, k = 1, . . . ,Kr, m = 1, . . . , r} → Q,

where Q = {1, . . . , Q} and

Q =

R
∑

r=1

rKr.

In the rest of the proof, assume that q, r, k, and m are related to each other by q = q(r, k,m).

We shall now define several quantities with the intention of eventually using Theorem 4.1 to

derive the necessary density conditions. Let {sq} ⊆ H∞ be defined as follows in terms of their

Fourier transforms:

Sq(f) =











W r
•,m(f)/

√

µ(Irk) if f ∈ Irk,

0 otherwise,
(4.58)

where W r
•,m(f) is the mth column of W r(f). The sampling set

Σq
def
=

{

n

µ(Irk)
: n ∈ Z

}

. (4.59)

has uniform density of µ(Irk). Since the intervals Irk are disjoint, and {W r
•,m(f) : m = 1, . . . , r}

is a set of orthonormal vectors for each r and f , it follows that {Θσnqsq : q ∈ Q, n ∈ Z} is an

orthonormal sequence. Let HS be the closure of the span of this orthonormal sequence, i.e.,

HS = span{Θσnqsq : q ∈ Q, n ∈ Z} ⊆ H∞. (4.60)

Then clearly {Θσnqsq : q ∈ Q, n ∈ Z} is an orthonormal Riesz basis for HS with lower frame

bound a = 1. In particular, it is a Riesz-Fischer sequence with bound a = 1.
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Now define

HL = {x ∈ H : XCf (f) = U(f)UH(f)XCf (f) a.e.}. (4.61)

where “a.e.” stands for almost everywhere. It is obvious that HL is a shift-invariance subspace.

To see that HL is closed, consider the following argument. Let {xi} ∈ HL be a sequence

converging to x∞ ∈ H∞. Then we have

X i
Cf (f) = U(f)UH(f)Xi

Cf (f) a.e.

Also, Xi(f) converges to X∞(f) in the L2 sense. Hence, there exists a subsequence {ij} such

that as j → ∞, we have Xij(f) →X∞(f) a.e. Therefore,

U(f)UH(f)X∞Cf (f) = lim
j→∞

U(f)UH(f)X
ij
Cf

(f) = X∞Cf (f) a.e.,

or equivalently x∞ ∈ HL, proving that HL is closed.

Suppose that x ∈ HL. Then using Eqs. (4.17) and (4.61) we see that

Y Πc(f) = GΠc,Cf (f)XCf (f) = GΠc,Cf (f)U (f)UH(f)XCf (f).

Using the definitions of U(f) and U ′′(f), we conclude that

Y Πc(f) = 0, f /∈ D0, (4.62)

‖Y Πc(f)‖ = ‖GΠc,Cf (f)U ′′(f)U ′′
H

(f)XCf (f)‖

≤ ǫ0‖X(f)‖, f ∈ D0. (4.63)

Equations (4.62) and (4.63) imply that ‖Y Πc(f)‖ ≤ ǫ0‖X(f)‖. Hence,

∫

R

‖Y Πc(f)‖2df ≤ ǫ20‖x‖2. (4.64)

We also see that for each p ∈ Πc, Yp(f) is supported on D0 ⊆ [ν, ν + 1]. Applying Lemma 4.1

to yp, p ∈ Πc and using Eq. (4.64) yields

∑

p∈Πc

∑

n∈Z

|yp(λnp)|2 ≤ K

∫

R

‖Y Πc(f)‖2df ≤ Kǫ20‖x‖2, (4.65)

where K is the constant defined in Eq. (4.49). Combining Eq. (4.65) with the first inequality

in the sampling stability condition in Eq. (4.18), we obtain

∑

p∈Π

∑

n∈Z

|yp(λnp)|2 ≥ (A−Kǫ20)‖x‖2 ≥ A

2
‖x‖2, ∀x ∈ HL, (4.66)
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where the second inequality above follows from the choice of ǫ0. From Eq. (4.18), we obviously

also have
∑

p∈Π

∑

n∈Z

|yp(λnp)|2 ≤ B‖x‖2, ∀x ∈ HL (4.67)

because HL ⊆ H. Combining Eqs. (4.66) and (4.67), we obtain

A

2
‖x‖2 ≤

∑

p∈Π

∑

n∈Z

|yp(λnp)|2 ≤ B‖x‖2, ∀x ∈ HL. (4.68)

Let lp = PHL
ψp, where ψp is defined in Eq. (4.19). Recall that HL is shift-invariant. Hence,

using Proposition 4.4, we obtain

Θλnp
lp = Θλnp

PHL
ψp = PHL

Θλnp
ψp ∈ HL. (4.69)

Also,

〈x,Θλnp
lp〉 = 〈x, PHL

Θλnp
ψp〉 = 〈x,Θλnp

ψp〉 = yp(λnp), ∀x ∈ HL. (4.70)

It follows from Eqs. (4.68), (4.69), and (4.70) that {Θλnp
lp : p ∈ Π, n ∈ Z} is a frame for

HL. Having verified all the required hypotheses, we can now apply Theorem 4.1 to obtain the

following inequality relating the densities of {Λp : p ∈ Π} and {Σq : q ∈ Q}:

D−({Λp : p ∈ Π}) ≥ D−(Σ1, . . . ,ΣQ) −
∑

q∈Q

αqD
+(Σq), (4.71)

where

αq =
1√
a

sup
σ∈Σq

‖Θσsq − PHL
Θσsq‖.

Since HL is shift-invariant, we can use Proposition 4.4 to obtain

αq =
1√
a

sup
σ∈Σq

‖Θσsq − ΘσPHL
sq‖ =

1√
a
‖sq − PHL

sq‖ = ‖sq − PHL
sq‖,

where the last line follows because a = 1. We shall estimate αq in a moment, but first, define

vq ∈ H as follows:

V q(f) =











Sq(f) if f ∈ Irk ∩ Gr,

0 otherwise.
(4.72)

For all f ∈ Irk ∩ Gr, we use Eqs. (4.57), (4.58) and (4.72) to conclude that

U(f)UH(f)V q(f) =
U(f)UH(f)U•,m(f)

√

µ(Irk)
=
U •,m(f)
√

µ(Irk)
= V q(f).
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This proves that vq ∈ HL. Therefore, αq ≤ ‖sq−vq‖. Using Parseval’s Theorem and Eqs. (4.58)

and (4.72) we obtain

αq ≤
(∫

‖Sq(f) − V q(f)‖2df

) 1
2

=

( ∫

Irk∩Gc
r

∥

∥

∥

∥

W r
•,m(f)

√

µ(Irk)

∥

∥

∥

∥

2

df

) 1
2

.

Since W r
•,n(f) is a normal vector, we arrive at the following estimate for αq:

αq ≤
√

µ(Irk ∩ Gc
r)

µ(Irk)
. (4.73)

Combining Eqs. (4.71) and (4.73) and using the fact that Σq has a uniform density of µ(Irk),

we obtain

D−({Λp : p ∈ Π}) ≥
∑

r,m,k

µ(Irk) −
∑

r,m,k

αqµ(Irk)

≥
∑

r

rµ(G′r) −
∑

r,k

r
√

µ(Irk ∩ Gc
r)µ(Irk).

Using the Cauchy-Schwarz inequality, we obtain

D−({Λp : p ∈ Π}) ≥
∑

r

rµ(G′r) −
(

∑

rk

rµ(Irk ∩ Gc
r)

) 1
2
(

∑

rk

rµ(Irk)
) 1

2

=
∑

r

rµ(G′r) −
(

∑

r

rµ(G′r ∩ Gc
r)

) 1
2
(

∑

r

rµ(G′r)
) 1

2
. (4.74)

Now, Eqs. (4.55), (4.56), and (4.74) imply that

D−({Λp : p ∈ Π}) ≥
[

∑

r

rµ(Gr)
]

− δ −
[

δ
(

δ +
∑

r

rµ(Gr)
)] 1

2
. (4.75)

Meanwhile, using Eqs. (4.51), (4.52) and (4.53), and the definition of the Lebesgue integral, we

obtain

R
∑

r=1

rµ(Gr) =

∫

R

[

ρ(f) + χ(f ∈ D0)
]

df

= µ(D0) +

∫

R

[

|Cf | − rank
(

GΠc,Cf (f)
)]

df

= µ(D0) +
R

∑

r=1

µ(Fr) −
∫

R

rank
(

GΠc,Cf (f)
)

df. (4.76)

Putting together Eqs. (4.75) and (4.76), and letting δ → 0 yields

D−({Λp : p ∈ Π}) ≥ µ(D0) +
R

∑

r=1

µ(Fr) −
∫

R

rank
(

GΠc,Cf (f)
)

df.

This proves Eq. (4.47). Finally, recall that if Eq. (4.48) is satisfied for some Π 6= P, then

µ(D0) > 0, proving that the strict inequality in Eq. (4.47) holds in this case.
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Theorem 4.2 is a generalization of Landau’s classical result to the MIMO sampling problem.

Letting Π = P in Eq. (4.47), we obtain

D−(Λ1, . . . ,ΛP ) ≥
R

∑

r=1

µ(Fr). (4.77)

In other words, the combined sampling density on all the output channels must be no less than

the combined bandwidth of all the input signals. Theorem 4.2 also provides lower bounds on

the joint densities of subcollections of {Λp}, and some of them may even be strict inequalities.

In Eq. (4.47), the joint density D−({Λp : p ∈ Π}) is interpreted as an upper bound on the

“signal information” captured by the samples of yp on those sampling sets. The bound on the

joint densiy of {Λp : p ∈ Π} depends only on the GΠc,Cf (f), i.e., the submatrix of G(f) whose

rows are indexed by the complement of Π and columns by Cf . Note that Gpr(f) is irrelevant

for f /∈ Fr because Xr(f) vanishes outside Fr. This explains restriction of the columns to the

set Cf = {r : f ∈ Fr}. Suppose that the outputs yp(t), p ∈ Πc are completely known for all

t ∈ R. Then Y Πc(f) = GΠc,Cf (f)XCf (f) is also known for all f . Then rank
(

GΠc,Cf (f)
)

is

the number of independent components of X(f) that can be determined from Y Πc(f) alone.

Consequently,
∫

R

rank
(

GΠc,Cf (f)
)

is a measure of input signal information that can be captured by knowing the outputs yp(t),

p ∈ Πc completely (for all t). The additional signal information required from the samples

of {yp(λnp) : p ∈ Π} is indicated by the difference of the two terms in Eq. (4.47). This also

explains why Eq. (4.47) depend only on Gpr(f) for p ∈ Πc.

Next, if some singular value of GΠc,Cf (f) takes arbitrarily small nonzero values, then there

is not enough information in Y Πc(f) = GΠc,Cf (f)XCf (f) to stably recover rank
(

GΠc,Cf (f)
)

independent components of X(f). Therefore, the information contained in the samples of yp(t)

must be a little bit more than right-hand side of Eq. (4.47) for stable reconstruction, and this

explains the strictness of the bound.

The following corollary shows that stability of sampling requires an additional condition on

the channel transfer function matrix G(f).

Corollary 4.1. Suppose that the hypotheses of Theorem 4.2 are satisfied, and let F =
⋃

r∈R Fr.

Then

ess inf
f∈F

λmin

(

GH
Πc,Cf (f)GΠc,Cf (f)

)

> 0, (4.78)

for every Π ⊂ P, Π 6= P such that D−({Λp : p ∈ Π}) = 0. In particular,

ess inf
f∈F

λmin

(

GH
•,Cf

(f)G•,Cf (f)
)

> 0. (4.79)
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Proof. From Theorem 4.2 and Eq. (4.51) we have

D−({Λp : p ∈ Π}) ≥
R

∑

r=1

µ(Fr) −
∫

R

rank
(

GΠc,Cf (f)
)

df ≥
R

∑

r=1

µ(Fr) −
∫

R

|Cf |df ≥ 0.

If D−({Λp : p ∈ Π}) = 0, both the inequalities above must, in fact, be equalities. In particular,

Eq. (4.47) holds with an equality, which implies that

ess inf
f∈F

σmin

(

GΠc,Cf (f)
)

> 0,

by Theorem 4.2. We also have rank
(

GΠc,Cf (f)
)

= |Cf |, implying that

λmin

(

GH
Πc,Cf (f)GΠc,Cf (f)

)

=
[

σmin

(

GΠc,Cf (f)
)]2

.

Now Eq. (4.78) follows by combining the last two observation. Applying this result to Π = ∅,
we obtain Eq. (4.79).

Equation (4.79), which states that the singular values of G•,Cf (f) are uniformly bounded

away from the origin, must always hold for stable MIMO sampling. In fact, even if all ouputs

yp(t) are known for all t, we cannot stable recover the channel inputs unless Eq. (4.79) holds be-

cause this condition is necessary to satisfy the lower stability bound in Eq. (4.18). In particular,

a more elementary necessary condition that emerges from Eq. (4.79) is that P ≥ |Cf | a.e.; i.e.,

the number of channels cannot be less than the number of overlapping input spectral supports

at any frequency. Next D−({Λp : p ∈ Π}) = 0 implies that the output samples on the sampling

sets {Λp : p ∈ Π} are too sparse to contain any signal information. Therefore, we must rely

entirely on the outputs samples taken on {Λp : p ∈ Πc} to achieve stable reconstruction. The

validity of Eq. (4.78) can be seen using the same argument that we used to justify Eq. (4.79).

The following theorem provides another necessary condition for stable sampling.

Theorem 4.3. Under the hypotheses of Theorem 4.2,

ess sup
f∈F

σmax

(

GΠ+,Cf (f)
)

<∞, (4.80)

where Π+ = {p ∈ P : D+(Λp) > 0} and F =
⋃

r∈RFr.

Proof. Suppose that Eq. (4.80) fails to hold, then some entries of GΠ+,Cf (f) are necessarily

unbounded on F . So let p◦ ∈ Π+ and r◦ ∈ R be indices such that for every ǫ > 0, there exists

G ⊆ Fr◦ ∩ {f : |Gp◦,r◦(f)|2 ≥ 1/ǫ},

70



satisfying µ(G) > 0. Without loss of generality assume that µ(G) <∞. Let {Ik : k = 1, . . . ,K}
be a finite collection of disjoint intervals such that

G′ =
K
⋃

k=1

Ik,

satisfies µ(G′ ∩ Gc) ≤ δ and µ(G′c ∩ G) ≤ δ, where δ = ǫµ(G)/(1 + ǫ). It follows easily that

µ(G′) ≥ µ(G) − δ. Now at least one interval Ik satisfies

µ(Ik ∩ Gc)

µ(Ik)
≤ ǫ. (4.81)

Otherwise, we would have

µ(G′ ∩ Gc) =

K
∑

k=1

µ(Ik ∩ Gc) >

K
∑

k=1

ǫµ(Ik) = ǫµ(G′) ≥ ǫ(µ(G) − δ) = δ,

violating our assumption that µ(G′ ∩ Gc) ≤ δ. So, let Ik denote an interval that satisfies

Eq. (4.81). Define γ = 1/(2µ(Ik)). Since D+(Λp◦) > 0, Proposition 4.3 and Eq. (4.21) imply

that there exists τ ∈ R such that

#(Λp◦ ∩Bγ(τ)) ≥ 2γ(D+(Λp◦)/2). (4.82)

Define

Xr◦(f) =











e−j2πfτ/Gp◦,r◦(f) if f ∈ Ik ∩ G,

0 otherwise,

and Xr(f) = 0 for all r 6= r◦. Then, we clearly have

‖x‖2 ≤ ǫµ(Ik). (4.83)

Using Eq. (4.17), we conclude that

Yp◦(f) = e−j2πfτχ(f ∈ Ik ∩ G) = e−j2πfτ
[

χ(f ∈ Ik) − χ(f ∈ Ik ∩ Gc)
]

,

whose inverse Fourier transform is

yp◦(t) = µ(Ik) sinc
(

µ(Ik)(t− τ)
)

e−j2πf0(t−τ) − φIk∩Gc(t− τ), t ∈ R, (4.84)

where sinc(t) = sin(πt)/(πt) and f0 is the midpoint of Ik. Note that

sup
t

|φIk∩Gc(t)| ≤ µ(Ik ∩ Gc) ≤ ǫµ(Ik). (4.85)
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Then, for all t such that |t− τ | ≤ γ = 1/(2µ(Ik)), it follows from Eqs. (4.84) and (4.85) that

|yp◦(t)| ≥ µ(Ik)(sinc(1/2) − ǫ). (4.86)

Using Eqs. (4.82) and (4.86), we obtain

P
∑

p=1

∑

n∈Z

|yp(λnp)|2 ≥
∑

n∈Z

|yp◦(λnp◦)|2 ≥
∑

λ∈Λp◦∩Bγ(τ)

|yp◦(λ)|2

≥ 2γ(D+(Λp◦)/2)
[

µ(Ik)(sinc(1/2) − ǫ)
]2

=
1

2
D+(Λp◦)µ(Ik)

[

sinc(1/2) − ǫ
]2
.

Combining this result with Eq. (4.83), we conclude that

P
∑

p=1

∑

n∈Z

|yp(λnp)|2 ≥ 1

2ǫ
D+(Λp◦)

[

sinc(1/2) − ǫ
]2‖x‖2.

Since ǫ > 0 is arbitrary, and x ∈ H is nonzero, the above conclusion violates the second

inequality of the stability condition Eq. (4.18), proving the necessity of Eq. (4.80).

In Theorem 4.3, suppose that D+(Λp) = 0 for some p ∈ P. Then the samples of yp on

Λp are too sparse to provide any useful information. Consequently, the pth row of the G(f)

is irrelevant. Thus, Π+ is the set of outputs whose samples are sufficiently dense to provide

information about the inputs. Now, Eq. (4.80) can be interpreted as being equivalent to the

upper stability bound in Eq. (4.18) for stable sampling.

We can view the set of densities

{

D−({Λp : p ∈ Π}) : Π ⊆ P, Π 6= ∅
}

as a point in R
2P−1. However, if the sampling sets have uniform densities2, then

D−({Λp : p ∈ Π}) =
∑

p∈Π

D(Λp),

i.e., the joint densities become linearly related to each other, and they can all be described in

terms of the individual densities. The resulting density space is now R
P , which has a much

smaller dimension. In general, we are interested in constructing stable sampling sets whose

lower and upper densities are the smallest possible. Obviously, it becomes desirable to achieve

minimum density sampling with sampling sets of uniform densities.

2Recall that a sampling set need not have uniform sample spacing in order to have uniform density.
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Definition 4.5. The density region for stable sampling is defined as the collection of all

(d1, . . . , dP ) such that stable MIMO sampling is realizable using sampling sets {Λp} of uni-

form densities D(Λp) = dp, p ∈ P.

Suppose that every Λp has uniform densityD(Λp) = dp, then the sampling density conditions

in Eq. (4.47) reduce to

∑

p∈Π

dp ≥ θS(Π), ∀Π ⊆ P, (4.87)

θS(Π) =
R

∑

r=1

µ(Fr) −
∫

R

rank
(

GΠc,Cf (f)
)

df.

Since Eq. (4.87) is a set of necessary conditions whose sufficiency is unknown, the region

specified by Eq. (4.87) is generally an outer bound on the density region. It is clear that

θS(∅) = 0 and θS(Π1) ≤ θS(Π2) whenever Π1 ⊆ Π2. Using Proposition 4.1, it is an easy

exercise to show that

θS(Π1) + θS(Π2) ≤ θS(Π1 ∪ Π2) + θS(Π1 ∩ Π2), ∀Π1,Π2 ⊆ P.

These properties of θS(Π) imply that the outer bound on the density region specified by the

system of inequalities in Eq. (4.87) forms a contra-polymatroid [49, 50]. Consequently, every

constraint in Eq. (4.87) is active, i.e., the equality in each constraint in Eq. (4.87) holds for

some point in the region.

We now present a simple example to illustrate the necessary conditions for stable MIMO

sampling.

Example 4.1. Consider a MIMO channel with R = 2 inputs and P = 2 outputs having the

following transfer function matrix:

G(f) =





1 K(f)

0 1



 ,

where K(f) = (1−2f/3)χ(f ∈ [0, 1.5]) is shown in Figure 4.2. Let F1 = [−1, 1) and F2 = [0, 2)

be the input spectral supports. Figure 4.3 illustrates the input and output spectra for a typical

set of channel inputs.
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K(f)

Figure 4.2 K(f).

210-1 -10 0 12 2

X (f) Y (f)

1.5
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X (f) Y (f)X (f)2 2

Figure 4.3 Typical spectra of the channel inputs and outputs.

We seek conditions on the sampling sets Λ1 and Λ2 for stable MIMO sampling with respect

to G(f). We have F = F1 ∪ F2 = [−1, 2] and

Cf = {r : f ∈ Fr} =



































{1} if f ∈ [−1, 0),

{1, 2} if f ∈ [0, 1),

{2} if f ∈ [1, 2),

∅ otherwise.

It is easy to check that Eq. (4.80) is satisfied regardless of Π+. Also

σmin

(

G•,Cf (f)
)

=
[2 +K2(f)] −

√

[2 +K2(f)] − 4

2
.

This quantity is uniformly bounded from below because K(f) is a bounded function. Hence,

the necessary condition in Eq. (4.79) is satisfied. Applying Theorem 4.2, we obtain the following
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density conditions:

D−(Λ1,Λ2) ≥ µ(F1) + µ(F2) = 4

D−(Λ1) ≥ µ(F1) + µ(F2) −
∫

R

rank
(

G2,Cf (f)
)

df

= 4 −
∫

[−1,0]
0df −

∫

[0,1]
1df −

∫

[1,2]
1df = 2

D−(Λ2) ≥ µ(F1) + µ(F2) −
∫

R

rank
(

G1,Cf (f)
)

df

= 4 −
∫

[−1,0]
1df −

∫

[0,1]
1df −

∫

[1,2]
χ(K(f) 6= 0)df

= 1.5.

Now, a simple calculation reveals that

σmin

(

G1,Cf (f)
)

=























1 if f ∈ [−1, 0),
√

1 +K2(f) if f ∈ [0, 1),

|K(f)| if f ∈ [1, 2).

Clearly, this quantity takes arbitrarily small values in the vicinity of f = 1.5, where K(f)

vanishes. Hence, the bound on D−(Λ2) is indeed a strict inequality. Another calculation

reveals that3

σmin

(

G2,Cf (f)
)

=























∞ if f ∈ [−1, 0),

1 if f ∈ [0, 1),

1 if f ∈ [1, 2).

Hence, we cannot guarantee that the bound on D−(Λ1) is a strict inequality. Thus, we obtain

the following conditions on the joint densities:

D−(Λ1,Λ2) ≥ 4, D−(Λ1) ≥ 2, and D−(Λ2) > 1.5.

We shall now explain the above bounds intuitively. First of all, we can interpret Landau’s

classical sampling density result as follows: the sampling density must be no less than the

number of units of signal information, where a unit of signal information, roughly speaking,

equals the information contained in a unit bandwidth of a signal spectrum. In other words,

sampling at unit density provides no more than one unit of signal information. In the MIMO

3Recall that we take σmin(A) = ∞ if A = 0.
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problem, the condition D−(Λ1,Λ2) ≥ 4 is a natural generalization of Landau’s result because

the combined bandwidth of the input signals in 4 units.

Next, from at Figure 4.3, we see that Y2(f) is unaffected by X1(f). Therefore, X1(f) on the

set [−1, 0) must be reconstructed from the samples of y2 alone. In order to reconstruct X1(f)

and X2(f) on [0, 1), it is clearly necessary that Y1(f) and Y2(f) on [0, 1) be reconstructible

from their samples. Now, X2(f) on [1.5, 2) must be reconstructed based entirely on Y2(f).

Combining all these observations, we see that the samples of y1 contain enough information to

reconstruct Y1(f) on [−1, 1), while the samples of y2 contain enough information to reconstruct

Y2(f) on [0, 1) ∪ [1.5, 2). This explains that D−(Λ1) ≥ 2 and that D−(Λ2) ≥ 1.5. Suppose that

D−(Λ2) = 1.5, then roughly speaking, there is just enough information in the samples of y2 to

reconstruct Y2(f) on [0, 1) ∪ [1.5, 2). Consequently, we must reconstruct Y2(f) = X2(f) for all

f ∈ [1, 1.5) based entirely on the samples of y1. Now, Y1(f) = K(f)X2(f) for f ∈ [1, 1.5), where

K(f) takes arbitrarily small values on [1, 1.5). Hence, this inversion cannot be accomplished

stably, justifying the need for D−(Λ2) > 1.5.

Finally, we point out that we can have undersampling at each output and yet can be able to

reconstruct all the inputs jointly from the available information. For instance, we do not need

D−(Λ1) ≥ 2.5, even though y1 has a bandwidth of 2.5. To see this, we construct a sampling

scheme for which the densities (d1, d2) = (2, 2) are achievable, where dp = D(Λp), i.e., Λp has a

uniform density of dp. Let Λ1 and Λ2 be uniform sampling lattices:

Λ1 = Λ2 = {n/2 : n ∈ Z}.

Clearly, y2 = x2 can be reconstructed stably. Now, the samples of x1 on Λ1 can be computed

as follows:

x1(λn1) = y1(λn1) − k ∗ x2(λn1),

because x2(t) is known for all t. Thus, x2 can also be reconstructed stably. However, it is not

immediately clear whether all densities satisfying the necessary conditions are achievable, or

how to achieve them.

4.3.3 Density conditions for consistent reconstruction

We now present the necessary condition for consistent MIMO reconstruction, which is a

dual problem to the one of stable sampling.

Theorem 4.4. Suppose that Fr, r ∈ R are real sets of finite measure, and Λp, p ∈ P are

discrete sets that constitute a collection of consistent reconstruction with respect to G(f) for
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H = B(F1) × · · · × B(FR). Then for every Π ⊆ P,

D+({Λp : p ∈ Π}) ≤
∫

R

rank
(

GΠ,Cf (f)
)

df, (4.88)

where Cf = {r : f ∈ Fr}. Furthermore, if

ess inf
f∈F

σmin

(

GΠ,Cf (f)
)

= 0, F =
⋃

r∈R

Fr, (4.89)

for some Π 6= ∅, then the inequality in Eq. (4.88) is strict.

Proof. First note that the consistency condition implies that

{Θλnp
ψp : p ∈ Π, n ∈ Z}, (4.90)

is a Riesz-Fischer sequence in H, where ψp is defined in Eq. (4.19). Let Π ⊆ P be a fixed

subset. Consider the following two cases. First suppose that either Π = ∅, or D+(Λp) = ∞ for

some p ∈ Π, or Eq. (4.89) does not hold: in this case take D0 = ∅. Otherwise, D+(Λp) <∞ for

all p ∈ Π 6= ∅. So, we can define

K = max
p∈Π

C ′(Λp)C(1) <∞, (4.91)

where C ′ and C are quantities defined in Lemma 4.1. Since Eq. (4.89) is satisfied in the second

case, we can find a set D0 such that µ(D0) > 0, and

σmin

(

GΠ,Cf (f)
)

≤ ǫ0, ∀f ∈ D0. (4.92)

where ǫ0 > 0 is such that Kǫ20 ≤ a/4, and a is the bound for the Riesz-Fischer sequence in

Eq. (4.90). Assume without loss of generality that D0 ⊆ [ν, ν + 1] for some ν ∈ R. Thus,

Eq. (4.92) is satisfied in both cases. Let the dimension of the range space of GH
Π,Cf

(f) be

denoted by

ρ(f) = rank
(

GΠ,Cf (f)
)

, (4.93)

and let the columns of U ′(f) ∈ C
|Cf |×ρ(f) form an orthonormal basis for the range space of

GH
Π,Cf

(f). Note that ρ(f) is defined differently from ρ(f) in the proof of Theorem 4.2. For

f ∈ D0, let U ′′(f) ∈ C
|Cf |×1 be a unit-norm right singular vector of GΠ,Cf (f) corresponding

to its smallest nonzero singular value. There is no loss of generality in assuming that the first

column of U ′(f) equals U ′′(f) for all f ∈ D0. Hence, for f ∈ D0, we can write

U ′(f) =
[

U ′′(f) U(f)
]

,
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for some U(f). For f /∈ D0, let U(f) = U ′(f). The columns of U(f) are clearly orthonormal.

Note that U ′(f) and U ′′(f) can be assumed to be measurable. The matrix U(f) has r columns

for f ∈ Gr, where

Gr = {f : ρ(f) − χ(f ∈ D0) = r}, r ∈ R. (4.94)

Each Gr has finite measure. Since the sets {Gr} are disjoint, we can find, as in the proof

of Theorem 4.2, a collection of disjoint intervals {Irk : r ∈ R, k = 1, . . . ,Kr} and sets G′r
as in Eq. (4.54) such that Eqs. (4.55) and (4.56) hold. In the rest of the proof, assume that

q = q(r, k,m) for some invertible index-mapping as in the proof of Theorem 4.2. DefineW r(f) ∈
C

R×r, Sq(f), and Σq exactly as in Eqs. (4.57), (4.58), and (4.59), respectively. Also let HS

be the closed subspace of H∞ defined as in Eq. (4.60). Using arguments similar to those in

Theorem 4.2, we see that

{Θσnqsq : q ∈ Q, n ∈ Z}

is an orthonormal Riesz basis for HS . In particular, it is a frame for HS . It is also easily verified

that HS is a shift-invariant subspace of H∞.

Now, {Θλnp
ψp : p ∈ Π, n ∈ Z}, being a subcollection of the set in Eq. (4.90), is also a

Riesz-Fischer sequence in H. Let {cnp}, p ∈ Π be some finite sequences. Then Eq. (4.20)

implies that

max
x∈BH

∣

∣

∣

∑

n,p

cnpyp(λnp)
∣

∣

∣

2
≥ a

∑

n,p

|cnp|2. (4.95)

Let x◦ ∈ BH be the maximizer of the left-hand side of Eq. (4.95), and Y ◦(f) = G(f)X◦(f),

its corresponding MIMO channel output. Then,

∣

∣

∣

∑

n,p

cnpy
◦
p(λnp)

∣

∣

∣ ≥
√
a‖c‖. (4.96)

Next, the subspace

HL = {x ∈ H : XCf (f) = U(f)UH(f)XCf (f) a.e.} (4.97)

is closed and shift-invariant by the same argument as in the proof of Theorem 4.2. Note that

X(f) = I•,CfU(f)UH(f)ICf ,•X(f) (4.98)

is an equivalent way of stating x ∈ HL because XCf (f) captures all the nonzero elements of

X(f) for every x ∈ H. Let x′ ∈ H be defined as follows:

X ′Cf (f) = U(f)UH(f)X◦Cf (f).
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Evidently x′ ∈ HL and ‖x′‖ ≤ 1 because U(f) has orthonormal columns. Let Y ′(f) =

G(f)X ′(f) and Y ′′(f) = Y ◦(f)− Y ′(f). Then for all f /∈ D0, we have U(f) = U ′(f). Hence,

using the definition of U ′(f), we conclude that

Y ′′Π(f) = GΠ,Cf (f)
[

X◦Cf (f) −U ′(f)U ′
H

(f)X◦Cf (f)
]

= 0. (4.99)

For f ∈ D0, we have U(f)UH(f) = U ′(f)U ′
H

(f) −U ′′(f)U ′′
H

(f). Hence,

‖Y ′′Π(f)‖ = ‖GΠ,Cf (f)
[

X◦Cf (f) −U(f)UH(f)X◦Cf (f)
]

‖

= ‖GΠ,Cf (f)U ′′(f)U ′′
H

(f)X◦Cf (f)‖

≤ ǫ0‖X◦Cf (f)‖. (4.100)

Combining Eqs. (4.99) and (4.100), and using ‖x◦‖ ≤ 1, we have

∫

R

‖Y ′′Π(f)‖2df ≤











ǫ20 if µ(D0) > 0,

0 if µ(D0) = 0.
(4.101)

Notice that Y ′′p (f) is supported on D0 ⊆ [ν, ν + 1] for all p ∈ Π. Recall that µ(D0) > 0 implies

that D+(Λp) <∞. In this case, we can invoke Lemma 4.1 to conclude that

∑

p∈Π

∑

n∈Z

|y′′p(λnp)|2 ≤ Kǫ20, (4.102)

where K is the constant defined in Eq. (4.91). However, if µ(D0) = 0, then Y ′′Π(f) = 0 from

Eq. (4.101), and hence, Eq. (4.102) holds trivially. In other words Eq. (4.102) always holds,

and using the Cauchy-Schwarz inequality, we conclude that

∣

∣

∣

∑

p∈Π

∑

n∈Z

cnpy
′′
p(λnp)

∣

∣

∣ ≤
√
Kǫ0‖c‖, (4.103)

Recall that ǫ0 is chosen so that Kǫ20 ≤ a/4. So, combining Eqs. (4.96) and (4.103) and noting

that y′p = y◦p − y′′p , we obtain

∣

∣

∣

∑

p∈Π

∑

n∈Z

cnpy
′
p(λnp)

∣

∣

∣
≥ (

√
a−

√
Kǫ0)‖c‖ ≥

√
a

2
‖c‖.

Since the quantities {y′p} are the channel outputs corresponding to an input x′ ∈ HL satisfying

‖x′‖ ≤ 1, we have

max
x∈BHL

∣

∣

∣

∑

p∈Π

∑

n∈Z

cnpyp(λnp)
∣

∣

∣

2
≥ a

4
‖c‖2. (4.104)
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Define lp = PHL
ψp. Since HL is shift-invariant, we obtain Θλnp

lp ∈ HL and yp(λnp) =

〈x,Θλnp
lp〉 using the same argument as in Eqs. (4.69) and (4.70). Therefore, Eq. (4.104)

implies that
∥

∥

∥

∑

p∈Π

∑

n∈Z

cnpΘλnp
lp

∥

∥

∥

2
≥ a

4
‖c‖2

for all finite sequences {cnp}, p ∈ Π. Then we conclude, using Eq. (4.10), that {Θλnp
lp : p ∈

Π, n ∈ Z} is a Riesz-Fischer sequence in HL with bound a/4.

To avoid confusion, we point out that the quantities associated with the frame in this proof

are HS, Σq, sq etc., while those associated with the Riesz-Fischer sequence are HL, Λp, lp etc.

This is opposite from the convention adopted in the proofs of Theorems 4.1 and 4.2. We shall

estimate the quantities

αp =

√

4

a
sup
λ∈Λp

‖Θλlp − PHS
Θλlp‖

defined in Theorem 4.1 shortly, but first, we define vp ∈ H∞ for p ∈ Π as follows:

V p(f) =











Lp(f) if f ∈ G′r ∩ Gr, for some r,

0 otherwise.
(4.105)

Since lp ∈ HL, Eq. (4.98) implies that

Lp(f) = I•,CfU(f)UH(f)ICf ,•Lp(f).

Therefore, whenever f ∈ G′r ∩ Gr, we have

V p(f) = I•,CfU(f)UH(f)ICf ,•Lp(f)

=
r

∑

m=1

I•,CfU •,m(f)
[

UH
•,m(f)ICf ,•Lp(f)

]

.

Using Eqs. (4.54), (4.58), and the above observation, we can express V p(f) as a linear combi-

nation involving Sq(f):

V p(f) =

R
∑

r=1

Kr
∑

k=1

r
∑

m=1

√

µ(Irk)Sq(f)
[

UH
•,m(f)ICf ,•Lp(f)

]

χ(f ∈ Gr), f ∈ R.

Now, the quantity [UH
•,m(f)ICf ,•Lp(f)] is clearly square-integrable, and we conclude that vp ∈

HS . Recall that HS is shift-invariant. Thus, using Proposition 4.4, we obtain

αp =

√

4

a
sup
λ∈Λp

‖Θλlp − PHS
Θλlp‖

=
2√
a
‖lp − PHS

lp‖ ≤ 2√
a
‖lp − vp‖.
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Using Parseval’s theorem and Eq. (4.105), we obtain the following estimate for αp:

αp ≤ 2√
a

(
∫

R

‖Lp(f) − V p(f)‖2df

)1
2

=
2√
a

( R
∑

r=1

∫

G′r∩G
c
r

‖Lp(f)‖2df

)
1
2

.

The last expression can be made arbitrarily small for sufficiently small δ, because each Lp(f)

is square-integrable, and µ(G′r ∩ Gc
r) ≤ δ/R2. Hence, for any ǫ > 0 and sufficiently small δ > 0,

we can guarantee that αp ≤ ǫ. Applying Theorem 4.1, we obtain D+(Λp) <∞ for p ∈ Π and

D+(Σ1, . . . ,ΣQ) ≥ D+({Λp : p ∈ Π}) −
∑

p∈Π

αpD
+(Λp). (4.106)

Using the estimate for αp and the fact that Σq has a uniform density of µ(Irk) in Eq. (4.106),

we obtain

D+({Λp : p ∈ Π}) ≤
∑

r,m,k

µ(Irk) + ǫ
∑

p∈Π

D+(Λp)

=

R
∑

r=1

rµ(G′r) + ǫ
∑

p∈Π

D+(Λp)

≤
R

∑

r=1

rµ(Gr) + δ + ǫ
∑

p∈Π

D+(Λp). (4.107)

Using Eqs. (4.93), (4.94), and the definition of the Lebesgue integral, we have

R
∑

r=1

rµ(Gr) =

∫

R

[

ρ(f) − χ(f ∈ D0)
]

df =

∫

R

rank
(

GΠ,Cf (f)
)

df − µ(D0). (4.108)

Combining Eqs. (4.107) and (4.108), and letting δ, ǫ → 0, we obtain

D+({Λp : p ∈ Π}) ≤
∫

R

rank
(

GΠ,Cf (f)
)

df − µ(D0).

This proves Eq. (4.88). We have already demonstrated that D+(Λp) < ∞. Therefore, if

Eq. (4.89) is satisfied for some Π 6= ∅, we have µ(D0) > 0, implying that the inequality in

Eq. (4.88) is strict.

Theorem 4.4 is the generalization of Landau’s necessary density condition for interpolation.

In particular, if G(f) satisfies Eq. (4.79), then

rank
(

GΠ,Cf (f)
)

≤ |Cf |.
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Under this condition, it follows from Eq. (4.88) for Π = P that

D+(Λ1, . . . ,ΛP ) ≤
R

∑

r=1

µ(Fr), (4.109)

which states that the joint density of Λp cannot exceed the combined bandwidth of the input

signals. Note that Eq. (4.79) need not hold for consistent reconstruction, and we would get

a stronger upper bound on the joint density than Eq. (4.109) when Eq. (4.79) does not hold.

Theorem 4.4 also provides conditions on the joint densities of all subcollections of {Λp}. We

have already seen that the quantity
∫

R

rank
(

GΠ,Cf (f)
)

df

is a measure of “signal information” contained in the samples of {yp(λnp) : p ∈ Π}. We can

think of yp(λnp) = cnp as constraints that restrict the freedom of the input x. In the consistent

reconstruction problem, we interpret the constraint density D+({Λp : p ∈ Π}) as a lower bound

of this lost freedom measured in units of signal information. For the existence of a solution to

the consistency problem, we require that the constraint density be no more than the amount

of signal information present in the inputs, thereby justifying Eq. (4.88).

The following corollary is an exact dual of Corollary 4.1.

Corollary 4.2. Suppose that the hypotheses of Theorem 4.4 are satisfied and F =
⋃

r∈R Fr,

then

ess inf
f∈F

λmin

(

GH
Π,Cf (f)GΠ,Cf (f)

)

> 0, (4.110)

for every Π ⊆ P, Π 6= ∅ such that

D+({Λp : p ∈ Π}) =

R
∑

r=1

µ(Fr). (4.111)

Proof. From Theorem 4.4 and Eq. (4.51), we have

D+({Λp : p ∈ Π}) ≤
∫

R

rank
(

GΠ,Cf (f)
)

df ≤
∫

R

|Cf | =

R
∑

r=1

µ(Fr).

If Eq. (4.111) holds, then both the above inequalities are, in fact, equalities. Then observe

that Eq. (4.88) is satisfied with an equality, implies that Eq. (4.89) fails to hold. Also,

rank
(

GΠ,Cf (f)
)

= |Cf |, implying that

λmin

(

GH
Π,Cf

(f)GΠ,Cf (f)
)

=
[

σmin

(

GΠ,Cf (f)
)]2

Now Eq. (4.110) follows by combining the last two observations.
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Corollary 4.2 can be interpreted as follows. Suppose that the smallest singular value of

GΠ,Cf takes arbitrarily small values, then there are inputs with unit energy that can produce

outputs yp, p ∈ Π of arbitrarily small energies. Roughly speaking, this means that we can find

an l2 sequences {cnp} for which the consistency problem does not have a finite-energy solution

x ∈ H if we are operating at the critical sampling density, i.e., with an equality in Eq. (4.88).

Once again, we consider the case where the sampling sets have uniform densities, as it

enables us to reduce the dimension of the space of densities from R
2P−1 to R

P .

Definition 4.6. The density region for consistency is defined as the collection of all (d1, . . . , dP )

such that consistent MIMO reconstruction is realizable using sampling sets {Λp} of uniform

densities D(Λp) = dp, p ∈ P.

Suppose that every Λp has uniform density withD(Λp) = dp, then the consistency conditions

in Eq. (4.88) reduce to

∑

p∈Π

dp ≥ θC(Π), ∀Π ⊆ P, (4.112)

θC(Π) =

∫

R

rank
(

GΠ,Cf (f)
)

df.

As in the case of stable MIMO sampling, the above region is an outer bound on the density

region for consistency. Next, observe that θC(∅) = 0 and θC(Π1) ≤ θC(Π2) whenever Π1 ⊆ Π2.

Consequently, we can use Proposition 4.1 to show that

θC(Π1) + θC(Π2) ≥ θC(Π1 ∪ Π2) + θC(Π1 ∩ Π2), ∀Π1,Π2 ⊆ P.

These properties of θC(Π) imply that the system of inequalities in Eq. (4.112) forms a poly-

matroid [49, 50], implying that every constraint in Eq. (4.112) is active for some point in the

region.

We now present at an example to illustrate the results for consistent reconstruction.

Example 4.2. Let the MIMO channel and the input spectral supports be as defined in Exam-

ple 4.1. We seek necessary conditions on the sampling sets Λ1 and Λ2 for consistent reconstruc-

tion. Fortunately, we have already performed all the necessary calculations in Example 4.1.

Applying Theorem 4.4, we obtain the following bounds on the joint densities:

D+(Λ1,Λ2) ≤
∫

R

rank
(

G•,Cf (f)
)

df = 4,

D+(Λ1) <

∫

R

rank
(

G1,Cf (f)
)

df = 2.5,

D+(Λ2) ≤
∫

R

rank
(

G2,Cf (f)
)

df = 2.
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These inequalities can be justified as follows. The combined bandwidth of the inputs is 4,

requiring D+(Λ1,Λ2) ≤ 4 for consistency. Now, if consistent reconstruction of x1 and x2 is

possible, then in particular, we must also have consistent reconstruction (or interpolation) of y1

and y2 from their respective samples. Looking at Figure 4.3, pg. 74, we see that Y2(f) = X2 is

bandlimited to [0, 2). Therefore, by Landau’s interpolation density result, we require D+(Λ2) ≤
2 for consistent reconstruction of y2. Finally, Y1(f) is bandlimited to [−1, 2.5), thereby requiring

D+(Λ1) ≤ 2.5. However, D+(Λ1) = 2.5 is not allowed because K(f) is arbitrarily small in the

vicinity of f = 1.5.

We now show that the point (d1, d2) = (2, 2) is achievable, where dp = D(Λp) for sampling

sets {Λp} of uniform density. Let Λ1 and Λ2 be defined as in Example 4.1. Let {cn1} and {cn2}
be l2 sequences. Then the problem y2(λn2) = cn2 clearly has a solution y2 ∈ B([0, 2]). Now, the

sequence dn = k ∗ x2(λn1) is square-summable because K(f) is a bounded function, implying

that

x1(λn1) = y1(λn1) − k ∗ x2(λn1) = cn1 − dn,

also has a solution x1 ∈ B([−1, 1]). This proves that (d1, d2) = (2, 2) is achievable.

Remark. Recall that a collection of sets that is both a collection of stable sampling and

consistent reconstruction provides a Riesz basis for the space H. Unfortunately, the existence

of such bases is dificult to prove (or disprove) for a given H. In fact, the simpler problem of

finding exponential Riesz bases for B(F) is still unsolved except for special sets. For instance,

the simplest case F = [a, b] is very well studied, and Riesz bases are easy to construct for

B(F). The problem is also solved when F is a finite union of intervals of whose lengths are

commensurate, or an arbitrary union of two intervals [51–53]. However, even the case where F
is an arbitrary finite union of intervals is unsolved.

4.4 Summary

In this chapter, we formulated the MIMO sampling scheme and defined the notions of stable

MIMO sampling and consistent MIMO reconstruction. These notions are generalizations of the

definitions of stable sampling and interpolation for classical sampling. We also generalized the

definitions of upper and lower sampling densities applicable to collections of sampling sets.

Strengthening an idea of Gröchenig and Razafinjatovo, we proved a comparison theorem,

which in turn allowed us to deduce necessary density conditions for stable sampling and con-

sistent reconstruction in the MIMO setting. For the stability of MIMO sampling, we find that

a family of 2P − 1 bounds hold—a lower bound on the joint lower density of each nonempty
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set of output sampling sets. Similarly we find that a family of 2P − 1 hold for the consistency

problem. This time, they are upper bounds on the joint upper densities of the sampling sets.

These bounds generalize density results that Landau derived for the classical sampling prob-

lem, and like Landau’s results, they are fundamentally important bounds. Since the MIMO

sampling scheme is extremely general, and encompasses various sampling schemes such as Pa-

poulis’s generalized sampling, and multicoset or periodic nonuniform sampling as special cases,

we have automatically generated necessary conditions for all these sampling schemes.

Finally, we point out that the comparison theorem is a general and powerful result. If the

relevant frames vectors, Riesz-Fischer sequences and their parent spaces are defined properly

in the theorem, it has potential use for deriving density results for other class of input signals

such as wavelet and spline spaces.
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CHAPTER 5

SAMPLING THEOREMS FOR UNIFORM AND PERIODIC

NONUNIFORM MIMO SAMPLING OF MULTIBAND

SIGNALS

5.1 Introduction

The study of MIMO channel equalization is motivated by applications in multichannel de-

convolution and multiple source separation. Some example applications where MIMO channels

arise are multiuser or multiaccess communications, multichannel image restoration, and geo-

physical data processing [37–43]. In practice, the equalizer is implemented using digital signal

processors. However, the MIMO channel inputs and outputs are continuous-time signals, im-

plying that the channel outputs need to be sampled prior to processing by the digital system.

Hence, the problem is equivalent to reconstructing the channel inputs from the sampled out-

put signals. In other words, the MIMO channel inversion problem can be restated as one in

sampling theory, and we call this sampling scheme MIMO sampling. Most work to date on

multichannel deconvolution has addressed discrete-time channel models, apparently assuming

that each output is sampled at the appropriate rate common Nyquist rate sufficient for recon-

struction of each output. However as we demonstrate in this chapter, this is not necessary, and

appropriately chosen nonuniform sampling schemes with lower average sampling density suffice

for perfect reconstruction of the MIMO channel inputs.

Although motivated by real world problems, MIMO sampling is an important problem in

sampling theory in its own right. Several sampling schemes can be expressed as special cases of

the MIMO setting. For example, for a SIMO channel (i.e., R = 1), the outputs are filtered and

uniformly sampled versions of a single input signal. In other words, this is precisely Papoulis’s

generalized sampling [12]. Additionally, if the channel filters are chosen to be pure delays, we

obtain multicoset or periodic nonuniform sampling of the input which has been widely studied

[14–24], as it allows us to approach the Landau minimum sampling for multiband signals [6].
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Seidner and Feder [13] provide a natural generalization of Papoulis’s sampling expansions for a

vector inputs whose components are bandlimited to [−B,B]. Their sampling scheme is clearly

a special case of MIMO sampling. We deal only with multiband signal spaces, and we refer

the reader to [44] for some results on multichannel sampling for general signal spaces such as

wavelet and spline spaces.

We derived necessary sampling density conditions for the MIMO problem in Chapter 4. It

is not clear if those conditions are sufficient, however they indicate the potential for reduction in

the sampling density needed for stable sampling relative to the Nyquist rate. In this chapter, we

demonstrate how to achieve stable sampling and reconstruction at rates lower than the Nyquist

rate. We can think of these results as partial sufficient conditions for stable MIMO sampling,

although we do not provide explicit bounds on the sampling densities themselves. These results

complement our results in Chapter 4.

5.1.1 Problem formulation

Figure 5.1 illustrates the block diagram for MIMO sampling. The channel is shown to the

left of the dashed line, and its inputs xr(t) are assumed to be continuous-time signals. The

channel is modeled as a linear time-invariant system. The channel outputs are sampled at a

uniform rate of 1/T to produce discrete-time sequences, zp[n]. From a practical viewpoint, we

can interpret this as the sampling step prior to processing digitally. The reconstruction block,

shown to the right of the dashed line, inverts the MIMO channel to produce estimates x̃r(t)

of the input signals. In the context of MIMO sampling, we showed in Chapter 4 that stable

sampling and reconstruction of the inputs imposes lower bounds on the sampling densities on

the various channels. These results are analogues of Landau’s classic minimum density results

for multiband sampling [6].

~

~

x  (t)R

t=nT

t=nT

P
R

P

x  (t)

x (t)1

y (t)1

y  (t)

x (t)1

Channel

z [n]

z  [n]

1

Reconstruction

Figure 5.1 Models for MIMO sampling and reconstruction.
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The problem that we address in this chapter is a special case of MIMO sampling problem

introduced in Chapter 4, where the channel outputs are sampled uniformly. Even though we

consider only uniform sampling of the MIMO channel outputs, we shall see later that this

sampling scheme is fairly general, and it encompasses most periodic nonuniform sampling of

the channel outputs, with sampling at different rates on different channels.

We study the following issues in this chapter: (a) the relation of stable MIMO sampling to

frame theory, and (b) the necessary and sufficient conditions on the channel allowing to achieve

perfect reconstruction of the inputs under uniform sampling. We focus entirely on the uniform

sampling problem, with the understanding that results for the periodic nonuniform case can be

obtained similarly.

This chapter is organized as follows. Section 5.2 contains some notation and definitions used

in the rest of the chapter. In Section 5.3 we present models for the channel and reconstruction.

The input signals are modeled as multiband signals, with different band structures. Section 5.4

deals with the problem of perfect reconstruction of the channel inputs. We explore the connec-

tion between MIMO sampling and frame theory. The computation of the frame bounds enables

us to determine necessary conditions on the input signal spaces, the channel characteristics,

and the sampling rate for the existence of reconstruction filters that achieves stable and perfect

reconstruction of the inputs. We also present additional conditions under which there exist

reconstruction filters that are continuous in the frequency domain. This, as elaborated later, is

important from the viewpoint of FIR filter design.

5.2 Preliminaries

We begin with a some basic definitions and notation. We denote the Fourier transform of

a continuous-time square-integrable signal x(t) by

X(f) =

∫

R

x(t)e−j2πftdt.

Similarly, for a discrete-time signal y[n], we define its Fourier transform be

Y [ν] =
∑

n∈Z

y[n]e−j2πνn.

In general, we denote discrete-time and continuous-time signals (either scalar-valued or vector-

valued) using lower-case letters, and their Fourier transforms by the corresponding upper-case

letters. Let the class of continuous, finite-energy signals bandlimited to the set of frequencies

F be

B(F) = {x ∈ L2(R) ∩C(R) : X(f) = 0, ∀f /∈ F}. (5.1)
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Denote the interior and closure of a set S ⊆ R by intS and S, respectively, the class of

complex-valued matrices of size M × N by C
M×N , the conjugate-transpose of A by AH , its

pseudo inverse byA†. For a given matrixA, letAR,C denotes the submatrix ofA corresponding

to rows indexed by the set R and columns by the set C. The quantity A•,C denotes a submatrix

formed by keeping all rows of A, but only columns indexed by C, whereas AR,• denotes the

submatrix formed by retaining rows indexed by R and all columns. We use a similar notation

for vectors. Hence, XR is the subvector of X corresponding to rows indexed by R. We always

apply the subscripts of a matrix before the superscript. So AH
R,C is the conjugate-transpose of

AR,C . When dealing with singleton index sets R = {r} or C = {c}, we omit the curly braces

for readability. Therefore, Ar,• and A•,c are the rth row and the cth column of A, respectively.

For convenience, we always number the rows and columns of a finite-size matrix starting from

0. For infinite-size matrices, the row and column indices range over Z.

The identity matrix of size N ×N is denote by IN , and the zero matrix by 0. We denote

the indicator function by χ(·). Finally, suppose that S is a subset of R or Z, and a is an element

of R or Z. Then

S ⊕ a = {s + a : s ∈ S},

S ⊖ a = {s − a : s ∈ S},

aS = {as : s ∈ S},

S mod a = {smod a : s ∈ S}.

denote, respectively, the positive and negative translations, scaling, and the modulus of S by a.

5.3 Sampling and Reconstruction Models

Let the input and output signals of the MIMO channel depicted in Figure 5.1 be represented

in vector form as

x(t) =















x0(t)

x1(t)
...

xR−1(t)















and y(t) =















y0(t)

y1(t)
...

yP−1(t)















. (5.2)

For convenience, define R = {0, 1, . . . , R − 1} and P = {0, 1, . . . , P − 1}. These sets index the

components of the input and the output vectors. For each r ∈ R, we model xr(t) as a multiband
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signal xr(t) ∈ B(Fr), where the spectral support Fr is a finite union of disjoint intervals:

Fr =

Nr
⋃

n=1

[arn, brn), ar1 < br1 < ar2 < · · · < arNr < brNr . (5.3)

The channel inputs need not have the same multiband spectral support. Figure 5.2 shows such

an example for R = 2, which will be used throughout the chapter for illustrative purposes.

(a)

(b)

0 0.4

0 0.25 0.5

0.9 1

1

0.75

Figure 5.2 Example multiband input spectra X0(f), and X1(f) to a MIMO channel with
R = 2.

We model the MIMO channel as a linear and shift-invariant system. Thus, we can write

y(t) = g ∗ x(t) =

∫

R

g(t− τ)x(τ)dτ,

where ∗ denotes convolution and

g(t) =









g0,0(t) · · · g0,R−1(t)
...

. . .
...

gP−1,0(t) · · · gP−1,R−1(t)









∈ C
P×R

is the impulse response matrix of the channel. Therefore,

Y (f) = G(f)X(f), (5.4)

where X(f), Y (f), and G(f) are the Fourier transforms of x(t), y(t), and g(t), respectively.

In particular, G(f) is the channel transfer function matrix. The channel outputs are sampled

at t = nT , n ∈ Z, and we denote these output quantities by zp[n] = yp(nT ), or in matrix form

by

z[n]
def
=















z0[n]

z1[n]
...

zP−1[n]















= y(nT ), n ∈ Z.
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Then, it is clear that

Z[ν] =
1

T

∑

l∈Z

Y
(ν + l

T

)

, ν ∈ [0, 1)

=
1

T

∑

l∈Z

G
(ν + l

T

)

X
(ν + l

T

)

, ν ∈ [0, 1), (5.5)

where the second line follows from Eq. (5.4). We model the reconstruction block as follows:

x̃(t) =
∑

n∈Z

h(t− nT )z[n], (5.6)

where

h(t) =









h0,0(t) · · · h0,P−1(t)
...

. . .
...

hR−1,0(t) · · · hR−1,P−1(t)









∈ C
R×P .

It is clear from Eq. (5.6) that the entire MIMO system (consisting of the channel, the samplers

and the reconstruction block) is invariant to a time-shift by a multiple of T , i.e.

x(t) → x̃(t) =⇒ x(t− nT ) → x̃(t− nT ), ∀n ∈ Z, t ∈ R.

Conversely, Eq. (5.6) is the most general linear transformation that allows this invariance.

Taking its Fourier transform and rewriting in matrix form yields

X̃(f) = H(f)Z[fT ], f ∈ R, (5.7)

where H(f), the Fourier transform of h(t), is the reconstruction filter matrix. Owing to the

periodicity of Z[ν], we can rewrite Eq. (5.7) as

X̃
(

f +
l′

T

)

= H
(

f +
l′

T

)

Z[fT ], l′ ∈ Z, f ∈
[

0,
1

T

)

. (5.8)

We can now rewrite Eqs. (5.5) and (5.8) compactly as

Z[fT ] = G(f)X (f), (5.9)

X̃ (f) = H(f)Z[fT ], (5.10)

for f ∈ [0, 1/T ), where X (f) and X̃ (f) are the modulated input and reconstructed vectors whose

entries are

XRl+r(f) = Xr

(

f +
l

T

)

, (r, l) ∈ R× Z, (5.11)

X̃ Rl+r(f), = X̃r

(

f +
l

T

)

, (r, l) ∈ R× Z, (5.12)
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while G(f) and H(f) for are the modulated channel and reconstruction matrices whose entries

are

Gp,Rl+r(f) =
1

T
Gpr

(

f +
l

T

)

, (p, r, l) ∈ P ×R× Z, (5.13)

HRl+r,p(f) = Hrp

(

f +
l

T

)

, (p, r, l) ∈ P ×R× Z. (5.14)

Note that, even though these matrices have infinitely many columns or rows, only a finite

summation is involved in Eq. (5.9) because the components of X(f) are bandlimited implying

that only a finite number of entries in X (f) are nonzero. In the next section, we seek conditions

on the channel and the inputs, that guarantee perfect reconstruction of the input signals, or

equivalently, perfect inversion of the channel.

We consider only uniform sampling in this chapter. Fortunately, most periodic nonuniform

sampling schemes can be expressed as special cases of uniform sampling. To see this, consider

the following situation where the pth channel output yp(t) is sampled at

t ∈ Λp = {nTp + λkp : k = 0, . . . ,Kp − 1}.

The sampling patterns periods for the pth output channel is Tp, and the average sampling

density of the pth output is Kp/Tp. First, consider the case where all the periods are equal,

i.e., Tp = T . Then, we can write

Λp =

Kp−1
⋃

k=0

(TZ + λkp).

In other words, Λp is composed of a union of Kp uniform sampling sets of density 1/T . Consider

a hypothetical MIMO channel whose transfer function matrix is obtained by performing the

following modification to G(f). We replace the pth row of G(f), namely Gp,•(f), by the

following Kp rows: Gp,•(f)e−j2πfλkp , k = 0, . . . ,Kp − 1. The new channel matrix has
∑

pKp

rows, and the samples of the new outputs taken at t = nT are precisely equal to the samples

of the old MIMO channel outputs taken on the periodic nonuniform sampling sets {Λp} and

reordered. Next suppose that the different channels have unequal but commensurate sampling

periods, i.e., that the ratios of sampling periods are rational numbers: Tp = (mp/np)T , for some

mp, np ∈ N, and T ∈ R. In this case, a common period for all the sampling sets {Λp} is T
∏

np,

and an argument as before allows us to convert this to uniform sampling of the outputs of a

hypothetical MIMO channel. The upshot of this argument is that most periodic nonuniform

sampling (except those with non-commensurate periods) may be recast as a uniform sampling

problem. Of course the price to pay is that the hypothetical MIMO channel has many more

outputs. We illustrate this in the following example.
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Example 5.1. Let G(f) be the channel transfer function matrix of a MIMO channel with

P = 2 outputs. Let the sampling sets for the channel outputs be as depicted in Figure 5.3, i.e.,

Λ1 = {3n, 3n + 0.5 : n ∈ Z},

Λ2 = {2n : n ∈ Z}.

These sets are clearly commensurate because sampling periods T1 = 3 and T2 = 2 are such that

T1/T2 is rational. A common period for the two sampling sets is obviously 6. Indeed, we have

Λ1 =
3

⋃

k=0

(6Z + λk,1), {λk,1 : k = 0, . . . , 3} = {0, 0.5, 3, 3.5},

Λ2 =
2

⋃

k=0

(6Z + λk,2), {λk,2 : k = 0, . . . , 2} = {0, 2, 4}.

Hence, the modified channel has six outputs and the rows of its transfer function matrix G̃(f)

are given by

G̃k,•(f) = G0,•(f)e−j2πfλk,1 , k = 0, 1, 2, 3,

G̃k+4,•(f) = G1,•(f)e−j2πfλk,2 , k = 0, 1, 2.

If the outputs of the hypothetical channel are sampled uniformly at t = 6n, n ∈ Z, we essentially

obtain a reordered sequence of the samples of the original MIMO channel outputs taken on the

samples sets Λ1 and Λ2.

0

0

0.5 3 3.5

2 4 10

6 6.5 9 9.5

6 8

Figure 5.3 Commensurate periodic nonuniform sampling sets.

We have shown that commensurate periodic nonuniform sampling is really uniform sampling

in disguise, because their equivalence is shown using the above modification trick. Therefore,

the study of uniform sampling automatically provides answers to the commensurate periodic

nonuniform sampling problem. In the subsequent sections, we present results for uniform MIMO

sampling only.

In practice, we would usually only attempt to reconstruct a version of the set of inputs

that is uniformly sampled at the corresponding Nyquist rate, and implement H(f) using FIR
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filters. The continuous-time version could then be reconstructed by a bank of conventional

digital-to-analog (D/A) converters on the reconstructed discrete-time signals. In particular, it

would be desirable to use a reconstruction filter matrix H(f), that is continuous in f . The

reason for this is roughly the following. Recall that a real function on a real compact set can

be approximated arbitrarily closely (in the L∞ sense) by polynomials if the given function is

continuous. Similarly, if H(f) is continuous in f , we can approximate the matrix function

H(f) arbitrarily closely in the H∞ sense by choosing sufficiently long FIR filters. Although

we shall not delve into implementation issues in this chapter, we do consider both cases (with

and without the continuity requirement imposed on H(f)) in the next section, when we derive

conditions for perfect reconstruction. This will be useful in Chapter 6, where we deal with FIR

filter design issues.

5.4 Perfect Reconstruction

We begin with some definitions. Define the following two spectral index sets at frequency

f ∈ [0, 1/T ):

K◦f =
{

(r, l) ∈ R× Z :
(

f +
l

T

)

∈ Fr

}

,

Kf =
{

Rl + r : (r, l) ∈ R× Z and
(

f +
l

T

)

∈ Fr

}

.

(5.15)

Recall that the mapping of the pair (r, l) ∈ R × Z to a single index Rl + r ∈ Z, is invertible.

Hence, specifying any one of K◦f and Kf uniquely determines the other. Also let Kc
f = Z\Kf

denote the complement of Kf . We now have the following proposition.

Proposition 5.1. Suppose that sets Fr, r ∈ R have multiband structure as defined in Eq. (5.3).

Then Kf is piecewise constant on [0, 1/T ), i.e., there exists a collection of disjoint intervals Im

of the form [α, β), and sets Km, m = 1, . . . ,M such that Kf = Km, for f ∈ Im, and

M
⋃

m=1

Im =
[

0,
1

T

)

.

This result is easily demonstrated by using an argument very similar to the one in Chapter 2

for multicoset sampling. Hence, we can write

Im = [γm, γm+1), m ∈ M,

γ1 < γ2 < · · · < γM+1,
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such that γ1 = 0 and γM+1 = 1/T .

In this section, we derive the conditions on the channel and the spectral supports Fr of the

channel inputs for the existence of a reconstruction filter matrix H(f) that achieves perfect

reconstruction of the inputs. We consider both cases with and without the continuity require-

ment imposed on the channel and reconstruction filters. As we shall see later, the continuity

of H(f) may also require the continuity of the channel transfer function matrix G(f). Since

our analysis in the next section will rely on the modulated channel and reconstruction matrices

G(f) and H(f), the following proposition will turn out to be useful.

Proposition 5.2. If G•,r(f) is continuous on Fr then G•,Km(f) is continuous on Im and the

following “boundary condition” holds:

G•,K

( 1

T

)

= G•,K⊕R(0), K ⊆ Z. (5.16)

The quantity H(f) is continuous if and only if the entries of H(f) are continuous on [0, 1/T ]

and satisfies the boundary condition

HK,•

( 1

T

)

= HK⊕R,•(0), K ⊆ Z. (5.17)

We do not care about Gpr(f) outside the closure of the set Fr because Xr(f) vanishes there.

This explains why the conditions for G(f) and H(f) are different in Proposition 5.2. We omit

its proof since it is quite straightforward, following directly from Eqs. (5.13) and (5.14), and

the definition of Km. The boundary conditions imply that the entries of the vector G•,K(0) is

a shifted version of those of G•,K(1/T ).

In the next section, we use frame theory to derive necessary and sufficient conditions for

stable and perfect reconstruction of the channel inputs, but we first present a simple necessary

condition. From Eq. (5.15), it is clear that all the nonzero entries of X (f) are captured in the

subvector XKf
(f), and hence we can rewrite Eqs. (5.9) and (5.10) as

X̃Kf
(f) = HKf ,•(f)G•,Kf

(f)XKf
(f), (5.18)

X̃Kc
f
(f) = HKc

f
,•(f)G•,Kf

(f)XKf
(f). (5.19)

For perfect reconstruction, we require the existence of H(f) such that X̃ (f) = X (f) a.e. It is

clear that this would happen if and only if

HKf ,•(f)G•,Kf
(f) = I |Kf | and HKc

f
,•(f)G•,Kf

(f) = 0 a.e., (5.20)
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which can be expressed more compactly as

H(f)G•,Kf
(f) = I•,|Kf |. (5.21)

Since G•,Kf
(f) ∈ C

P×|Kf |, we require that G•,Kf
(f) have full column rank a.e. This condi-

tion guarantees the uniqueness of the solution to Eq. (5.21) if a solution exists. In view of

Proposition 5.1, we now obtain the following necessary condition for perfect reconstruction:

rank
(

G•,Km(f)
)

= |Km|, a.e. f ∈ Im. (5.22)

However, this condition does not address the issue of stability of reconstruction, and hence may

be insufficient.

5.4.1 Stable sampling

The MIMO channel can be viewed as a linear transformation from the class of input signals

to the space of its samples. The condition in Eq. (5.22) on the channel and the input signals

is necessary for stable perfect reconstruction. However, it does not suffice because it does not

answer the important question regarding stability of the reconstruction. In this section, we

shall use frame theory to study the stability issue of sampling problem. Recall the definition of

a frame:

Definition 5.1. Let H be a separable Hilbert space. A sequence {ψn} ⊆ H is a frame if there

exist constants A,B > 0 such that

A‖x‖2 ≤
∑

n

|〈ψn, x〉|2 ≤ B‖x‖2,

for all x ∈ H. If A = B, then the frame is a tight frame.

The frame operator S, defined as

Sx =
∑

n

〈x, ψn〉ψn, ∀x ∈ H,

is a bounded linear operator satisfying AI ≤ S ≤ BI, where I is the identity operator. Define

ψ̃n = S−1ψn. Then {ψ̃n} is also a frame (the dual frame) for H with frame bounds B−1 and

A−1, and any x ∈ H can be expressed as

x =
∑

n

〈x, ψ̃n〉ψn =
∑

n

〈x, ψn〉ψ̃n. (5.23)

In the context of MIMO sampling, the relevant Hilbert space is the class of input signals:

H = B(F1) × · · · × B(FR).
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The inner product and norm on H are defined as

〈x,w〉 =

∫

R

wH(t)x(t)dt, x,w ∈ H,

‖x‖ =
√

〈x,x〉.

We now present an important definition for the stability of MIMO sampling (see Chapter 4):

Definition 5.2. The MIMO sampling scheme is called stable if there exist constants A,B > 0

such that

A‖x‖2 ≤
∑

n∈Z

‖z[n]‖2 ≤ B‖x‖2, (5.24)

for all x(t) ∈ H.

Equation (5.24) clearly allows stable reconstruction, and to see this we recast Eq. (5.24) in

a frame theoretic form. Define the diagonal matrix

J(f) = diag
(

χ(f ∈ F1), . . . , χ(f ∈ FR)
)

. (5.25)

Then we have

J(f)X(f) = X(f) (5.26)

because Xr(f) is supported on Fr. In view of Eq. (5.26), we can rewrite zp[n] as

zp[n] = yp(nT ) =

∫

R

ej2πfnTGp,•(f)X(f)df

=

∫

R

ej2πfnTGp,•(f)J(f)X(f)df

=

∫

R

ΨH
pn(f)X(f)df, (5.27)

where

ΨH
pn(f) = ej2πfnTGp,•(f)J(f) ⇐⇒ ψpn(t) =

∫

R

J(f)GH
p,•(f)ej2πf(t−nT )df, (5.28)

for (p, n) ∈ P×Z. It is clear that ψpn ∈ H. Using Parseval’s theorem and Eq. (5.28) we coclude

that

〈x,ψpn〉 =

∫

R

ψH
pn(t)x(t)dt =

∫

R

ΨH
pn(f)X(f)df = zp[n].

Thus zp[n] can be expressed as an inner product of x and ψpn ∈ H, and consequently, Eq. (5.24)

is equivalent to the condition that {ψpn} forms a frame for H. Suppose we denote its dual frame

by {ψ̃np : n ∈ Z, p ∈ P}, then Eq. (5.23) produces with the following reconstruction formula:

x =
∑

n∈Z

∑

p∈P

〈x,ψnp〉ψ̃np =
∑

n∈Z

∑

p∈P

zp[n]ψ̃np.
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As shown in Chapter 4, the implication of stability of reconstruction is that errors in the inputs

or the sampled outputs cannot produce arbitrarily large errors in the reconstructed outputs.

The ratio K =
√

B/A ≥ 1 is called the condition number of the sampling scheme, and K2 is a

bound on the amplification of the normalized error energy due to the reconstruction filters.

5.4.2 Conditions for perfect reconstruction

Let ess inf and ess sup denote the essential infimum and supremum, i.e.,

ess inf g(t) = sup{γ : g(t) ≥ γ a.e.},

ess sup g(t) = inf{γ : g(t) ≤ γ a.e.}.

for any real function g. Our next result provides necessary and sufficient conditions on the

channel matrix for stable MIMO reconstruction.

Theorem 5.1. The frame bounds for the MIMO sampling problem are given by

A = T ess inf
f∈[0,1/T ]

λmin

(

GH
•,Kf

(f)G•,Kf
(f)

)

, (5.29)

B = T ess sup
f∈[0,1/T ]

λmax

(

G
H
•,Kf

(f)G•,Kf
(f)

)

. (5.30)

In particular, A > 0 and B <∞ are necessary and sufficient conditions for stable reconstruction

of the MIMO inputs.

Proof. We need to compute

A = inf
x∈B

∑

n∈Z

‖z[n]‖2 and B = inf
x∈B

∑

n∈Z

‖z[n]‖2, (5.31)

where B is the set of input signals of unit combined energy:

B =
{

x ∈ H : ‖x‖ = 1
}

. (5.32)

First observe that

‖x‖2 =

∫

R

‖x(t)‖2dt =

∫

R

‖X(f)‖2df

(a)
=

∫

[0, 1
T

]
‖X (f)‖2df

(b)
=

∫

[0, 1
T

]
‖XKf

(f)‖2df, (5.33)
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where the norms on the right-hand side of Eq. (5.33) are the Euclidean norms. The equality (a)

above follows from Eq. (5.11), and (b) follows because XKf
(f) captures all the nonzero entries

of X (f). Next

∑

n∈Z

‖z[n]‖2 =

∫

ν∈[0,1]
‖z[ν]‖2dν

(a)
= T

∫

[0, 1
T

]
‖z[TV ]‖2df

(b)
= T

∫

[0, 1
T

]
‖G•,Kf

(f)XKf
(f)‖2df, (5.34)

where (a) is obtained by a change of variables, and (b) from Eq. (5.9) and the fact that XKf
(f)

captures all the nonzero entries of X (f). Therefore, Eqs. (5.31), (5.32), (5.33), and (5.34) yield

A = inf T

∫

[0, 1
T

]
‖G•,Kf

(f)XKf
(f)‖2df s.t.

∫

[0, 1
T

]
‖XKf

(f)‖2df = 1,

B = supT

∫

[0, 1
T

]
‖G•,Kf

(f)XKf
(f)‖2df s.t.

∫

[0, 1
T

]
‖XKf

(f)‖2df = 1.

Now the claimed results in Eqs. (5.29) and (5.30) follow immediately.

Note that a simple necessary condition for perfect reconstruction is that P ≥ |Km| for each

m ∈ M. Clearly, multiple solutions H(f) exist to Eq. (5.21) if P > |Km| for some m. The

average sampling density for this sampling scheme is P/T . Now, Eq. (5.15) implies that

|Kf | =
∑

r∈R

∑

l∈Z

χ(f + l/T ∈ Fr).

Hence,
∫

[0,1/T ]
|Kf |df =

R
∑

r=1

∫

R
χ(f ∈ Fr) =

R
∑

r=1

µ(Fr), (5.35)

where µ(·) denotes the Lebesgue measure. Suppose that P = |Km| for all m, then Eq. (5.35)

reduces to

P

T
=

R
∑

r=1

µ(Fr).

This value for the total sampling density coincides with the minimum density required for stable

MIMO sampling (see Theorem 4.2) using any sampling scheme for the channel outputs, whether

uniform or not. Also note that we have uniqueness of the reconstruction filters when P = |Km|.

Corollary 5.1. Suppose that G(f) is such that Gpr(f) is continuous for f ∈ F r, and G•,Km(f)

has full column rank for all m ∈ M, f ∈ Im = [γm, γm+1]. Then the MIMO sampling scheme

is stable, i.e., {ψpn} forms a frame.
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Proof. By Proposition 5.2, we have continuity of G•,Km(f) on the compact set Im. Therefore,

both the smallest and the largest eigenvalues of GH
•,Km

(f)G•,Km(f) are continuous functions on

Im. Since the smallest eigenvalue is strictly positive for all f ∈ [0, 1/T ] by hypothesis, it follows

that the infimum in Eq. (5.29) is attained, implying that A > 0. Similarly, B <∞ because the

supremum in Eq. (5.30) is attained.

We illustrate the MIMO sampling result of Theorem 5.1 for a simple MIMO channel.

Example 5.2. Consider a MIMO channel with R = 2 inputs and P = 4 outputs having the

following transfer function matrix:

G(f) =















1 1

1 1 + e−j2πf

e−j2πf 0.25 + e−j4πf

1 + 0.5e−j2πf 1 + e−j4πf















.

Let the input spectra X1(f) and X2(f) have supports as illustrated in Figure 5.2, i.e.,

F1 = [0, 0.4) ∪ [0.75, 0.9) and F2 = [0.25, 0.5).

Each output is a multiband signals supported on F = F1 ∪ F2 = [0, 0.5) ∪ [0.75, 0.9). Hence,

the Nyquist rate for sampling each output is µ(F) = 0.65. However, we demonstrate in this

example that we do not need to sample each output at the Nyquist rate to achieve perfect

reconstruction. Let the sampling period be T = 4. For this choice, it is easy to verify that

I1 = [0, 0.15) and I2 = [0.15, 0.25).

Furthermore, Eq. (5.15) and Proposition 5.1 imply that

K◦f =











{(0, 0), (0, 1), (0, 3), (1, 1)}, if f ∈ I1,

{(0, 0), (1, 1)}, if f ∈ I2.

Therefore, K1 = {0, 2, 6, 3} and K2 = {0, 3}. A simple calculation shows that

G•,K1(f) =
1

4















1 1 1 1

1 1 1 1 + e−j2π(f+1/4)

e−j2πf e−j2π(f+1/4) e−j2π(f+3/4) 0.25 + e−j4π(f+1/4)

1 + 0.5e−j2πf 1 + 0.5e−j2π(f+1/4) 1 + 0.5e−j2π(f+3/4) 1 + e−j4π(f+1/4)















,

G•,K2(f) =
1

4















1 1

1 1 + e−j2π(f+1/4)

e−j2πf 0.25 + e−j4π(f+1/4)

1 + 0.5e−j2πf 1 + e−j4π(f+1/4)















.
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It can be verified numerically that

rank
(

G•,K1(f)
)

= 4, ∀f ∈ I1,

rank
(

G•,K2(f)
)

= 2, ∀f ∈ I2.

Since G(f) is continuous, we conclude using Corollary 5.1, that stable perfect reconstruction of

the inputs is possible from the channel output samples. However, as we shall see in Example 5.4,

the reconstruction filter matrix H(f) would necessarily have to be discontinuous. Finally, note

that the total sampling density of the outputs is P/T = 1, while the minimum density, as

dictated by Theorem 4.2 is µ(F1) + µ(F2) = 0.8.

In Example 5.2, we showed that the combined sampling density of 1 is achievable, but the

lower bound on this density is 0.8. Therefore, we could potentially find a nonuniform MIMO

sampling scheme that closes the gap. In fact, this is precisely what we are going to show in the

following example.

Example 5.3. Let the inputs signal characteristics and the channel transfer function matrix

be the same as in Example 5.2. We show that, using a proper nonuniform sampling strategy at

the outputs, we can achieve the minimum combined sampling rate for all the output channels as

stipulated by Theorem 4.2. Let the channel outputs be sampled on the sets Λp = {20n + λkp :

k = 0, . . . ,Kp − 1}, where (K1,K2,K3,K4) = (0, 3, 5, 8) and

{λkp : k = 0, . . . ,Kp − 1} =



































∅ if p = 0,

{1, 8, 14} if p = 1,

{2, 5, 8, 13, 18} if p = 2,

{0, 2, 4, 5, 7, 8, 14, 17} if p = 3.

Evidently, these are all periodic nonuniform sampling sets having a common period of T = 20,

and consisting of 16 cosets in all. Hence, the modified MIMO channel has a transfer function

matrix G̃(f) of size 16 × 2, and its rows can be worked out as in Example 5.1. Since the band

edges of F1 and F2 are all multiples of 0.05, we trivially obtain M = 1, I1 = [0, 0.05), and

K1 = {0, 2, 4, 6, 8, 10, 12, 14, 30, 32, 34} ∪ {11, 13, 15, 17, 19}.

Now, G̃•,K1(f) is a continuous 16 × 16 matrix, whose rank is verifiable to be 16 for all f .

By Corollary 5.1, we conclude that stable and perfect reconstruction of the channel inputs

is possible from these periodic nonuniform MIMO samples. In fact, the stability bounds are
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A = 8.0724×10−4 and B = 3.6833, implying that the condition number K =
√

B/A = 67.5487.

The sampling densities of Λp is dp = Kp/T , so that

(d1, d2, d3, d4) = (0, 0.15, 0.25, 0.5)

in an achievable point in density region for stable sampling. Obviously, they must meet all the

necessary conditions for stable sampling derived in Chapter 4. In particular, the total combined

sampling rate of all the outputs is 16/T = 0.8, which is precisely equal to the minimum joint

sampling density required by Theorem 4.2, namely µ(F1)+µ(F2). We learn from this example

that we need not sample the different outputs at the same rate. In fact, one of the channels is

not sampled at all, unlike in Example 5.2, where, due to uniform sampling, we required samples

from all channel outputs.

5.4.3 Existence of continuous solutions

Theorem 5.1 does not guarantee the existence of a continuous filter matrix H(f) which, as

we have seen earlier, may be desirable from an implementation point of view. The following

theorem shows that, under a stronger set of conditions, we can guarantee the existence of a

continuous filter matrix H(f). We begin with a lemma.

Lemma 5.1. Let C(f) ∈ C
p×q (with p ≥ q) and D(f) ∈ C

r×q be continuous functions of

f ∈ [α, β] such that rankC(f) = q for all f , and let Eα,Eβ ∈ C
r×p be matrices satisfying

EαC(α) =D(α) and EβC(β) = D(β).

Then there exists a continuous E(f) ∈ C
r×p such that E(f)C(f) = D(f) for all f ∈ [α, β],

and that E(α) = Eα and E(β) = Eβ are satisfied.

The proof of Lemma 5.1 can be found in Appendix A. We can now derive the conditions

for the existence of continuous reconstruction filters that achieve perfect reconstruction.

Theorem 5.2. Suppose that the MIMO transfer function matrix G(f) is such that Gpr(f) is

continuous for f ∈ F r. Then there exists a reconstruction filter matrix H(f) continuous in f ,

that achieves stable and perfect reconstruction of the MIMO channel inputs if and only if

rank
(

G•,Km(f)
)

= |Km|, ∀f ∈ int Im = (γm, γm+1), (5.36)

rank
(

G•,Jm(γm)
)

= |Jm|, m ∈ M. (5.37)

where

Jm = Km ∪ Km−1, m = 2, . . . ,M,

J1 = K1 ∪ (KM ⊕R).
(5.38)
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Proof. First note that the hypotheses in this theorem are stronger than those of Corollary 5.1.

Thus, stable reconstruction is guaranteed. We shall first prove the necessity of Eqs. (5.36) and

(5.37). The first condition in Eq. (5.20) states that

HKf ,•(f)G•,Kf
(f) = I |Kf | a.e. (5.39)

So suppose that H(f) is a continuous solution, then Proposition 5.2 implies that HKm,•(f)

and G•,Km(f) are continuous functions in the interior of Im, and, in fact, Eq. (5.39) must hold

for all f ∈ int Im, not just a.e., because both sides of Eq. (5.39) are continuous functions. Now

Eq. (5.36) follows immediately. Letting f ↓ γ1 = 0 in Eq. (5.20) and using the continuity of

H(f) gives us

HK1,•(0)G•,K1(0) = Iq1, HKc
1,•(0)G•,K1(0) = 0, (5.40)

while letting f ↑ γM+1 = 1/T instead, and using Eqs. (5.16) and (5.17), we obtain

HKM⊕R,•(0)G•,KM⊕R(0) = IqM
, HKc

M
⊕R,•(0)G•,KM⊕R(0) = 0. (5.41)

Combining Eqs. (5.40) and (5.41), we obtain the following set of necessary conditions:

HJ1,•(0)G•,J1(0) = I |JM |, HJ c
1 ,•(0)G•,J1(0) = 0. (5.42)

where J1 = K1 ∪ (KM ⊕ R). Using a similar continuity argument in the vicinity of γm, for

m = 2, . . . ,M yields:

HJm,•(γm)G•,Jm(γm) = I |Jm|, HJ c
m,•(γm)G•,Jm(γm) = 0. (5.43)

where Jm = Km ∪ Km−1. Hence, Eq. (5.37) is necessary to meet conditions in Eqs. (5.42) and

(5.43). To prove sufficiency of Eqs. (5.36) and (5.37), we construct an appropriate reconstruction

matrix H(f) that is continuous in f and satisfies the boundary condition in Eq. (5.17). We

first define the function H(f) on the following finite set of frequencies {γm : m ∈ M}:

HJm,•(γm) = G
†
•,Jm

(γm), HJ c
m,•(γm) = 0. (5.44)

Then in view of Eq. (5.17), we need to define

HJM+1,•

( 1

T

)

= HJ1,•(0) = G•,J1(0),

HJ c
M+1,•

( 1

T

)

= 0,

where

JM+1
def
= J1 ⊖R = (K1 ⊖R) ∪ KM .
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Therefore, using Eq. (5.16), we now have

HJM+1,•

( 1

T

)

= G
†
•,JM+1

( 1

T

)

, HJ c
M+1,•

( 1

T

)

= 0. (5.45)

To complete the proof, it suffices to construct a continuous extension H(f) on [0, 1/T ] that

satisfies Eqs. (5.44) and (5.45). With the intention of applying Lemma 5.1, define the following

quantities:

a = γm, Eα =





HKm,•(α)

H(Jm∪Jm+1)\Km,•(α)



 , C(f) = G•,Km(f),

b = γm+1, Eβ =





HKm,•(β)

H(Jm∪Jm+1)\Km,•(β)



 , D(f) =





I |Km|

0



 .

Observe that C(f) = G•,Km(f) has full column rank for f ∈ [γm, γm+1]. Moreover, using

Km ⊆ Jm, and Km ⊆ Jm+1, it follows from Eq. (5.44) that

EαC(α) =





I |Km|

0



 = D(α) and EβC(β) =





I |Km|

0



 = D(β).

Thus, we have verified all the technical conditions required in Lemma 5.1, and we are guaranteed

a continuous solution

E(f) =





HKm,•(f)

H(Jm∪Jm+1)\Km,•(f)





that meets the desired boundary conditions and satisfies

HKm,•(f)G•,Km(f) = I |Kf | and H(Jm∪Jm+1)\Km,•(f)G•,Km(f) = 0 (5.46)

for f ∈ [γm, γm+1]. We also define

H(Jm∪Jm+1)c,•(f) = 0, f ∈ [γm, γm+1]. (5.47)

Therefore, Eqs. (5.46) and (5.47) provide us with a continuous extension for H(f) on [γm, γm+1]

for each m ∈ M, and hence for the entire interval [0, 1/T ].

Remarks. Observe the following:

1. A simple necessary condition for perfect reconstruction using continuous reconstruction

filters is that P ≥ maxm |Jm|.

2. Note that although the continuity of the entries ofG(f) was essential in the above proof, it

is not strictly necessary as it is possible to carefully construct examples where a continuous

H(f) exists even though G(f) may be discontinuous.
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The following example illustrates Theorem 5.2

Example 5.4. Assume that R = 2, T = 4, and that the input spectra have the same form as

in Example 5.2. Then K1 = {0, 2, 6, 3} and K2 = {0, 3}. In addition the index sets defined in

Eq. (5.38) are

J1 = K1 ∪ (K2 ⊕ 2) = {0, 2, 6, 3, 5},

J2 = K2 ∪ K1 = {0, 2, 3, 6}.

Hence, P ≥ maxm |Jm| = 5 is necessary for the existence of a continuous H(f), and clearly,

the transfer function matrix G(f) of Example 5.2 does not suffice. So let us append a new row

beneath the last row of G(f), thereby making the the MIMO channel a two-input five-output

channel:

G(f) =





















1 1

1 1 + e−j2πf

e−j2πf 0.25 + e−j4πf

1 + 0.5e−j2πf 1 + e−j4πf

0.25 + e−j4πf e−j2πf





















.

The rank condition in Eq. (5.36) holds because the matrix G•,Km(f) of Example 5.2 has full

column rank, and adding an extra row to G(f) (and hence to G(f) also) does not lower the

column rank of G•,Km(f). Figure 5.4 depicts the smallest and largest eigenvalues of the matrix

S(f) = G
H
•,Kf

(f)G•,Kf
(f)

as a function of frequency. Note that the discontinuities in these plots are expected because

Kf (f) is piecewise constant with discontinuities at the cell boundaries, i.e., at f = γ1 = 0.15 in

this case. A numerical calculation yields the following frame bounds for the MIMO sampling

scheme.

A = ess inf
f∈[0, 1

T
]
λmin(TS(f)) = 0.1251,

B = ess sup
f∈[0, 1

T
]

λmax(TS(f)) = 1.1105.

Hence, the condition number is
√

B/A = 2.9790. The other rank condition in Eq. (5.37) which

needs to be verified at cell boundaries, also holds. Now, Theorem 5.2 guarantees the existence

of a continuous filter matrix H(f) that achieves perfect reconstruction of the MIMO channel

inputs. In principle, one can construct a continuous H(f) by following the steps of the proof

of Theorem 5.2.
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Figure 5.4 Smallest and largest eigenvalues of S(f).

5.5 Summary

In this chapter, we studied the uniform MIMO sampling problem. This scheme encompasses

multicoset sampling, Papoulis’s generalized sampling, and vector sampling schemes as a special

cases. The MIMO problem is motivated from the problem of channel equalization from ithe

sampled channel outputs. We presented necessary and sufficient conditions for perfect recon-

struction of the signals, or equivalently, perfect inversion of the channel when the input signals

lie in the space of multiband signals with different band structures. We also presented the

appropriate conditions for the existence of reconstruction filters continuous in f . The latter

result is important from the viewpoint of implementation of the reconstruction system using

FIR filters. We address the problem of reconstruction filter design using FIR filters in the next

chapter.
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CHAPTER 6

FILTER DESIGN FOR MIMO SAMPLING AND

RECONSTRUCTION

6.1 Introduction

In this chapter, we address another aspect of MIMO sampling, namely the problem of recon-

struction filter design for uniform MIMO sampling. In Chapter 5, we presented necessary and

sufficient conditions for perfect reconstruction of the channel inputs. In practice, the channel

inputs are continuous-time signals. However, the processing is done digitally, requiring that

the channel inputs and outputs be representable as discrete-time sequences. Fortunately, the

continuous-time model can be converted to an equivalent discrete-time model, and the discrete-

time sequences represent the samples of the continuous-time counterparts at the Nyquist rate

or higher.

This is shown rigorously in Appendix B, where we arrive at the following models for the

MIMO channel and the reconstruction system. Figure 6.1 depicts the block diagram of the

discrete-time MIMO channel with R inputs and P outputs. The inputs to the channel are the

sequences xr[k], r = 1, . . . , R, and the outputs are yp[k], p = 1, . . . , P . The channel outputs

are then uniformly subsampled by an integer factor L > 0 to produce sequences zp[n]. The

reconstruction block, depicted in Figure 6.2, produces estimates x̃r[k] of the input signals from

the quantities zp[n]. We shall consider only uniform subsampling of the channel outputs. This

scheme is sufficiently general and it subsumes periodic nonuniform subsampling of the MIMO

outputs as a special case of uniform subsampling applied to a hypothetical channel with more

rows, as discussed in Chapter 5.

The continuous-time outputs can finally be recovered from the discrete-time sequences x̃r[k]

using a bank of conventional D/A converters. Thus, the reconstruction filter design problem is

one of FIR design.
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Figure 6.1 Discrete-time model for the MIMO channel.
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Figure 6.2 Discrete-time model for MIMO reconstruction.

Several sampling schemes can be viewed as special cases of MIMO sampling. For example,

in Papoulis’s generalized sampling [12], a single lowpass input signal is passed through a bank of

M filters, and the outputs are sampled at 1/Mth the Nyquist rate. This fits in our framework

as a SIMO sampling problem, i.e., R = 1. Additionally, if the channel filters are pure delays, we

obtain multicoset or periodic nonuniform sampling of the input signal which has been widely

studied [14–24], as it allows us to approach the Landau minimum sampling for multiband signals

[6]. Seidner and Feder [13] provide a natural generalization of Papoulis’s sampling expansions

for a vector input with its components bandlimited to [−B,B]. Their sampling scheme is

clearly a special case of MIMO sampling. We studied the continuous-time MIMO sampling

problem and presented necessary and sufficient conditions for stable sampling in Chapter 5.

The purpose of this chapter is to examine the related problem of FIR filter design for MIMO

reconstruction filters. We formulate the design problem as a semi-infinite linear program. Semi-

infinite formulations have been successfully applied to other multirate filter design problems

[54, 55] and solved using standard techniques [34]. Our FIR filter design formulation is fairly

general and can be used to design the interpolation filters for those generalized sampling schemes

discussed above.

This chapter is organized as follows. Section 6.2, contains some basic notation and defini-

tions. In Section 6.3 we present discrete-time models for the channel and reconstruction block.

The channel inputs are modeled as multiband signals. In Section 6.4, we present discrete-time

versions of the results derived in Chapter 5. In particular, we specify necessary and sufficient
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conditions for the existence of reconstruction filters that are continuous in the frequency do-

main. This property is important in the context of FIR filter design, as we elaborate on later.

Finally, in Section 6.5 we discuss the problem of FIR reconstruction filter design for the MIMO

sampling problem. We formulate a cost function in terms of the filter coefficients. Minimizing

the cost produces the optimal filter coefficients. The problem may be recast as a semi-infinite

linear program. We present two design examples: one for multicoset sampling and another for

MIMO sampling with two inputs.

6.2 Preliminaries

We begin with a some basic definitions and notation. Denote the discrete-time Fourier

transform of a x[n] ∈ l2 by the periodic function:

X[ν] =
∑

k∈Z

x[k]e−j2πνk.

In general, we denote time signals (either scalar-valued or vector-valued) using lowercase letters,

and their Fourier transforms by the corresponding uppercase letters. Let the class complex-

valued, finite-energy discrete-time signals bandlimited to the set of frequencies F ⊆ [0, 1) by

Bd(F) = {x[k] ∈ l2 : X[ν] = 0, ∀ν ∈ [0, 1) ∩ Fc}. (6.1)

We denote the class of complex-valued matrices of size M × N by C
M×N , the conjugate-

transpose of A by AH , its pseudo inverse by A†, and its range space by R(A). For a given

matrix A, let AR,C denote the submatrix of A corresponding to rows indexed by the set R
and columns by the set C. The quantity A•,C denotes a submatrix formed by keeping all rows

of A, but only columns indexed by C, while AR,• denotes the submatrix formed by retaining

rows indexed by R and all columns. We use a similar notation for vectors. Hence, XR is

the subvector of X corresponding to rows indexed by R. We always apply the subscripts of a

matrix before the superscript. So AH
R,C is the conjugate-transpose of AR,C . When dealing with

singleton index sets: R = {r} or C = {c}, we omit the curly braces for readability. Therefore,

Ar,• and A•,c are the rth row and the cth column of A, respectively. For convenience, we

always number the rows and columns of a finite-size matrix starting from 0. For infinite-size

matrices, the row and column indices range over Z. As a result of the above notation, we have

the following straightforward proposition that is used later.

Proposition 6.1. Suppose that X ∈ C
L and I is the L× L identity matrix. Then

XK = IK,•X (6.2)
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for all K ⊆ {0, . . . , L− 1}. Additionally, if XKc = 0, where Kc is the complement of K, then

X = I•,KXK. (6.3)

The identity matrix of size N × N is denoted by IN , and the zero matrix by 0. Finally

suppose that S is a subset of R or Z, and a is an element of R or Z, then

S ⊕ a = {s + a : s ∈ S},

S ⊖ a = {s − a : s ∈ S},

aS = {as : s ∈ S},

S mod a = {smod a : s ∈ S},

denote the positive and negative translations, scaling, and the modulus of S by a, respectively.

6.3 Sampling and Reconstruction Models

Figure 6.1 depicts a MIMO channel whose inputs and outputs are discrete-time sequences

{x1[k], . . . , xR[k]} and {y1[k], . . . , yP [k]}, respectively. For convenience, let R = {0, 1, . . . , R−1}
and P = {0, 1, . . . , P − 1} denote index sets for the channel inputs and outputs. We model

xr[k], r ∈ R as multiband signals: xr(t) ∈ Bd(Fr), where the spectral support Fr ⊆ [0, 1) is a

finite union of disjoint intervals:

Fr =

Nr
⋃

n=1

[arn, brn), ar1 < br1 < ar2 < · · · < arNr < brNr . (6.4)

Let the channel inputs and outputs be expressed in vector form as

x[k] =
(

x0[k] x1[k] · · · xR−1[k]
)T
,

y[k] =
(

y0[k] y1[k] · · · yP−1[k]
)T
.

The MIMO channel is modeled as a linear shift-invariant system, thus enabling us to write

y[k] = g ∗ x[k] =
∑

n∈Z

g[k − k′]x[k′],

where ∗ denotes convolution, and g[k] ∈ C
P×R is the MIMO channel impulse response. Hence,

we have

Y [ν] = G[ν]X [ν], (6.5)

where X[ν], Y [ν], and G[ν] are the Fourier transforms of x[k], y[k], and g[k], respectively. We

call G[ν] the channel transfer function matrix. The channel outputs are uniformly subsampled
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by a factor of L, and the resulting sequences are denoted by z[n] = y[nL], n ∈ Z. Using

Eq. (6.5), we now have

Z[ν] =
1

L

∑

l∈Z

Y
[ν + l

L

]

=
1

L

∑

l∈Z

G
[ν + l

L

]

X
[ν + l

L

]

, ν ∈ [0, 1). (6.6)

We model the reconstruction block as follows:

x̃[k] =
∑

n∈Z

h[k − nL]z[n], (6.7)

where h[k] ∈ C
R×P is the impulse response of the reconstruction filter. From Eq. (6.7), it is ob-

vious that the entire system consisting of the channel, the subsampling, and the reconstruction

is invariant to time-shifts of any multiple of L, i.e.,

x→ x̃ =⇒ x[· − nL] → x̃[· − nL], ∀n ∈ Z.

Conversely, Eq. (6.7) describes the most general linear transformation that allows this invari-

ance. Taking the Fourier transform of Eq. (6.7), we obtain

X̃[ν] = H [ν]Z[Lν], ν ∈ [0, 1), (6.8)

where H [ν], the Fourier transform of h[n], is called the reconstruction filter matrix. Since Z[ν]

is a periodic function, we can rewrite Eq. (6.8) as

X̃
[

ν +
l′

L

]

= H
[

ν +
l′

L

]

Z[Lν], l′ ∈ Z, ν ∈ [0, 1/L). (6.9)

We can now write Eqs. (6.6) and (6.9) compactly as

Z[Lν] = G[ν]X [ν], (6.10)

X̃ [ν] = H[ν]Z[Lν] (6.11)

for ν ∈ [0, 1/L), where X [ν] and X̃ [ν] are defined as

X Rl+r[ν] = Xr

[

ν +
l

L

]

, (r, l) ∈ R× L, (6.12)

X̃ Rl+r[ν] = X̃r

[

ν +
l

L

]

, (r, l) ∈ R× L, (6.13)

while G[ν] and H[ν] are the modulated channel and reconstruction matrices defined as

Gp,Rl+r[ν] =
1

L
Gpr

[

ν +
l

L

]

, (p, r, l) ∈ P ×R×L, (6.14)

HRl+r,p[ν] = Hrp

[

ν +
l

L

]

, (p, r, l) ∈ P ×R× L. (6.15)
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In the next section, we provide precise conditions for stable reconstruction of the channel

inputs from the subsampled output sequences. In particular, for FIR implementation reasons,

we are interested in a reconstruction filter matrix H [ν] whose entries are continuous in ν.

Specifically, the continuity guarantees that the approximation error resulting from the FIR

implementation can be made arbitrarily small by choosing sufficiently long FIR filters. This

point will be elaborated later.

6.4 Conditions for Perfect Reconstruction

In this section, we present the condition for perfect reconstruction from the MIMO channel

outputs in the discrete-time setting. More specifically, we provide conditions on the channel

transfer function matrix G[ν] that guarantee stable reconstruction of the inputs with/without

the continuity requirement on the reconstruction filter matrix H [ν]. These results are discrete-

time versions of their continuous-time ones presented in Chapter 5.

Let H = Bd(F1) × · · · × Bd(FR) denote the class of inputs to the MIMO channel. Then H
is a Hilbert space equipped with the following inner product:

〈x,w〉 =
∑

n∈Z

wH [n]x[n], x,w ∈ H.

Naturally, the norm on H is defined as ‖x‖ =
√

〈x,x〉. We now review an important notion

called stability of MIMO sampling (see Chapters 4 and 5).

Definition 6.1. The MIMO sampling scheme is called stable if there exist constants A,B > 0

such that

A‖x‖2 ≤
∑

n∈Z

‖z[n]‖2 ≤ B‖x‖2, (6.16)

for all x ∈ H.

The implication of Eq. (6.16) is that we can reconstruct the inputs from the outputs samples

z[n] in a stable manner, in the sense that small perturbations in the inputs or the channel output

samples, cannot cause large errors in the reconstructed outputs. The quantity K =
√

B/A ≥ 1

is called the condition number of the sampling scheme, and it is a bound on the amplification

of the normalized error energy due to the reconstruction filters. In particular, the notion of

stable sampling may be expressed as a frame-theoretic condition. We refer the reader to [2, 46]

for more about frames. The theory of frames provides a convenient tool to study sampling [47].
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Now, define the following index sets

Kν =
{

Rl + r : (r, l) ∈ R × L and ν + l/T ∈ Fr

}

, (6.17)

Kc
ν = Z\Kν

for ν ∈ [0, 1/L], where Z = {0, . . . , RL− 1}. Just as in the continuous-time case in Chapter 5,

we can decompose the interval [0, 1/L] into a union of intervals, where Kν is piecewise constant.

Proposition 6.2. Suppose that sets Fr, r ∈ R have multiband structure as defined in Eq. (6.4).

Then there exists a collection of disjoint intervals Im and sets Km, m = 1, . . . ,M such that

M
⋃

m=1

Im =
[

0,
1

L

)

and Kν = Km, ∀ν ∈ Im.

This result is easily demonstrated by using an argument very similar to the one in Chapter 2.

We write Im as

Im = [γm, γm+1), m ∈ M,

γ1 < γ2 < · · · < γM+1,

such that γ1 = 0 and γM+1 = 1/L. For convenience we also define

qm
def
= |Km|.

Equation (6.17) implies that all nonzero entries of X [ν] are captured in XKν [ν]. Hence, from

Eqs. (6.10) and (6.11) we conclude that HKν ,•[ν]G•,Kν [ν] = I |Kν | and HKc
ν ,•[ν]G•,Kν [ν] = 0 hold

a.e. This can be written compactly as

H[ν]G•,Kν [ν] = I•,Kν , (6.18)

where I is the RL × RL identity matrix. Since G•,Kν [ν] ∈ C
P×|Kν |, we require that G•,Kν (ν)

have full column rank a.e.

As in Proposition 5.2, it can be easily verified that H [ν] is continuous if and only if H[ν] is

continuous on [0, 1/L], and the following “boundary conditions” hold:

HK,•

[ 1

L

]

= HK′,•[0] (6.19)

for all K ⊆ Z, where K′ = (K⊕R)modRL. As we shall see later, in order to achieve continuity

of H [ν], it is convenient to impose continuity on G[ν], and this produces a similar condition on
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G[ν]. Specifically, if Gpr[ν] is continuous on Fr (the closure of Fr), then G•,Km [ν] is continuous

on Im, and

G•,K

[ 1

L

]

= G•,K′ [0], (6.20)

for all K ⊆ Z.

The following theorems, which are discrete-time versions of similar results presented in

Chapter 5, provide precise conditions for stable and perfect reconstruction of the channel inputs.

We do not prove them as they can be deduced in a manner very similar to their continuous-

time counterparts. Before stating the results, we point out that ess inf and ess sup denote the

essential infimum and supremum, respectively, i.e.,

ess inf
t

g(t) = sup{γ : g(t) ≥ γ a.e.},

ess sup
t

g(t) = inf{γ : g(t) ≤ γ a.e.}.

for any real function g.

Theorem 6.1. Suppose that G[ν] is such that Gpr[ν] is continuous for ν ∈ Fr, and G•,Km [ν]

has full column rank for all m ∈ M, ν ∈ Im = [γm, γm+1], then the MIMO sampling scheme is

stable, and the stability bounds are given by

A = L ess inf
ν∈[0,1/L]

λmin

(

G
H
•,Kν

[ν]G•,Kν [ν]
)

, (6.21)

B = L ess sup
ν∈[0,1/L]

λmax

(

GH
•,Kν

[ν]G•,Kν [ν]
)

. (6.22)

Theorem 6.2. Suppose that channel transfer function matrix G[ν] is such that Gpr[ν] is con-

tinuous for ν ∈ F r, then there exists a reconstruction filter matrix H [ν] continuous in ν that

achieves stable and perfect reconstruction of the MIMO channel inputs if and only if

rank
(

G•,Km [ν]
)

= |Km|, ∀ν ∈ intIm = (γm, γm+1), (6.23)

rank
(

G•,Jm(γm)
)

= |Jm|, m ∈ M. (6.24)

where

Jm = Km ∪ Km−1, m = 2, . . . ,M,

J1 = K1 ∪ ((KM ⊕R)modRL).
(6.25)
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Theorem 6.1 guarantees stability of reconstruction, but not continuity of H [ν], while The-

orem 6.2 guarantees both stability and continuity of at least one solution H [ν]. The continuity

requirement is desirable from the viewpoint of implementation, as we see in Section 6.5. A

simple necessary condition for perfect reconstruction using continuous reconstruction filters is

that P ≥ maxm |Jm|. In Theorem 6.2, the assumption that G[ν] is continuous in ν is made

for convenience; it is possible for continuous perfect reconstruction filter matrix H [ν] to exist,

despite the lack of continuity of G[ν]. However, this is rare, and the conditions in the general

case are cumbersome.

Finally, under certain conditions, perfect reconstruction is realizable using FIR filters. We

say that a filter if FIR if its impulse response has a finite number of nonzero terms. An FIR

filter need not be causal, but can be made causal by adding a finite delay. Let

G⋆[z] =
∑

k∈Z

g[k]z−k

denote the Z-transform of g[k]. We use the superscript “⋆” here to distinguish between the

Z-transform and the discrete-time Fourier transform G[ν]. Then clearly

G[ν] = G⋆[exp(j2πν)], ν ∈ R.

Let H⋆[z] denote the Z-transform of h[k]. Finally, let G⋆[z] and H⋆[z] be the Z-domain

analogues of the modulated matrices G[ν] and H[ν].

Theorem 6.3. Suppose that channel impulse response g[k] is a finite sequence, and let

K =

M
⋃

m=1

Km, Q = |K|.

Then perfect reconstruction using an FIR reconstruction filter matrix H⋆[z] is possible if and

only if P ≥ Q, and all the Q × Q minors of G⋆
•,K[z] have no common zeros except z = 0 or

z = ∞.

Proof. Suppose that P ≥ Q and the minors share no zeros except z = 0 or z = ∞. For every

J ⊆ P such that |J | = Q, let

DJ [z] = det(G⋆
J ,K[z]).

Then, by Bezout’s identity, there exist polynomials AJ [z] such that

∑

J⊆P:|J |=Q

AJ [z]DJ [z] = zd (6.26)
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for some d ∈ Z. Let H̃J [z] denote the adjoint of G⋆
J ,K[z] so that

H̃J [z]G⋆
J ,K[z] = DJ [z]I, (6.27)

where I is the Q×Q identity matrix. Define

H
⋆
K,•[z] = z−d

∑

J⊆P:|J |=Q

AJ [z]H̃J [z]IJ ,• and H
⋆
Kc,•[z] = 0.

where K =
⋃

m Km. Then H⋆[z] clearly corresponds to an FIR reconstruction filter matrix

H⋆[z]. Therefore,

H⋆
K,•[z]G

⋆
•,K[z] = z−d

∑

J

AJ [z]H̃J [z]IJ ,•G
⋆
•,K[z]

= z−d
∑

J

AJ [z]H̃J [z]G⋆
J ,,K[z] = I

where the last step follows from Eqs. (6.26) and (6.27). We also obviously have

H
⋆
Kc,•[z]G

⋆
•,K[z] = 0.

Combining the last two results, we obtain H⋆[z]G⋆
•,K[z] = I•,K. From this it follows that

H[ν]G•,Km [ν] = I•,Km , ∀ν ∈ Im. (6.28)

which is essentially equivalent to Eq. (6.18). Thus, we have found an FIR realization of perfect

reconstruction filters.

Conversely, suppose that h[k] is an FIR filter achieving pefect reconstruction. Then G[ν]

and H[ν] are entire functions since both g[k] and h[k] are finite sequences. Hence, Eq. (6.28)

implies that

H[ν]G•,Km[ν] = I•,Km

holds for all ν ∈ R, rather than just ν ∈ Im. Therefore, we obtain H[ν]G•,K[ν] = I•,K for all

ν ∈ R, where K =
⋃

m Km. Equivalently, we have

H
⋆[z]G⋆

•,K[z] = I•,K (6.29)

in the Z-domain. If P < Q then rank(G⋆
•,K[z]) ≤ Q− 1, implying that Eq. (6.29) fails to hold.

Similarly, if all the minors of G⋆
•,K[z] share a common factor of the form (z − z0) where z0 6= 0,

then G⋆
•,K[z] loses rank at z = z0, and this contradicts Eq. (6.29) because H⋆[z] is FIR. This

proves the converse statement.
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The proof of Theorem 6.3 is partly based on similar results in [56, 57]. The import of this

result is that perfect reconstruction is possible using FIR filters provided the channel impulse

response is FIR, and that the modulated channel matrix in the Z-domain G⋆[z] is sufficiently

“diverse” in the sense its null space is empty for all z /∈ {0,∞}. Of course, we do not care

about the cases z = 0 or z = ∞ because no causality requirement is imposed on FIR filters.

Suppose that P = Q, then G⋆
•,K[z] is a Q×Q matrix and the necessary and sufficient condition

for perfect reconstruction using FIR filters reduces to

detG
⋆
•,K[z] = Kz−d, K 6= 0, d ∈ Z.

This condition is similar to the perfect reconstruction condition for filter banks.

The problem in [57] deals with existence of FIR equalizer filters in the absence of decimation

of channel outputs, while in classical filter bank problem deals with a single-input multiple-

output channel whose outputs are decimated. In the present problem the existence of an FIR

reconstruction filter matrix depends not only on the channel transfer function matrix G[ν] (as

in the work in [57]), but also on the decimation factor L (as in the filter bank problem), and

band-structure of the inputs through K. Thus, Theorem 6.3 generalized all these problems

simultaneously.

6.5 Reconstruction Filter Design

In this section, we study the problem of reconstruction filter design for a given MIMO

sampling scheme. We have seen in Section 6.4 that under certain conditions on the channel

and the class of input signals, perfect reconstruction is possible. Unfortunately these ideal

filters are not necessarily FIR filters. Conversely FIR filters do not generally guarantee perfect

reconstruction of the channel inputs. Nevertheless, we can approximate the ideal reconstruction

filters using FIR filters chosen judiciously so that an appropriate cost function, such as the end-

to-end distortion, is minimized.

We model the input signals as discrete-time multiband functions Xr[ν] = 0, ν /∈ Fr with

x ∈ C, where C is the constraint set for the channel inputs:

x ∈ C = {x : ‖xr‖ ≤ γr},

i.e., the input signal energies are upper bounded. The reconstruction filters are approximated

by FIR filters, i.e., we enforce the following parameterization on H [ν]:

Hrp[ν] =
∑

k∈Qrp

αrpke
−j2πνk, r ∈ R, p ∈ P, (6.30)
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where Qrp is a finite set representing the locations of the nonzero filter coefficients of Hrp[ν].

We choose

Qrp =
{

k : κrp ≤ k ≤ lrp + κrp − 1
}

,

where lrp is the length of the FIR reconstruction filter Hrp[ν] and κrp is the position of the first

filter coefficient. This FIR parameterization no longer guarantees perfect reconstruction, and

the objective is to minimize the norm of the resulting reconstruction error e[k] = x̃[k] − x[k].

Define

E [ν] = X̃ [ν] − X [ν], ν ∈
[

0,
1

L

]

. (6.31)

We shall now derive an expression for E [ν] as a function of the input signals, the channel and

reconstruction filters alone. Define index sets

Ir = (RL) ⊕ r = {Rl + r : l ∈ L}, (6.32)

Kr,ν = Kν ∩ Ir =
{

Rl + r : l ∈ L and
(

ν +
l

L

)

∈ Fr

}

(6.33)

for each r ∈ R. It is clear from Eqs. (6.12), (6.13), and (6.32) that

X Ir [ν] =
(

Xr[ν] Xr[ν + 1
L ] · · · Xr[ν + L−1

L ]
)T

,

X̃ Ir [ν] =
(

X̃r[ν] X̃r[ν + 1
L ] · · · X̃r[ν + L−1

L ]
)T

for each r ∈ R; i.e., these quantities are the length-L vectorized representations of Xr[ν] and

X̃r[ν], respectively. Hence, the energy of er can be expressed as a function of E[ν] using

Parseval’s theorem:

‖er‖2 =

∫

[0,1]
|Er[ν]|2dν =

∫

[0, 1
L

]
‖EIr [ν]‖2dν. (6.34)

Similar relations hold for xr and other signals in terms of the vectorized version of their Fourier

transforms. Now for each r ∈ R and ν ∈ [0, 1/L], Eqs. (6.10) and (6.11) yield

X̃ Ir [ν] = HIr ,•[ν]G[ν]X [ν]

=
∑

s∈R

HIr ,•[ν]G•,Is [ν]X Is [ν], (6.35)

where the second step holds because the sets {Ir} partition {0, 1, . . . , RL − 1}. Therefore,

Eqs. (6.31) and (6.35) give us

EIr [ν] = X̃ Ir [ν] − X [ν]

=
∑

s∈R

HIr,•[ν]G•,Is [ν]X Is [ν] − X [ν]

=
∑

s∈R

(

HIr ,•[ν]G•,Is [ν] − δrsIL

)

X Is [ν], (6.36)
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where δrs is the Kronecker delta function and IL is the identity matrix of size L×L. We know

from Eq. (6.2) that

XKs,ν [ν] = IKs,ν ,IsX Is [ν], (6.37)

where I is the identity matrix of size LR × RL. Since XKs,ν [ν] captures all the nonzero

components of X Is [ν], we can invoke Eq. (6.3) to write

X Is [ν] = IIs,Ks,νXKs,ν [ν]. (6.38)

Combining Eqs. (6.37) and (6.38) we obtain

X Is [ν] = Es,νX Is [ν], (6.39)

where

Es,ν
def
= IIs,Ks,νIKs,ν ,Is (6.40)

is a diagonal matrix with zeros or ones on the diagonal. Hence, Eqs. (6.36) and (6.39) yield

EIr [ν] =
∑

s∈R

T rs[ν]X Is [ν], (6.41)

T rs[ν] =
(

HIr ,•[ν]G•,Is [ν] − δrsIL

)

Es,ν . (6.42)

We point out that if H [ν] is a perfect reconstruction filter matrix, then using Eq. (6.18), it is

easily shown that

T rs[ν] =
(

HIr,•[ν]G•,Is [ν] − δrsIL

)

= 0. (6.43)

For simplicity we rewrite Eq. (6.41) as

er =
∑

s∈R

T rsxs, (6.44)

where T rs is the linear operator equivalent of T rs[ν] acting on xs. Then,

‖T rs‖2 = max
‖xs‖≤1

‖T rsxs‖2

= max

∫

ν∈[0, 1
L

]
‖T rs[ν]X Is [ν]‖2dν s.t.

∫

ν
‖X Is [ν]‖2dν ≤ 1.

Note that X Is [ν] is not an arbitrary vector in CL×1 for each ν because some entries of X Is [ν]

always vanish due to Eq. (6.39) because Es,ν is a diagonal matrix with zeros or ones on the

diagonal. From Eqs. (6.42) and (6.40), it is clear that if the kth component of X Is [ν] vanishes

for some k, then the kth column of T rs[ν] vanishes; i.e., the range space of (T rs[ν])H equals
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the signal space for input s (namely Xs[ν]) so that each row of T rs[ν]. Hence, we can conclude

that

‖T rs‖2 = max
ν∈[0, 1

L
]
‖T rs[ν]‖2 = max

ν∈[0, 1
L

]
σmax(T

rs[ν]), (6.45)

where ‖T rs[ν]‖ is the spectral norm of T rs[ν], and σmax(·) is the largest singular value.

6.5.1 The cost function

Our problem is to design an FIR reconstruction filter matrix H [ν] such that a measure of

the reconstruction error e is minimized. Using Eq. (6.15) we see that

HIr ,•[ν] =















Hr,•[ν]

Hr,•

[

ν + 1
L

]

...

Hr,•

[

ν + L−1
L

]















depends only on the rth row of H [ν], namely Hr,•[ν]. We also see from Eq. (6.30) that Hr,•[ν]

is a linear combination parameterized by the coefficients

αr = {αrpk : p ∈ P, k ∈ Qrp},

which is a subset of the entire set of filter coefficients. Therefore, HIr ,•[ν] depends only on αr.

In view of Eq. (6.42), T rs[ν] depends only on αr and the channel transfer function matrix G[ν].

It follows from Eqs. (6.34) and (6.41) that

‖er‖2 =

∫

[0, 1
L

]

∥

∥

∥

∑

s∈R

T rs[ν]X Is [ν],
∥

∥

∥

2
dν, (6.46)

which is completely parameterized by αr. Consequently, for each r ∈ R, the set of coefficients

αr (or equivalently the rth row of H [ν]) can be optimized independently of the others by

minimizing a cost that measures the fidelity of reconstruction of the rth input. Our choice of

the cost function is the norm of the error in the worst case when x ∈ C, i.e.,

Cr(α
r) = max ‖er‖ s.t. ‖xs‖ ≤ γs, s ∈ R. (6.47)

It turns out that Eq. (6.47) is difficult to minimize directly, so we look for an alternate

expression for the cost such as a bound on Cr(α
r). The following proposition, which is proved

in Appendix A, provides upper and lower bounds on the cost function.

Proposition 6.3. The cost function Cr(α
r) can be bounded as

1√
R
C̄r(α

r) ≤ Cr(α
r) ≤ C̄r(α

r),
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where

C̄r(α
r)

def
=

∑

s∈R

γs‖T rs‖ =
∑

s∈R

γs max
ν∈[0, 1

L
]
‖T rs[ν]‖.

Instead of minimizing Cr(α
r) to compute the optimal filter coefficients αr, we minimize

C̄r(α
r) as it produces a considerably simpler algorithms to implement. Therefore, the approx-

imate optimal filter coefficients are given by

αr
◦ = arg min

αr
C̄r(α

r),

C̄r(α
r) =

∑

s∈R

γs max
ν∈[0, 1

L
]
‖T rs[ν]‖.

(6.48)

Owing to Proposition 6.3, the approximate solution will produce a cost that is greater by a

factor of not more than
√
R times the true minimum, i.e.,

min
αr

Cr(α
r) ≤ C̄r(α

r
◦) ≤

√
Rmin

αr
Cr(α

r).

An important question pertaining to the FIR design is whether the resulting approximation

error goes to zero when the filter lengths go to infinity. Under some conditions, we can answer

affirmatively, as the following theorem shows.

Theorem 6.4. Suppose that G[ν] is continuous and that H [ν] has an FIR parameterization

described in Eq. (6.30). If there exists a perfect reconstruction filter matrix continuous in ν,

then

min
αr

Cr(α
r) → 0

as κrp → −∞ and κrp + lrp → ∞.

Proof. In view of Proposition 6.3, it suffices to prove that

lim
τ→∞

min
αr

‖T rs‖ → 0

for all r, s ∈ R, where

τ = min
(

{−κrp : r ∈ R, p ∈ P} ∪ {κrp + lrp : r ∈ R, p ∈ P}
)

.

Suppose that H◦[ν] is continuous in ν and achieves perfect reconstruction. Also let H◦[ν] be

the modulated reconstruction matrix corresponding to H◦[ν]. From Eq. (6.43) we conclude

that
(

H
◦
Ir,•[ν]G•,Is [ν] − δrsIL

)

Es,ν = 0 (6.49)
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for all r, s ∈ R because we would be guaranteed perfect reconstruction if we choose H[ν] =

H◦[ν]. Then, combining Eqs. (6.42) and (6.49) we obtain

T rs[ν] =
(

HIr ,•[ν] − H◦Ir,•[ν]
)

G•,Is [ν]Er,ν

for any reconstruction matrix H[ν]. Therefore,

max
ν∈[0, 1

L
]

∥

∥T rs[ν]
∥

∥ ≤ max
ν∈[0, 1

L
]

∥

∥HIr,•[ν] − H
◦
Ir ,•[ν]

∥

∥ ·
∥

∥G•,Is [ν]Er,ν

∥

∥

≤ C max
ν∈[0, 1

L
]

∥

∥HIr ,•[ν] − H◦Ir,•[ν]
∥

∥,

where

C = sup
ν∈[0,1/L]

∥

∥G•,Is [ν]Er,ν

∥

∥

is finite because G[ν] is a continuous function on the compact set [0, 1/L], and Er,ν is a constant

on each Im. Using Eqs. (6.15) and (6.32) we obtain

max
ν∈[0, 1

L
]

∥

∥T rs[ν]
∥

∥ ≤ CL max
ν∈[0,1]

‖Hr,•[ν] −H◦r,•[ν]‖

≤ CL
√
P max

p
max

ν∈[0,1]
‖Hrp[ν] −H◦rp[ν]‖. (6.50)

Now suppose that H [ν] has an FIR parameterization as in Eq. (6.30), i.e.,

Hrp[ν] =
∑

k∈Qrp

αrpke
−j2πνk,

where Qrp = {κrp, . . . , κrp + lrp}. Then clearly each entry of H [ν] can be expressed as a

trigonometric polynomial of degree at least τ . Moreover, the coefficients of the polynomial can

be individually controlled by changing the parameters αr. Equivalently, we can reparameterize

so that the new parameters are the coefficients of the trigonometric polynomials (rather than

the filter coefficients). Now, by the Stone-Weierstrass theorem [58], we obtain

min
αr

max
ν∈[0,1]

‖Hrp[ν] −H◦rp[ν]‖ ≤ ǫ (6.51)

for any ǫ > 0 if τ is sufficiently large. Combining Eqs. (6.50) and (6.51) we obtain the desired

result:

lim
τ→∞

min
αr

max
ν∈[0, 1

L
]

∥

∥T rs[ν]
∥

∥ = 0.

Incidentally this also proves that limτ→∞minαr C̄r(α
r) = 0 by Proposition 6.3.

Theorem 6.4 guarantees the existence of continuous FIR solutions H [ν] that can get arbi-

trarily close to perfect reconstruction, provided that there exists a continuous H◦[ν] with the

perfect reconstruction property.
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6.5.2 Semi-infinite linear program formulation

In this section, we present an algorithm to compute the optimal solution to the problem in

Eq. (6.48). We show that this problem can be reduced to a semi-infinite linear program which

can then be solved by a standard method.

We begin by expressing the matrices T rs[ν] as functions of the filter coefficients αr.

Proposition 6.4. The quantity T rs[ν] defined in Eq. (6.42) can be written as

T rs[ν] = F rs
0 [ν] +

∑

p∈P

∑

k∈Qrp

αrpkF
rs
pk[ν] (6.52)

for appropriate matrices F rs
0 [ν] and F rs

pk[ν].

Proof. Observe from Eqs. (6.15) and (6.30) that the (l, p) entry of HIr,•[ν] is given by

[HIr ,•[ν]]lp = Hrp

[

ν +
l

L

]

=
∑

k∈Qrp

αrpke
−j2π(ν+l/L)k.

In other words HIr,•[ν] can be written as the following linear combination

HIr ,•[ν] =
∑

p∈P

∑

k∈Qrp

αrpkK
rpk[ν], (6.53)

where Krpk[ν] are matrices whose entries are

[Krpk[ν]]lp′ = δpp′e
−j2π(ν+l/L)k.

Combining Eqs. (6.42) and (6.53), we obtain the desired affine form in Eq. (6.52), where

F rs
0 [ν] = −δrsEr,ν ,

F rs
pk[ν] = Krpk[ν]G•,Is [ν]Er,ν .

Proposition 6.4 shows that T rs[ν] has an affine form in terms of the filter coefficients αr.

The exact expressions for the matrices involved are provided for the sake of completeness. Next,

for a fixed index r, we rewrite the optimization in Eq. (6.48) as

min
∑

s∈R

γsδs s.t. δs ≥ ℜ
(

yHT rs[ν]x
)

, ∀s ∈ R, ∀ν ∈
[

0,
1

L

]

, and ∀x,y ∈ B◦, (6.54)

where B◦ is the unit ball for length-L vectors:

B◦ =
{

v ∈ C
L : ‖v‖ ≤ 1

}

.
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For convenience, we treat αr as a row-vector (with any ordering of coefficients), i.e.,

αr
j(p,k) = αrpk,

where j(p, k) is an invertible mapping that takes the pair of indices p ∈ P and k ∈ Qrp to a

single index j in the set Jr defined as

Jr = {0, . . . , Jr − 1}, Jr
def
=

∑

p∈P

|Qrp| =
∑

p∈P

lrp.

Recall that Qrp =
{

k : κrp ≤ k ≤ lrp + κrp − 1
}

. Hence, an example of one such mapping is

j(p, k) =

p−1
∑

p′=0

lrp′ + (k − κrp).

Define a row-vector δ =
[

δ0 · · · δR−1

]

. Using the FIR representation in Eq. (6.52), we can

rewrite Eq. (6.54) as

min
∑

s∈R

γsδs s.t. ℜ
(

δs −
∑

p∈P

∑

k∈Qrp

αrpk

(

yHF rs
pk[ν]x

)

)

≥ ℜ
(

yHF rs
0 [ν]x

)

, ∀(s, ν,x,y) ∈ U ,

where U = R× [0, 1
L ] ×B◦ ×B◦. This problem can be recast as a semi-infinite linear program:

minℜ(cξ) s.t. ℜ
(

a(u)ξ
)

≥ ℜ
(

b(u)
)

, ∀u ∈ U , (6.55)

where ξ =
[

δ αr
]

is the set of program variables, u = (s, ν,x,y) ∈ U parameterizes the

constraints, and b(u) is a complex-scalar. The quantities a(u) and c are row-vectors of length

R+ Jr whose first R entries are real, and the remaining Jr entries are complex-valued:

an(u) =























1, if n = s,

0, if n ∈ R, l 6= s,

−yHF rs
pk[ν]x, if l = R+ j(p, k),

b(u) = yHF rs
0 [ν]x,

cn =











γs, if n = s,

0, otherwise.

The semi-infinite program in Eq. (6.55) is in a nonstandard form, since it contains a mixture

of real and complex variables. Nevertheless, it can be converted to the standard real form by

decomposing all complex variables into their real and imaginary parts. Finding the dual of this

real program, and reconverting to the complex form produces the following dual program:

max

∫

U
b(u)dw(u) s.t. c =

∫

U
a(u)dw(u), w ≥ 0, (6.56)
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where w is a real and positive measure on U . The dual problem can be solved using a simplex-

type algorithm for semi-infinite programs [34].

Recall that whenever the technical conditions in Theorem 6.1 are satisfied, the set

SH = {H [ν] : perfect reconstruction is achieved.}

is nonempty. However SH need not be a singleton set, because the perfect reconstruction filter

matrices are not necessarily unique. The optimization always produces the FIR filter matrix

that is “closest” to the set of reconstruction filter matrices SH . If the conditions in Theorem 6.2

are satisfied, then SH contains a continuous H [ν], and guarantees, by Theorem 6.4, that the

approximation error can be made arbitrarily small by using sufficiently long FIR filters.

6.5.3 Design example

In this section, we consider two FIR filter design examples. In the first example, we design

reconstruction filters for the multicoset sampling scheme which is a special case of MIMO

sampling. In the second example, we consider MIMO sampling using a channel having two

inputs and five outputs.

Example 6.1. In this example, we design FIR reconstruction filters for multicoset sampling.

Let F = [0, 0.15) ∪ [0.75, 1.0), as illustrated in Figure 6.3, be the spectral support for the class

of sampled signals.

0 10.750.15

Figure 6.3 Indicator function of the spectral support F .

Let

Λ =
⋃

n∈Z

{4n, 4n + 1}

denote the multicoset sampling set for Bd(F); i.e., the sampling pattern is C = {0, 1}. This

sampling scheme can be recast as a uniform MIMO sampling scheme with L = 4 and

G[ν] =

(

1

e−j2πν

)

.

This is a single-input double-output channel, and we seek the optimal FIR reconstruction filter

matrix

H [ν] =
[

H1[ν] H2[ν]
]
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of length 15 centered at the origin, i.e., Q1p = {−7, . . . , 7}, p = 1, 2. Since R = 1, we can take

γ1 = 1 without loss of generality. Applying the semi-infinite algorithm, we obtain the optimal

FIR filters H1[ν] and H2[ν] shown in Figure 6.4. The resulting maximum approximation error

‖T rs[ν]‖ at optimality is shown for ν ∈ [0, 1/4) in Figure 6.5. The equal-ripple nature of this

plot is due to the minimax criterion:

δ = min
α1

C1(α
1) = min

α1
max

ν
‖T 1s[ν]‖.

The optimal cost is δ = 0.0483.

Example 6.2. Consider a MIMO channel with R = 2 inputs and P = 5 outputs. Suppose

that the inputs x1[k] and x2[k] have spectral supports illustrated in Figure 6.6, namely,

F1 = [0, 0.4) ∪ [0.75, 1.0) and F2 = [0.25, 0.5).

Let γ1 = γ2 = 0.5 be the weights and L = 4 the subsampling factor. For this choice we have

M = 2, I1 = [0, 0.15) and I1 = [0.15, 0.25). Using Eqs. (6.17) and (6.25), it is easy to check

that

K1 = {0, 2, 3, 6},

K2 = {0, 3, 6},

J1 = K1 ∪ ((K2 ⊕ 2)mod 8) = {0, 2, 3, 5, 6},

J2 = K2 ∪K1 = {0, 2, 3, 6}.

Hence, by Theorem 6.1, P ≥ maxm |Km| = 4 is required for the existence of a reconstruction

filter matrix H [ν] that achieves perfect reconstruction. If we also require that the filters be

continuous, Theorem 6.2 states that P ≥ maxn |Jn| = 5 is necessary. Let G[ν] denote the

following continuous channel transfer function matrix with P = 5 outputs:

G[ν] =





















1 1

1 1 + z−1

z−1 0.25 + z−2

1 + 0.5z−1 1 + z−2

0.25 + z−2 z−1





















, where z = ej2πν . (6.57)

It can be verified numerically that Eqs. (6.23) and (6.24) in Theorem 6.2 are satisfied. Hence,

the existence of a perfect reconstruction filter matrixH [ν] that is continuous in ν is guaranteed.
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Figure 6.4 Magnitude and phase responses of the optimal FIR filters H1[ν] and H2[ν].
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Figure 6.5 Approximation error ‖T rs[ν]‖ at optimality.
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Figure 6.6 (a) Spectral support of X1[ν], and (b) spectral support of X2[ν].
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As a consequence of Theorem 6.4, the approximation error approaches zero as the filter lengths

are increased. Using a semi-infinite algorithm, we design six sets of reconstruction filters of

varying filter lengths, indexed by τ ∈ {1, 2, . . . , 6}, having the following specifications:

lrp = 2τ + 1

κrp =











0 − τ if p ∈ {0, 1},

1 − τ if p ∈ {2, 3, 4}.

In other words, all the FIR reconstruction filters for a given τ have equal lengths (2τ + 1).

Furthermore the filters gpr[k] are centered at k = 0 for p = 0, 1, and at k = 1 for p = 2, 3, and

4. Table 6.1 and Figure 6.7 show the cost function for of the two outputs and the six design

cases. Observe that the cost falls of quickly as the filter lengths increase. In this example,

the costs would converge to zero as τ → ∞, since the conditions required in Theorem 6.2 are

satisfied.

Table 6.1 Cost functions C̄0(α
0
◦) and C̄1(α

1
◦) at optimality for FIR reconstruction filters of

length 2τ + 1, 1 ≤ τ ≤ 6.
2τ+1 3 5 7 9 11 13

C̄0(α
0
◦) 0.4835 0.3643 0.1093 0.0836 0.0716 0.0329

C̄1(α
1
◦) 0.3554 0.1690 0.0637 0.0124 0.0076 0.0034

6.6 Summary

In this chapter, we examined the problem of FIR reconstruction filter design for uniform

MIMO sampling. In practice, the reconstruction system would be implemented digitally, mean-

ing that the filter design problem would be one of FIR design. Of course, we would use D/A

converters at the far end of the system to reconstruct continuous-time estimates of the inputs.

We showed how to convert the continuous-time channel model to a hypothetical discrete-time

one. The advantage of this conversion is that it alows us to pretend that the entire system is a

discrete-time system, and this facilitates the analysis.

We then presented necessary and sufficient conditions for perfect reconstruction of the chan-

nel inputs when the inputs are modeled as multiband signals with different band structures.

We stated appropriate conditions for the existence of reconstruction filters that are continuous

in the frequency domain. The continuity property was shown to be important from an im-

plementation viewpoint, as it allows to design where the errors due to the FIR approximation
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Figure 6.7 Optimal costs (a) C̄0(α
0
◦), and (b) C̄1(α

1
◦) for FIR reconstruction filters of length

2τ + 1, 1 ≤ τ ≤ 6.
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can be made arbitrarily small by choosing sufficiently long filters. Finally, we formulated the

reconstruction filter design problem as a minimax optimization, which was recast as a standard

semi-infinite linear program and solved efficiently by computer. The generality of the MIMO

setting allows this algorithm to be used for various other sampling schemes that fit into the

MIMO framework as special cases. We provided design examples for multicoset and general

MIMO sampling schemes.
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CHAPTER 7

CONCLUSION

In this dissertation, we addressed several issues pertaining to two sampling schemes, namely,

multicoset sampling and MIMO sampling of multiband input signals. Chapters 2 and 3 dealt

with the multicoset sampling problem, which is essentially a nonuniform periodic sampling

scheme. The main advantage of multicoset sampling is that it allows sub-Nyquist perfect

reconstruction for the class of multiband inputs whose spectra are supported on finite union

of intervals. In fact, multicoset sampling achieves the Landau minimum sampling rate in the

limit L → ∞, where L is the period of the sampling pattern. However, for many spectra, the

minimum rate can be achieved for a finite L. Typically, this scheme is useful for sampling

signals with sparse and nonpackable spectra.

In Chapter 2, we deduced necessary and sufficient conditions for perfect reconstruction of

a signal from its multicoset samples, and provided an explicit reconstruction formula. We

analyzed the performance of the sampling scheme. Specifically, we computed bounds on the

aliasing error occurring in the event that the signal lies outside the valid class of multiband

signals and determined the sensitivity to input sample noise. These bounds serve as performance

measures for multicoset sampling, and they reveal that some sampling patterns are better than

others.

In Chapter 3, we studied optimality of sub-Nyquist sampling and reconstruction. The

interpolation equation for multicoset sampling derived in Chapter 2 is not unique when there is

oversampling relative to Landau’s minimum rate. We use this freedom to compute the optimal

reconstruction filters that obtain the best performance in terms the measures of performance

derived in Chapter 2, namely the aliasing error bounds or the noise sensitivity. The error

bounds depend on the multicoset sampling patterns, thereby indicating that some patterns may

be better than others. We studied the optimal sampling pattern design using two methods:

a greedy search algorithm and an exhaustive search algorithm. The greedy algorithm, that

works by selectively adding new sampling points to a preexisting set greedily, is a suboptimal
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algorithm. On the other hand, the exhaustive search algorithm is optimal, but computationally

very expensive. We also solved the problem of choosing the optimal base sampling frequency

that minimizes the average sampling rate for a given sampling period L.

We also demonstrated that (a) for packable spectral supports, uniform sampling yields a

better performance than a general periodic nonuniform sampling scheme, and (b) for non-

packable signals, where uniform sampling is not applicable, there is a penalty associated with

nonuniform sampling relative to uniform sampling of a packable signal of the same occupancy.

However, for signals with nonpackable spectra, these penalties can be controlled by optimal

design and by backing off slightly from the minimum rate. The resulting lower error sensitiv-

ities and the significant reduction in the sampling rate over the Nyquist rate of our numerical

examples suggest that these techniques have considerable practical potential.

Chapters 4, 5, and 6 dealt with MIMO sampling of multiband inputs. In Chapter 4, we

formulated the MIMO sampling scheme. The channel inputs are multiband signals whose

spectral supports are arbitrary real sets of finite measure. This scheme is motivated by problems

in multichannel deconvolution, where the objective is to recover a set of inputs to a MIMO

channel by measuring the outputs. The MIMO sampling scheme encompasses various other

sampling schemes and is important in its one right. Our primary objective was to derive

analogues of Landau’s classical sampling and interpolation density results [6, 7] for the MIMO

sampling problem. We defined notions of stable sampling and consistent reconstruction in the

MIMO setting. Here, consistent reconstruction is the MIMO analogue of interpolation. We also

generalized the definitions of upper and lower sampling densities to collections of sampling sets.

Strengthening an idea of Gröchenig and Razafinjatovo [45], we deduced necessary density

conditions for stable sampling and for consistent reconstruction in the MIMO setting. For

both problems, we find that a family of 2P − 1 density bounds hold, where P is the number

of output channels. More specifically, stable sampling dictates that the joint lower densities of

each nonempty set of output sampling sets be lower bounded. Similarly, for the consistency

problem, the joint upper densities are upper bounded. Like Landau’s results, these bounds are

fundamentally important results. They are easily computable, and they automatically apply to

sampling schemes subsumed by MIMO sampling such as Papoulis’s generalized sampling and

multicoset sampling.

In Chapter 5, we studied a special case of MIMO sampling of multiband signals where

the outputs are sampled either uniformly or on commensurate periodic nonuniform sampling

sets. The input spectral supports are assumed to be finite disjoint unions of intervals. De-

spite the restrictions, the sampling scheme still encompasses Papoulis’s generalized sampling
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and periodic nonuniform sampling schemes as a special cases. We showed that commensurate

periodic nonuniform sampling is really uniform sampling in disguise. We presented necessary

and sufficient conditions for perfect reconstruction of the inputs with and without requiring the

continuity of the reconstruction filters in the frequency domain. This continuity requirement is

desirable from the perspective of FIR reconstruction filter design.

In Chapter 6 we presented the solution to the reconstruction filter design problem in the

context of uniform MIMO sampling. We formulated a discrete-time version of the MIMO

sampling problem. The resulting reconstruction filter design becomes a problem of FIR filter

design. We first presented conditions for perfect reconstruction for the discrete-time problem

including the conditions for the existence of reconstruction filters continuous in frequency, and

then formulated the design problem as a semi-infinite linear program which is solved using a

standard algorithm.

7.1 Directions for Future Research

7.1.1 Sampling pattern design and asymptotic analysis

Our current method of multicoset sampling pattern design is to minimize an appropriate

cost function using a exhaustive search over all valid sampling patterns. Unfortunately this

solution has complexity that is exponential in L. One could use the inherent structure in the

matrices to develop an algorithm of lower complexity to solve the problem either exactly or

approximately.

Another interesting problem is to study the behavior of the various bounds or performance

measures as we allow the parameter L → ∞ in the context of multicoset sampling. Presently

the only clear thing is that, for any given class of input signals, increasing L causes the system

performance to improve, provided that we use the “best sampling pattern” for each L. An

exact solution this problem would be related to the sampling pattern design problem because

we pick the best sampling pattern for any L; the solution would reveal fundamental bounds on

the performance of the reconstruction system.

7.1.2 Sufficient density conditions

Multicoset sampling and other periodic nonuniform sampling schemes demonstrate that for

a multiband signal whose spectral support is a union of intervals, we can either approach Lan-

dau’s lower bound on the sampling density asymptotically or attain it. In the MIMO sampling

problem, the necessary density conditions provide an outer bound on the achievable set of den-
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sities. A natural question still unanswered is whether all the points in this region are attainable

or reachable asymptotically. Otherwise, what is the precise region of achievable sampling den-

sities? The results in Chapter 5 provide conditions for achieving perfect reconstruction using

uniform or commensurate periodic nonuniform sampling. Although we can interpret these as

sufficient conditions, they are not explicit conditions on the densities themselves.
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APPENDIX A

PROOFS AND CALCULATIONS

A.1 Proof of Lemma 2.1

Lemma A.1. If u, v are integers and α, β ∈ [0, 1/LT ) satisfy

u

LT
+ α <

v

LT
+ β, (A.1)

then u ≤ v. Furthermore, if u = v then α < β follows trivially.

Proof. Equation (A.1) implies that (u− v)/LT < β − α < 1/LT , where the strictness of the

second inequality comes from the fact that [0, 1/LT ) is open on the right. Hence, u− v < 1, or

equivalently, u ≤ v.

Proof of Lemma 2.1. Let r and m be fixed. Then for each i ∈ {1, 2, . . . , n} we can express ai

and bi uniquely as

ai =
ui

LT
+ αi and bi =

vi

LT
+ βi, (A.2)

where ui and vi are integers and αi and βi are elements of Γ, with αi and βi in [0, 1/LT ). Now

we shall prove by contradiction that exactly one of the two conditions (r/LT )⊕Gm ⊂ [ai, bi) and

(r/LT )⊕Gm∩ [ai, bi) = ∅ holds. It is clear that both statements cannot be true simultaneously.

So if neither holds, then either one or both of the following must hold:

γm + r/LT < ai < γm+1 + r/LT ,

γm + r/LT < bi < γm+1 + r/LT .

If the first condition holds, then Eq. (A.2) along with Lemma A.1 implies that r ≤ ui ≤ r.

Therefore, r = ui and γm < αi < γm+1. The last observation contradicts αi ∈ Γ because the

γ’s are arranged in increasing order. Similarly the second statement above would also lead to

a contradiction. This proves our claim that the subcell (r/LT ) ⊕ Gm is either contained in or

disjoint from [ai, bi). This fact, being true for each i, now implies that either (f + r/LT ) ∈ F
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for every f ∈ Gm, or it is so for no such f . Therefore, χ(f + r/LT ∈ F) is constant over the

interval Gm.

A.2 Proof of Theorem 2.1

Observe that the quantity q(f) in Eq. (2.10) equals the number of nonzero entries in

{Xr(f) : r = 0, 1, . . . , L− 1}.

Hence, the summation in Eq. (2.8) (repeated below) contains q(f) nonzero terms, for each

f ∈ F0:

Xci
(ej2πfT ) =

1

LT

L−1
∑

r=0

exp
(j2πcir

L

)

Xr(f), i = 1, . . . , p. (A.3)

These form a set of p linear equations with q(f) unknown variables on the right-hand side, and

solving them requires p ≥ q(f). Hence, p ≥ q(f) for all f ∈ F0 is necessary for reconstruction of

the spectral components Xr(f). Next, using Eq. (2.10) we bound the average sampling density

p/LT from below by the Landau minimum rate:

p

LT
≥

∫ 1
LT

0
q(f)df = µ(F),

with the equality holding if and only if p = q(f) for all f ∈ F0.

A.3 Proof of Theorem 2.2

To derive the interpolation equations, we begin by expressing Eq. (2.15) in scalar form:

[x+
m(f)]l =

p
∑

i=1

[A−1
m ]li[y(f)]i

[x−m(f)]l =

p
∑

i=1

[Cm]li[y(f)]i

f ∈ Gm.

We use the expressions for y(f), x+
m(f) and x−m(f) from Eq. (2.13) to obtain

Xkm(l)(f) = T
√
L

p
∑

i=1

[A−1
m ]liXci

(ej2πfT )χ(f ∈ Gm), 1 ≤ l ≤ qm,

Xkc
m(l)(f) = T

√
L

p
∑

i=1

[Cm]liXci
(ej2πfT )χ(f ∈ Gm), 1 ≤ l ≤ L− qm,
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for f ∈ Gm and all m. Or equivalently, using Eq. (2.12) we have

X(f) =











T
√
L

∑p
i=1 [A−1

m ]liXci
(ej2π(f− km(l)

LT
)T ) if f ∈ km(l)/LT ⊕ Gm,

T
√
L

∑p
i=1 [Cm]liXci

(ej2π(f−
kc
m(l)

LT
)T ) if f ∈ kc

m(l)/LT ⊕ Gm.

for each m, which in view of Eq. (2.7), leads to

X(f) =











T
√
L

∑p
i=1 [A−1

m ]lie
j2π

cikm(l)

L Xci
(ej2πfT ) if f ∈ km(l)/LT ⊕ Gm,

T
√
L

∑p
i=1 [Cm]lie

j2π
cikc

m(l)

L Xci
(ej2πfT ) if f ∈ kc

m(l)LT ⊕ Gm.
(A.4)

for 1 ≤ m ≤M . Equation (A.4) specifies the spectrumX(f) over the active subcells (km(l)/LT )⊕
Gm that partition F . For f 6∈ F , we have X(f) = 0 by our choice of Cm’s. We multiply the

expressions on the right-hand side of Eq. (A.4) by the indicator functions corresponding to their

regions of validity and add them together. This gives us a single equation for X(f):

X(f) = T
√
L

M
∑

m=1

qm
∑

l=1

p
∑

i=1

[A−1
m ]lie

j2π
cikm(l)

L Xci
(ej2πfT )χ

(

f ∈ km(l)

LT
⊕ Gm

)

+ T
√
L

M
∑

m=1

L−qm
∑

l=1

p
∑

i=1

[Cm]lie
j2π

cikc
m(l)

L Xci
(ej2πfT )χ

(

f ∈ kc
m(l)

LT
⊕ Gm

)

≡
p

∑

i=1

Φi(f)Xci
(ej2πfT ),

where

Φi(f) = T
√
L

M
∑

m=1

qm
∑

l=1

[A−1
m ]lie

j2π
cikm(l)

L χ
(

f ∈ km(l)

LT
⊕ Gm

)

+ T
√
L

M
∑

m=1

L−qm
∑

l=1

[Cm]lie
j2π

cikc
m(l)

L χ
(

f ∈ kc
m(l)

LT
⊕ Gm

)

=











T
√
L[A−1

m ]lie
j2π

cikm(l)

L if f ∈ km(l)/LT ⊕ Gm,

T
√
L[Cm]lie

j2πcik
c
m(l)/L if f ∈ kc

m(l)/LT ⊕ Gm.

Each filter Φi(f), 1 ≤ i ≤ p has a piecewise constant frequency response. Therefore, the

reconstruction equation is

x(t) =

p
∑

i=1

∞
∑

n=−∞

xci
(nT )φi(t− nT )

=

p
∑

i=1

∞
∑

j=−∞

x
(

(ci + Lj)T
)

φi

(

t− (ci + Lj)T
)

,

where φi(t) is the inverse Fourier transform of Φi(f).
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A.4 Proof of Theorem 2.3

The following equations (for each m and f ∈ Gm) are equivalent to Eq. (2.21) rewritten in

scalar form:

X̃km(r)(f) = Xkm(r)(f) +

L−qm
∑

l=1

[Dm]rlXkc
m(l)(f), 1 ≤ r ≤ qm,

X̃kc
m(r)(f) = Xkc

m(r)(f) +

L−qm
∑

l=1

[Fm]rlXkc
m(l)(f), 1 ≤ r ≤ L− qm.

Consider the spectral components Ekm(l)(f) and Ekc
m(l)(f) of the aliasing error

E(f)
def
= X̃(f) −X(f)

defined exactly as in Eq. (2.12) with E(f) in place of X(f):

Ekm(r)(f) =

L−qm
∑

l=1

[Dm]rlXkc
m(l)(f),

Ekc
m(s)(f) =

L−qm
∑

l=1

[Fm]slXkc
m(l)(f)

(A.5)

for f ∈ Gm, 1 ≤ r ≤ qm, 1 ≤ s ≤ L − qm and each m. When expressed in the time domain,

Eq. (A.5) becomes

ekm(r)(t) =

L−q
∑

l=1

[Dm]rl[xkc
m(l)(t)],

ekc
m(s)(t) =

L−q
∑

l=1

[Fm]sl[xkc
m(l)(t)].

(A.6)

The total aliasing error can be obtained by modulating the errors on each subcell appropriately

and adding. The result is that e(t) =
∑M

m=1 e
(m)(t) where

e(m)(t) =

qm
∑

l=1

ekm(l)(t)e
j2πkm(l)t

LT +

L−qm
∑

l=1

ekc
m(l)(t)e

j2πkc
m(l)t

LT .

Employing Eq. (A.6) in the above equation gives

e(t) =

M
∑

m=1

qm
∑

r=1

e
j2πkm(r)t

LT

( L−qm
∑

l=1

[Dm]rlxkc
m(l)(t)

)

+

M
∑

m=1

L−qm
∑

r=1

e
j2πkc

m(r)t

LT

( L−qm
∑

l=1

[Fm]rlxkc
m(l)(t)

)

≡
M
∑

m=1

L−qm
∑

l=1

ηm,l(t)xkc
m(l)(t), (A.7)
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where ηm,l(t) for each 1 ≤ m ≤ M and 1 ≤ l ≤ L− qm are continuous, LT -periodic functions

defined as

ηm,l(t) =

L−qm
∑

r=1

[Fm]rle
j2πkc

m(r)t

LT +

qm
∑

r=1

[Dm]rle
j2πkm(r)t

LT .

The sup-norm of e(t) can be computed directly from Eq. (A.7) as follows

sup
t

|e(t)| ≤
(

max
m,l,t

|ηm,l(t)|
)

M
∑

m=1

L−qm
∑

l=1

sup
t

|xkc
m(l)(t)|

≤
(

max
m,l,t

|ηm,l(t)|
)

M
∑

m=1

L−qm
∑

l=1

∫

|Xk̄m(l)(f)|df

= max
m,l,t

|ηm,l(t)|
M
∑

m=1

L−qm
∑

l=1

∫

[F ]
|X(f)|χ

(

f ∈ kc
m(l)

LT
⊕ Gm

)

df.

The double summation of the integrals reduces to the integral of |X(f)| over the union of the

subcells
{

(kc
m(l)/LT ) ⊕ Gm

}

, or equivalently, over the out-of-band region [F ]\F . Hence,

sup
t

|e(t)| ≤ ψ

∫

[F ]\F
|X(f)|df, (A.8)

where ψ is the constant

ψ
def
= max

m

(

max
1≤l≤L−qm, t∈[0,LT ]

|ηm,l(t)|
)

.

We have used the fact that ηm,l(t) is a periodic function of period LT to restrict the range

for t in the above maximization. We demonstrate that ψ is the smallest possible coefficient

in the bound in Eq. (A.8) for the sup-norm of e(t). First note that ψ = |ηm0,l0(t0)| for some

m0 ∈ {1, . . . ,M}, l0 ∈ {1, 2, . . . , L − qm0}, and t0 ∈ [0, LT ] because ηm,l(t) is continuous on

[0, LT ]. Now define

X(f) =











exp(−j2πft0) if f ∈ kc
m0

(l0)/LT ⊕ Gm0 ,

0 otherwise.
(A.9)

In the time domain this is equivalent to

x(t) = µ(Gm0) sinc
(

µ(Gm0)(t− t0)
)

× exp
(

j2π
(kc

m0
(l0)

LT
+ 1

2(γm0 + γm0+1)
)

(t− t0)
)

, (A.10)

where sinc t = sin t/(πt). For the choice of X(f) in Eq. (A.9), it is clear that there is only one

nonzero term in the right-hand side of Eq. (A.7), namely, the term corresponding to m = m0
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and l = l0. Hence, we obtain

sup
t

|e(t)| = sup
t

|ηm0,l0(t)xkc
m0

(l0)(t)|

≥ |ηm0,l0(t0)| × |xkc
m0

(l0)(t0)|

= ψ × µ(Gm0) = ψ

∫

[F ]\F
|X(f)|df.

In fact, both sides of the above inequality are equal since Eq. (A.8) holds. This proves that the

bound in Eq. (A.8) is sharp with the extremal x(t) in Eq. (A.10) achieving the bound.

A.5 Proof of Theorem 2.4

We shall now derive a bound on the energy of the error e(t). First observe that by Parseval’s

theorem

∫ ∞

−∞
e2(t)dt =

∫

[F ]
|E(f)|2df =

∫

[F ]\F
|E(f)|2df +

∫

F
|E(f)|2df

=

M
∑

m=1

L−qm
∑

r=1

∫

kc
m(r)
LT
⊕Gm

|E(f)|2df +

M
∑

m=1

qm
∑

r=1

∫

km(r)
LT
⊕Gm

|E(f)|2df

=

M
∑

m=1

L−qm
∑

r=1

∫

Gm

|Ekc
m(r)(f)|2df +

M
∑

m=1

qm
∑

r=1

∫

Gm

|Ekm(r)(f)|2df.

Now it readily follows from Eqs. (A.5), (2.13), and the above equation that

∫ ∞

−∞
e2(t)dt =

M
∑

m=1

∫

Gm

(x−m(f))∗(F ∗mFm +D∗mDm)x−m(f)df (A.11)

=
M
∑

m=1

L−qm
∑

l=1

∫

Gm

|Xkc
m(l)(f)|2df =

∫

Hm

|X(f)|2df,

where the last step follows from the definition of x−m(f). Here, Hm is defined as

Hm =

L−qm
⋃

l=1

kc
m(l)

LT
⊕ Gm. (A.12)

Note that the union of these sets,
⋃

m Hm, equals the total out-of-band region [F ]\F . Therefore,

we deduce from Eqs. (A.11) and (A.12) that

∫ ∞

−∞
e2(t)dt ≤

M
∑

m=1

λmax(F
∗
mFm +D∗mDm)

∫

Hm

|X(f)|2df.
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This bound is not very useful in this form. We can weaken it a little to express it in terms of

the out-of-band signal energy Eout:

∫ ∞

−∞
e2(t)dt ≤ max

m
[λmax(F

∗
mFm +D∗mDm)]Eout, (A.13)

where Eout is defined as

Eout =

M
∑

m=1

∫

Hm

|X(f)|2df ≡
∫

[F ]\F
|X(f)|2df. (A.14)

By a very similar argument, we obtain the following lower bound on the energy of e(t)

∫ ∞

−∞
e2(t)dt ≥ min

m
[λmin(F

∗
mFm +D∗mDm)]Eout. (A.15)

These bounds are indeed sharp. The constants multiplying Eout are the best. To demonstrate

this, we construct extremal functions satisfying each of the above bounds. It is sufficient to

specify the active and inactive spectral components, x+
m(f) and x−m(f), rather than X(f). After

all, one can be determined in terms of the other. Consider the bound in Eq. (A.13) first. Let

m0 = arg maxm(λmax(F
∗
mFm +D∗mDm)). For each m, define

x+
m(f) = 0 f ∈ Gm,

x−m(f) =











0 if m 6= m0

pm0
if m = m0,

f ∈ Gm0 ,

where pm0
is the an eigenvector of [F ∗m0

Fm0 +D∗m0
Dm0 ] corresponding to its largest eigenvalue.

Starting from Eq. (A.11), one can easily verify that the above function is an extremal for the

bound in Eq. (A.13). An extremal for Eq. (A.15) is constructed analogously.

A.6 Proof of Theorem 2.5

Recall that

w̃(t) =

p
∑

i=1

∞
∑

j=−∞

w((ci + Lj)T )φi(t− (ci + Lj)T ).

It is clear that E[w∗((Lj+ ci)T )w((Lj′+ ci′)T )] = σ2δjj′δii′ . Hence, distinct terms in the above

summation are uncorrelated and we obtain the expression

E|w̃(t)|2 = σ2
p

∑

i=1

∞
∑

j=−∞

|φi(t− LjT − ciT )|2
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for the output noise power at time t. The above expression, although not necessarily indepen-

dent of time, is certainly periodic with period LT . Hence, w̃(t) is periodically stationary and

its average noise power can be computed as follows

〈E|w̃(t)|2〉t =
1

LT

∫ LT

0
E|w̃(t)|2dt

=
σ2

LT

∫ LT

0

p
∑

i=1

∞
∑

j=−∞

|φi(t− LTj − ciT )|2dt

≡ σ2

LT

p
∑

i=1

∫ ∞

−∞
|φi(t− ciT )|2dt =

σ2

LT

p
∑

i=1

Eφi
, (A.16)

where Eφi
is the energy contained in φi(t). Using Parseval’s theorem and Eq. (2.18) we compute

Eφi

Eφi
=

∫

|Φi(f)|2df

= T 2L
M
∑

m=1

µ(Gm)
(

qm
∑

l=1

|[A−1
m ]li|2 +

L−qm
∑

l=1

|[Cm]li|2
)

. (A.17)

This computation was quite simple because Φi(f) is piecewise constant. Combining Eqs. (A.16)

and (A.17) gives

〈E|w̃(t)|2〉t = σ2T

p
∑

i=1

M
∑

m=1

µ(Gm)
(

qm
∑

l=1

|[A−1
m ]li|2 +

L−qm
∑

l=1

|[Cm]li|2
)

= σ2ψn, where ψn = T

M
∑

m=1

µ(Gm)(‖A−1
m ‖2

F + ‖Cm‖2
F ).

The norm ‖ · ‖F above is the Frobenius norm.

A.7 Proof of Lemma 3.1

Let Y = X +RQ†. Rewriting in terms of Y followed by squaring, the objective function

gives us an equivalent problem: minY ‖R + (Y − RQ†)Q‖2
2 = minY ‖RP⊥Q + Y Q‖2

2, where

P⊥Q = I −Q†Q, is the orthogonal projection operator onto R(Q)⊥. Hence, using P⊥QQ = 0,

transforms the problem to

min
Y

λmax

(

(RP⊥Q + Y Q)(RP⊥Q + Y Q)∗
)

=⇒ min
Y

λmax

(

RPQQ∗⊥R
∗ + Y QQ∗Y ∗

)

.

The choice Y = 0 (or X = −RQ†) is clearly optimal since Y QQ∗Y ∗ is a positive semidefinite

perturbation. In fact, all singular values of (R+XQ) are simultaneously minimized.
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A.8 Proof of Lemma 3.2

The proof of Lemma 3.2 relies on the following result:

Lemma A.2. Let A and B have the same number of rows and satisfy AA∗ + BB∗ = I,

and define P
def
= I − AA† = I − A(A∗A)−1A∗. Then the pseudo-inverse of M = PB is

M † = B∗P .

Proof. It suffices to check that the asserted pseudo-inverse M † satisfies

(a) M †M = PR(M†)

(b) MM † = PR(M),

where PR(U) denotes the orthogonal projection operator onto the range space of any matrix

U . Note that P , being the orthogonal projection matrix onto the null space of A∗, satisfies

the following properties which are easily verified: P ∗ = P 2 = P † = PPA = 0 and A∗P =

0 = A†P = 0. We use these properties without explicitly stating them. To verify (a), let

Q = M †M = B∗PPB = B∗PB. A standard way to check that Q is an orthonormal

projection operator is to verify that Q2 = Q and Q∗ = Q. It is evident from its definition that

Q is Hermitian. Next, we examine the quantity Q2:

Q2 = (B∗PB)2 = B∗PBB∗PB

= B∗P (I −AA∗)PB = B∗PB = Q,

which follows from AA∗ +BB∗ = I and the properties of P . The equation Q = B∗PB =

M †B yields R(Q) ⊂ R(M †). Conversely, QB∗P = B∗PBB∗P = B∗P = M † implies that

R(M †) ⊂ R(Q). This proves that R(Q) = R(M †) and therefore completes the verification

of (a). We may check (b) similarly. Let Q̄ = MM † = PBB∗P = P . Then Q̄ is clearly a

projection operator. As before, we have R(M) ⊆ R(P ) since M = PB, while R(P ) ⊆ R(M )

since MM † = P . Thus, (b) is verified and the lemma is proved.

Proof of Lemma 3.2. Any matrix C that satisfies CA = 0 can be expressed as C = Y P for

a suitable matrix Y of the same size as C. Conversely the matrix Y P is a valid “C-matrix”

since Y PA = 0. The upshot is that we can replace C by Y P in the minimization, thereby

eliminating the constraint CA = 0 altogether. By a similar argument we can replace A−1 by

A†+XP . The sizes of X and Y are q× (L− q) and (L− q)× (L− q), respectively. Therefore,

Eq. (3.13) transforms to

min
X,Y

∥

∥

∥

∥

(

(A† +XP )B

Y PB − I

)∥

∥

∥

∥

2

≡ min
X,Y

∥

∥

∥

∥

(

A†B

−I

)

+

(

X

Y

)

PB

∥

∥

∥

∥

2

.
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We can now apply Lemma 3.1 to the above problem to obtain the minimizing solution
(

X⋆

Y ⋆

)

= −
(

A†B

−I

)

(PB)†. (A.18)

Next observe that
(

A B
)

is a q × L submatrix of the L × L DFT matrix with possible rear-

rangements of columns. Therefore, its rows are orthonormal and it satisfies AA∗ +BB∗ = I.

Combining Lemma A.2 with Eq. (A.18), yields the minimizing solution: X⋆ = A†BB∗P

and Y ⋆ = −B∗P . Again, using AA∗ + BB∗ = I and the properties of P , we find that

X⋆ = A†BB∗P simplifies to zero. Hence, the choice A−1
⋆ = A† and C⋆ = B∗P 2 ≡ B∗P

minimizes ‖S‖2. Note that this solution also simultaneously minimizes all the singular values

of S and therefore also its Frobenius norm. We now compute the minimum norm of S at

optimality, namely ‖S⋆‖2 where

S⋆ =

(

D⋆

F ⋆

)

=

(

A†B

B∗PB − I

)

. (A.19)

From the proof of Lemma A.2, we know that Q = B∗PB is a projection operator. Therefore,

−F ⋆ = I − Q is also an orthogonal projection operator. The case p = L is trivial and it is

easy to check that S⋆ = 0 for this case. Moreover, F ⋆ is nonzero if and only if p < L. We

assume that p < L (and hence F ⋆ 6= 0) in the rest of the proof. The spectral norm of S⋆ can

be bounded from above as follows

‖S⋆‖2
2 = λmax(D

∗
⋆D⋆ + F ∗⋆F ⋆)

≤ λmax(D
∗
⋆D⋆) + λmax(F

∗
⋆F ⋆) = 1 + λmax(D

∗
⋆D⋆). (A.20)

Now observe that

−F ∗⋆D∗⋆ = D∗⋆ −B∗PBB∗(A†)∗ = D∗⋆ −B∗P (A†)∗ = D∗⋆

Therefore, R(D∗⋆) ⊂ R(F ∗⋆), or equivalently, R(D∗⋆D⋆) ⊂ R(F ∗⋆F ⋆). Let ξ be an eigenvector

corresponding to the largest eigenvalue ofD∗⋆D⋆, i.e.,D∗⋆D⋆ξ = λmax(D
∗
⋆D⋆)ξ. Then F ∗⋆F ⋆ξ =

ξ because ξ ∈ R(F ∗⋆F ⋆). Therefore,

(D∗⋆D⋆ + F ∗⋆F ⋆)ξ = (1 + λmax(D
∗
⋆D⋆))ξ,

implying that ‖S⋆‖2
2 ≥ 1 + λmax(D

∗
⋆D⋆). Combining this with Eq. (A.20) we obtain

‖S⋆‖2
2 = 1 + λmax(D

∗
⋆D⋆). (A.21)

Finally, a simple calculation reveals that

D⋆D
∗
⋆ = A†BB∗(A†)∗ = A†(I −AA∗)(A†)∗ = A†(A†)∗ − I

= (A∗A)−1A∗A(A∗A)−1 − I = (A∗A)−1 − I. (A.22)
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Therefore, λmax(D
∗
⋆D⋆) = λmax(D

∗
⋆D⋆) = λmax((A

∗A)−1) − 1, and hence Eq. (A.21) yields

‖S⋆‖2 =
√

λmax((A
∗A)−1), for p < L.

A.9 Proof of Theorem 3.3

We can rewrite the optimization as

min
α≥α0

(

α max
f∈[0,α)

L−1
∑

r=0

ν(f + rα)
)

, (A.23)

where ν(f) = χ(f ∈ F), α = 1/LT , and α0 = 1/LT0. The set F =
⋃

i[ai, bi) is assumed to

satisfy 0 = a1 < b1 < a2 < . . . ,< sn < bn = 1/T0. The function ν(f) is right continuous

and has jump discontinuities of +1 and −1 at ai and bi, respectively. Hence, we obtain the

following properties of ν(f): (a) 6 ∃ai ∈ (f1, f2] =⇒ ν(f1) ≥ ν(f2) and (b) 6 ∃bi ∈ (f1, f2] =⇒
ν(f1) ≤ ν(f2). We use these properties without explicitly stating them. Now suppose that the

optimum value α⋆ does not satisfy kα⋆ = bj − ai for any i ≤ j and k ≥ 0. We will show the

choice α = α⋆ − δ yields a smaller objective function than α = α⋆, for a sufficiently small δ,

which is a contradiction. In particular, we prove that q̄ ≤ q, where q and q̄ are defined as

q
def
= max

f∈[0,α⋆)

L−1
∑

r=0

ν(f + rα⋆),

q̄
def
= max

f∈[0,α⋆−δ)

L−1
∑

r=0

ν(f + r(α⋆ − δ)),

(A.24)

for an appropriately chosen δ, and this implies that (α⋆ − δ)q̄ ≤ α⋆q. Hence, the optimality of

α⋆ is contradicted. We start by choosing δ:

0 < δ <
1

L
min{|bj − ai − kα⋆| : i ≤ j, 0 < k ≤ L}. (A.25)

Since δ < L−1|bn − a1 − Lα⋆|, we see that α
def
= α⋆ − δ ≥ (bn − a1)/L ≡ α0 is feasible to

the optimization in Eq. (A.23). Let f ∈ [0, α⋆ − δ) be fixed. If there does not exist a bj

such that bj ∈ (f + r(α⋆ − δ), f + rα⋆] for any r ∈ L = {0, . . . , L − 1}, then it follows that

ν(f + r(α⋆ − δ)) ≤ ν(f + rα⋆) holds for every r ∈ L and, hence, q̄ ≤ q follows from Eq. (A.24).

Otherwise, let r0 be the largest integer in L such that

f + r0(α⋆ − δ) < bj0 ≤ f + r0α⋆ (A.26)

for some bj0. We now claim that there do not exist an r ∈ {0, . . . , r0 − 1} and ai such that

f + rα⋆ − rδ ≥ ai > f + rα⋆ − r0δ. (A.27)
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This is easily justified because subtracting Eq. (A.27) from Eq. (A.26) gives

(r0 − r)α⋆ + (r − r0)δ < bj0 − ai < (r0 − r)α⋆ + r0δ

=⇒ (r − r0)δ < bj0 − ai − (r0 − r)α⋆ < r0δ

=⇒ |bj0 − ai − (r0 − r)α⋆| < max(r0, r0 − r)δ < Lδ,

which contradicts the choice of δ in Eq. (A.25). Consequently,

ν(f + rα⋆ − rδ) ≤ ν(f + rα⋆ − r0δ), 0 ≤ r < r0. (A.28)

Next, for r0 ≤ r ≤ L−1, the definition of r0 implies that there does not exist a bj ∈ (f +r(α⋆−
δ), f + rα⋆] ⊃ (f + r(α⋆ − δ), f + rα⋆ − r0δ]. Hence,

ν(f + rα⋆ − rδ) ≤ ν(f + rα⋆ − r0δ), r0 ≤ r ≤ L− 1. (A.29)

Summing Eqs. (A.28) and (A.29) over their respective ranges and adding together yields

L−1
∑

r=0

ν(f + rα⋆ − rδ) ≤
L−1
∑

r=0

ν(f ′ + rα⋆) ≤ q, (A.30)

where f ′ = f − r0δ. The second inequality in Eq. (A.30) follows from the definition of q. Of

course, we need to verify that f ′ ≥ 0. This is true because, if f ′ = f −r0δ < 0, the choice r = 0,

ai = a1 = 0 would serve as a counter example to the claim. Since Eq. (A.30) holds for each

f ∈ [0, α⋆ − δ), we obtain q̄ ≤ q. This proves the original statement that 1/LT⋆ = (bj − ai)/k

for some 1 ≤ i ≤ j ≤ n and 0 < k ≤ L. Furthermore, the condition T ≤ T0 restricts k to

0 < k ≤ T0L(bj − ai) ≤ L for given indices i and j.

A.10 Proof of Proposition 4.1

Let S1 and S2 be the null spaces of GA∩B,• and GB,•, respectively. Then obviously S2 ⊆ S1

implying that P S2 = P S1P S2, where P S2 and P S2 are the orthogonal projection operator onto

the spaces S1 and S2, respectively. Then we have

rank(GA,•) = rank





GA∩Bc,•

GA∩B,•



 = rank





GA∩Bc,•P S1

GA∩B,•





= rank(GA∩Bc,•P S1) + rank(GA∩B,•),

where the last step follows because every row of GA∩Bc,•P S1 is orthogonal to every row of

GA∩B,•. Hence, we have

rank(GA∩Bc,•P S1) = rank(GA,•) − rank(GA∩B,•). (A.31)
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Similarly, we can show that

rank(GA∩Bc,•P S2) = rank(GA∪B,•) − rank(GB,•). (A.32)

Finally, using P S2 = P S1P S2, we obtain

rank(GA∩Bc,•P S2) = rank(GA∩Bc,•P S1P S2)

≤ rank(GA∩Bc,•P S1). (A.33)

Combining Eqs. (A.31), (A.32), and (A.33), we obtain Eq. (4.4).

A.11 Proof of Proposition 4.2

If D+(Λ) <∞, then every interval contains finitely many points of Λ, implying that

K0 = inf
δ>0

ν+
δ (Λ) (A.34)

is well defined. We can also assume that {λn} ∈ Λ is an increasing sequence. Since ν+
δ (Λ) is an

integer, we can find δ0 > 0 such that

ν+
δ0

(Λ) = K0, (A.35)

i.e., every interval of length 2δ0 contains no more than K0 points of Λ. Let K ≥ K0. Define

sets

Λk = {λnK+k : n ∈ Z}

for k = 0, . . . ,K − 1, so that Λ =
⋃

k Λk. Clearly, the interval [λnK+k, λ(n+1)K+k] contains

exactly (K + 1) points of Λ because {λn} is an increasing sequence. Hence, in order to satisfy

Eq. (A.35), we must have

λ(n+1)K+k − λnK+k > 2δ0,

proving that each Λk is uniformly discrete. For every interval Bγ(τ), a simple counting argument

yields

K#(Bγ(τ) ∩ Λk) − (K − 1) ≤ #(Bγ(τ) ∩ Λ) ≤ K#(Bγ(τ) ∩ Λk) + (K − 1).

Using Eq. (4.22), we obtain

D±(Λk) =
1

K
D±(Λ).

The proof of the converse statement is trivial. To see that K0 is the smallest such K, consider

the following argument. Let Λ be a union of K uniformly discrete sets. Equation (A.34) implies
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that for any δ > 0 there exists an interval of length 2δ containing K0 points of Λ. If K < K0,

clearly not all these points can belong to different Λk, implying that some Λk are not uniformly

discrete. Thus K ≥ K0.

Now let ǫ > 0 be arbitrary. By the definition of upper density, we can find a sufficiently

large δ > 0 such that every interval of length 2δ contains no more that 2δ(D+(Λ) + ǫ) points

of Λ. Hence, ν+
δ (Λ) ≤ K, where K is an integer such that

K ≤ 2δ(D+(Λ) + ǫ) < K + 1.

Using the same argument as before, we can write Λ as a union of K uniformly discrete sets

{Λk : k = 0, . . . ,K − 1} of separation of δ. Then clearly

K

2δ
≤ D+(Λ) + ǫ.

Finally, note that D+(Λk) ≤ 1/(2δ) because each Λk has separation of δ. Consequently,

D+(Λ) ≤
K−1
∑

k=0

D+(Λk) ≤
K

2δ
.

A.12 Proof of Proposition 4.3

Suppose that d+ = D+(Λ1, . . . ,ΛP ) <∞. Let ǫ > 0 and γ > 0 be arbitrary. Then Eq. (4.23)

guarantees the existence of τ ∈ R and γ′ ≥ γ/ǫ such that

P
∑

p=1

#(Λp ∩Bγ′(τ)) ≥ 2γ′(d+ − ǫ).

Let n ∈ Z be such that γ′/γ ≤ n < γ′/γ + 1. Suppose we divide the interval I = Bγ′(τ) into n

equal interval of width 2γ′/n, then it is clear that for at least one interval, say I0, we have

P
∑

p=1

#(Λp ∩ I0) ≥ 2γ′(d+ − ǫ)/n.

Therefore, our choices for γ′ and n imply that

P
∑

p=1

#(Λp ∩ I0) ≥
2γ′(d+ − ǫ)

1 + γ′/γ
=

2γ(d+ − ǫ)

1 + γ/γ′

≥ 2γ(d+ − ǫ)

1 + ǫ
.
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Since m(I0) = 2γ′/n ≤ 2γ, it follows that

ν+
γ (Λ1, . . . ,ΛP ) ≥ 2γ(d+ − ǫ)

1 + ǫ

for all γ > 0, and we obtain Eq. (4.25) because ǫ > 0 is arbitrary. If d+ = ∞, then for every

ǫ > 0, we can find γ′ ≥ γ/ǫ such that

P
∑

p=1

#(Λp ∩Bγ′(τ)) ≥ 2γ′/ǫ.

Proceeding as before, we find that there exists an interval I0 such that m(I0) ≤ 2γ and

P
∑

p=1

#(Λp ∩ I0) ≥
2γ

ǫ(1 + ǫ)
.

Since ǫ > 0 is arbitrary, we obtain ν+
γ (Λ1, . . . ,ΛP ) = ∞. The proof of Eq. (4.26) is very similar.

Thus, the limits in Eqs. (4.23) and (4.24) can be replaced by simple limits.

A.13 Proof of Lemma 5.1

Observe that CH(f) = C(f) is nonsingular for all f ∈ [α, β] because rankC(f) = q. In

fact

CH(f)C(f) > ǫ2Iq, f ∈ [α, β],

where ǫ is the minimum value of the smallest singular value of C(f) on [α, β]:

ǫ = inf
f∈[α,β]

σmin(C(f)) = min
f∈[α,β]

σmin(C(f)) > 0.

This is because C(f) is continuous, implying that σmin(C(f)), which is also continuous on the

compact set [α, β], attains its infimum. Therefore,

C†(f) =
(

CH(f)C(f)
)−1
CH(f),

PR(C(f)) = C(f)
(

CH(f)C(f)
)−1
CH(f),

are also a continuous functions of f . Note that R(C(f)) is the projection onto the range space

of C(f). Define

E1 := Eα −D(α)C†(α),

E2 := Eβ −D(β)C†(β).
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It follows that E1C(α) = E2C(β) = 0, implying that

E1PR(C(α)) = E2PR(C(β)) = 0. (A.36)

Now take

E(f) := D(f)C†(f) +

(

(f − α)

(β − α)
E2 +

(β − f)

(β − α)
E1

)

(

Iq −PR(C(f))

)

.

This is a valid solution because it is continuous and meets the requirements:

E(f)C(f) = D(f) +

(

(f − α)

(β − α)
E2 +

(β − f)

(β − α)
E1

)

(

C(f) − PR(C(f))C(f)
)

=D(f),

E(α) = D(α)C†(α) +E1 −E1PR(C(α)) = Eα,

E(β) = D(β)C†(β) +E2 −E2PR(C(β)) = Eβ .

The last two equations follow from Eq. (A.36).

A.14 Proof of Proposition 6.3

From Eqs. (6.44) and (6.47) we obtain an upper bound on the cost function:

Cr(α
r) = max

∥

∥

∥

∑

s∈R

T rsxs

∥

∥

∥
s.t. ‖xs‖ ≤ γs, s ∈ R

≤ max
∑

s∈R

∥

∥T rsxs

∥

∥ s.t. ‖xs‖ ≤ γs, s ∈ R

=
∑

s∈R

γs‖T rs‖ =
∑

s∈R

γs max
ν∈[0, 1

L
]
‖T rs[ν]‖,

where the last step follows from Eq. (6.45). Hence, Cr(α
r) ≤ C̄r(α

r). We now prove the other

inequality. start by choosing a set of signals x′s, s ∈ R such that ‖x′s‖ = γs and ‖T rsx′s‖ =

γs‖T rs‖. In other words, x′s is the right singular vector of T rs corresponding to its largest

singular value. First let x̄0 = x′0. Then, for s = 1, 2, . . . , R − 1, let x̄s be either x′s or −x′s such

that
〈

T rsx̄s,

s−1
∑

σ=0

T rσx̄σ

〉

≥ 0. (A.37)

Hence, we have ‖x̄s‖ = γs and T rsx̄s = ‖T rs‖x̄s. Therefore, Eq. (A.37) implies that for any

s ∈ R
∥

∥

∥

s
∑

σ=0

T rσx̄σ

∥

∥

∥

2
= ‖T rsx̄s‖2 + 2

〈

T rsx̄s,
s−1
∑

σ=0

T rσx̄σ

〉

+
∥

∥

∥

2
s−1
∑

σ=0

T rσx̄σ

∥

∥

∥

≥ ‖T rsx̄s‖2 +
∥

∥

∥

s−1
∑

σ=0

T rσx̄σ

∥

∥

∥

2
. (A.38)
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Then,

Cr(α
r)2

(a)

≥
∥

∥

∥

R−1
∑

σ=0

T rσx̄σ

∥

∥

∥

2

(b)

≥
∑

s∈R

‖T rsx̄s‖2

(c)
=

∑

s∈R

γ2
s‖T rs‖2 (A.39)

where (a) follows from the definition of Cr(α
r), (b) by recursively applying Eq. (A.38) starting

with s = R − 1, and (c) by the choice of x̄s. Now, using the Cauchy-Schwarz inequality, we

have
∑

s∈R

γ2
s‖T rs‖2 ≥ 1

R

(

∑

s∈R

γs‖T rs‖
)2

=
1

R
C̄r(α

r)2. (A.40)

Finally, combining Eqs. (A.39) and (A.40), we obtain the other desired inequality:

Cr(α
r) ≥ 1√

R
C̄r(α

r).
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APPENDIX B

JUSTIFICATION FOR DISCRETE-TIME MODELS

The purpose of this appendix is to justify the discrete-time models for the MIMO channel

and the reconstruction system in Chapter 6. More specifically, we show that the MIMO channel

can be replaced by a hypothetical discrete-time channel. The reconstruction system, which is

implemented by digital signal processing, also has a discrete-time model, and the continuous-

time outputs can eventually be reconstructed by using D/A converters at the of the digital

processing stage.

B.1 Channel Model

Suppose that the MIMO channel and its inputs have continuous-time models as described

in Chapter 5. Then the input-output relation for the channel is

Y (f) = G(f)X(f), (B.1)

Now, each component of the input x(t) is a multiband signal whose Fourier transform X(f)

has a bounded support Fr. Hence, by the classical sampling theorem, x(t) is representable in

terms of its samples on taken uniformly at a sufficiently high rate (the Nyquist rate). Suppose

that

F =
⋃

r∈R

Fr, fmax = sup
f∈F

f, fmin = inf
f∈F

f,

and that L ∈ Z such that (fmax − fmin) ≤ L/T . Hence, it follows that

|f − f ′| ≥ L

T
=⇒ J(f)J(f ′) = 0, (B.2)

where J(f) is the following diagonal matrix:

J(f) = diag
(

χ(f ∈ F1), . . . , χ(f ∈ FR)
)

. (B.3)
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Observe that

J(f)X(f) = X(f) (B.4)

because Xr(f) = 0 for f /∈ Fr. Next, using Eqs. (B.2) and (B.4), we have

|f ′ − f | ≥ L/T =⇒ J(f)X(f ′) = J(f)J(f ′)X(f ′) = 0. (B.5)

So let us define sequences x[k], y[k], and a discrete-time transfer function G[ν] as follows:

x[k] = x
(kT

L

)

⇐⇒ X[ν] =
L

T

∑

l∈Z

X
(L(ν + l)

T

)

y[k] = y
(kT

L

)

⇐⇒ Y [ν] =
L

T

∑

l∈Z

Y
(L(ν + l)

T

)

G[ν] =
T

L

∑

l∈Z

G
(L(ν + l)

T

)

J
(L(ν + l)

T

)

(B.6)

Notice that discrete-time sequences (and their Fourier transforms) use square brackets, while

continuous-time quantities use round brackets. The quantity Xr[ν] is clearly supported on the

set Fd
r = (T/L)F . We can assume, without loss of generality, that Fd

r ⊆ [0, 1). Taking the

Fourier transform of y[k], we obtain

Y [ν] =
T

L

∑

l∈Z

Y
(L(ν + l)

T

)

(a)
=
T

L

∑

l∈Z

G
(L(ν + l)

T

)

J
(L(ν + l)

T

)

X
(L(ν + l)

T

)

(b)
=
T

L

∑

l∈Z

G
(L(ν + l)

T

)

J
(L(ν + l)

T

)

∑

l′∈Z

X
(L(ν + l′)

T

)

= G[ν]X[ν], ν ∈ [0, 1], (B.7)

where (a) follows from Eq. (B.1) and Eq. (B.4), while (b) holds because

l 6= l′ =⇒ J
(L(ν + l)

T

)

X
(L(ν + l′)

T

)

= 0,

which itself is a consequence of Eq. (B.5). Finally note that the actual observations from the

channel output samples z[n] can be obtained by down-sampling y[k] by a factor of L, i.e.,

z[n] = y(nT ) = y[nL]. Hence,

Z[ν] =
1

L

∑

l∈L

Y
[ν + l

L

]

, ν ∈ [0, 1], (B.8)

where L = {0, 1, . . . , L − 1}. In other words, everything to the left of the dashed line in

Figure 5.1 can be represented by a discrete-time system shown in Figure B.1. The block

represents a discrete linear shift-invariant system with transfer function G[ν].
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Figure B.1 Discrete-time model for the MIMO channel.

Finally, observe that only one term of the summation in Eq. (B.6) is nonzero for ν ∈ [0, 1).

because the terms do not overlap at any frequency ν due to Eq. (B.2). Therefore, if Gpr(f) is

continuous on the set Fr (the closure of Fr), then clearly Gpr[ν] is continuous on Fd
r. Hence,

the continuity property, which is desirable fo implementation reasons, is preserved.

B.2 Reconstruction Model

Assume that the continuous-time reconstructed output x̃(t) lies in H. This is a reasonable

assumption because, after all x̃(t) is an estimate of x(t) ∈ H. Therefore, the sampling theorem

implies that x̃(t) is fully represented by the sampled sequence x̃(kT/L). So, we model our

reconstruction system as a discrete-time system producing an output x̃[k] = x̃(kT/L), because

it suffices to reconstruct x̃(t). Note that x̃(t) ∈ H if each column of h(t) lies in H. From

Eq. (5.6) we see that

x̃[k] =
∑

n∈Z

h
((k − nL)T

L

)

z[n] ≡
∑

k∈Z

h[k − Lk]z[k], (B.9)

where

h[k] = h
(kT

L

)

.

We can rewrite Eq. (B.9) in the frequency domain as

X̃[ν] = H [ν]Z[Lν], (B.10)

where

H [ν] =
T

L

∑

l∈Z

H
(L(ν + l)

T

)

. (B.11)

Therefore, the reconstruction block, shown to the right of the dashed line in Figure 5.1, can

be replaced by the discrete-time system illustrated in Figure B.2. Equation (B.6) describes the

hypothetical discrete-time channel that replaces the continuous-time model, while Eq. (B.11)
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describes the real reconstruction system. Finally, since the discrete-time sequences x̃r[k] repre-

sent samples of x̃r(t) at a rate higher than the Nyquist rate, we can reconstruct x̃r(t) by using

D/A converters.

~

~

R

1

L

L

1

z  [n]
P

x  [k]

x  [k]

ν

z [n]

  H[  ]

Figure B.2 Discrete-time model for MIMO reconstruction.

If the channel has a discrete-time model as shown in Figure B.1, then the reconstruction

block in Figure B.2 is the most general structure with the property that the entire MIMO

system (consisting of the channel, the down- and up-samplers, and the reconstruction filters)

is invariant to shifts by multiples of L samples:

x(k) → x̃(k) =⇒ x(k − nL) → x̃(k − nL), ∀k, n ∈ Z.

The models presented here are applicable whether the discrete-time inputs represent underlying

continuous-time function or whether they are genuinely discrete-time by nature.

Finally, we point out that the sets Fr are not used in the discrete-time setting, there by

obviating the need for the superscript in Fd, i.e., we denote the spectal support of xr[k] by Fr.
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