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Abstract

New achievability results for the L-stage successive refinement problem with
L > 2 are presented. These are derived from a recent achievability result for
the more general problem of multiple description coding with L > 2 channels.
It is shown that successive refinability on chains implies successive refinability
on trees and that memoryless Gaussian sources are successively refinable on
chains and trees.

1 Introduction

For the past half century, information theory has had a canonical Figure 1—literally
the first figure of Shannon’s paper [1], reproduced below. In Shannon’s communi-
cation problem, there is a single source of information, a single user, and a single
communication medium. Though clearly fundamental, this is not the only important
communication problem.

Some apparent extensions do not appreciably change the problem. For example,
if there are several sources but still a single channel and single user, the problem has
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Figure 1: Shannon’s communication system abstraction (reproduced from [1]).
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Figure 2: Multiple description source coding with two channels and three receivers.
Notation is defined in Section 2. The general case has L channels and 2L−1 receivers.
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Figure 3: Successive refinement with two channels and two receivers. With the tree-
defining relationship described in the text, receiver D{1,2} is a child of receiver D{1}.

not really changed; the source has been replaced by a vector of sources. Similarly,
having several channels to communicate a single source to a single user simply makes
the channel inputs and outputs into vectors.

New communication problems arise when there are users that receive different
information.1 An early example is the study of broadcast channels [3], where the
transmitter produces a single output and multiple receivers estimate the source from
different noisy received signals. Broadcast channels are generally studied in the con-
text of channel coding. However, generalizations to Shannon’s model give rise to new
rate-distortion problems as well.

This paper addresses a set of rate-distortion problems in which a single source is
communicated to several users over several channels. In multiple description (MD)
problems, there is a user for each nonempty subset of the channels. The simplest
case, with L = 2 channels, is shown in Figure 2. Successive refinement (SR) problems
are restricted versions of MD problems in which the users can be arranged in a tree
where a child node receives the channels received by its parent and more. With
two channels, the only possible tree has one parent and one child. This is shown in
Figure 3, with receiver D{1,2} a child of receiver D{1}.

For both MD and SR, the Shannon theory problem is to determine the achievable
combinations of rates over the channels and distortions at the receivers. This is
called the rate-distortion region. In this paper, we are primarily concerned with the
rate-distortion region for SR. Since SR is equivalent to MD with certain receivers

1This is not meant to be exhaustive. In particular, multiple receivers are not necessary for a
material departure from Shannon’s model; distributed, Slepian-Wolf coding [2] comes to mind.
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removed, an achievable region for MD directly yields an achievable region for SR by
disregarding the irrelevant distortions. This was recognized by Equitz and Cover [4],
whose main tool in proving an SR result for L = 2 was the MD region for L = 2 of
El Gamal and Cover [5]. We attack the SR problem for L > 2 with a new achievable
MD region for L > 2. The MD problem and the new achievable region are described
in Sections 2 and 3. The new SR results are given in Section 4.

For further context, it should be noted that Rimoldi [6] provided a rate region for
SR with more than two stages. He remarked that a proof using an MD region was
not possible because El Gamal and Cover’s MD region had no clear extension to more
than two descriptions. Using a new MD region for L > 2, we obtain an alternative
proof for [6, Thm. 3] and are able to study SR on trees as well as chains.

2 Multiple Description Coding

Consider a source that emits a sequence XN = (X(1), X(2), . . . , X(N)) of N indepen-
dent and identically distributed (i.i.d.) random variables. XN is encoded and is
transmitted to a receiver over L channels at rates R1, . . . , RL nats per source symbol.
The L transmitted quantities are called the descriptions of the source XN and are
denoted by

Jl = gl(X
N), l = 1, . . . , L, (1)

where the gl(·)’s are some functions. Suppose that the channels over which the de-
scriptions are transmitted are unreliable in that any channel can break down. If all
the channels are perfect, the receiver gets all L descriptions, but whenever a channel
breaks down, the receiver does not get the corresponding description. In other words,
the description transmitted on each channel is either transmitted error-free or lost
completely. The receiver can thus encounter a total of 2L different cases, since each of
the L channels can be in one of two states. The case where all the channels are broken
down is trivial. For the non-trivial cases we can represent the receiver as a collection
of 2L − 1 decoders, where each decoder receives a non-empty subset of {J1, . . . , JL}.
We can now pretend that the channels are perfect, since all 2L −1 decoding scenarios
are being considered.

Let L denote the index set {1, . . . , L} and let 2L be its power set, i.e., the collection
of all the subsets of L. For every non-empty subset K ∈ 2L, let DK denote the
decoder whose inputs are the descriptions indexed by K, namely {Jk : k ∈ K}. Let

XN
K = (X

(1)
K , . . . , X

(N)
K ) denote the output of DK. Then we can write

XN
K = fK({Jk : k ∈ K}), (2)

for some functions fK(·). Next let dK denote the expected distortion per source symbol
associated with the output XN

K :

dK = E
[ 1

N

N
∑

n=1

d
(

X(n), X
(n)
K

)

]

, (3)
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where d(·, ·) is a distortion measure. The set of rates {R1, . . . , RL} and distortions
{dK : K ∈ 2L − {∅}} that are achievable in the limit N → ∞ for a given source
and distortion measure is called the rate-distortion (RD) region. The RD-region is
unknown except for some simple sources for L = 2.

3 An Achievable Region for MD Coding

We use the following notation to simplify our presentation. Let C and D be collections

of sets. The set difference between C and D is defined in the usual manner as C−D
def
=

{M ∈ C : M 6∈ D}. If D = {K} is a singleton set, then we denote C −{K} simply by
C −K. We denote the set of random variables {XK : K ∈ C} by X(C). We write RK as
shorthand for the sum of rates

∑

k∈K Rk. Finally, we will often drop the braces and
write X1, X12 . . . in place of X{1}, X{1,2} etc. We also write X0 to denote the central
decoder output XL and set X∅ equal to a constant, e.g. 0.

The following is an information theoretic characterization of an achievable region
for MD coding of an i.i.d. source. It is detailed in a separate publication [7].

Theorem 1 ([7]). Consider a source that emits i.i.d. finite-alphabet random variables
whose distributions are PX. Then the RD region contains the rates and distortions
satisfying

dK ≥ Ed(X, XK) (4)

RK ≥ −H(X(2K)|X) +
∑

M⊆K

H(XM|X(2M−M)) (5)

for every K ∈ 2L − ∅, where XK is a finite-alphabet random variable.

For L = 2, Theorem 1 gives the achievable region of El Gamal and Cover [5]. This
generalization suffices for proving the SR results in the following section. A different
achievable region for L = 2 was determined by Zhang and Berger [8, Thm. 1].

4 Successive Refinement

The successive refinement (SR) problem is a special case of the MD coding problem
of the source where the only decoder outputs we care about are X1, X12, . . . , X12...L.
For any source, there is an RD region, defined analogously to the RD region for MD
coding. When the RD region is limited only by Shannon’s single-description rate-
distortion bound applied to each output, the source is called successively refinable.
More explicitly, we say that X is successively refinable on a chain or in L stages, if
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the RD region for the SR problem is given by

d1 ≥ D(R1),

d12 ≥ D(R1 + R2),

...

R(d1...L) ≥ D(R1 + R2 + . . . RL),

Rl ≥ 0, l ∈ L,

(6)

where D(·) is the distortion-rate function.
Successive refinement was first studied by Koshelev. He gave a Markovian suffi-

cient condition in [9, 10, 11]; necessity was shown by Equitz and Cover [4].

Theorem 2. The Gaussian source is successively refinable on a chain.

Proof. Let X denote a unit-variance Gaussian random variable. Then the follow-
ing trivial outer bound on the RD region for the SR problem follows directly from
Shannon’s rate-distortion theorem [1]:

d1...k ≥ e−2(R1+···+Rk), k ∈ L,

Rl ≥ 0, l ∈ L.
(7)

We now show that this region is achievable. For given rates Rl ≥ 0, it suffices to
demonstrate, using Theorem 1, that

d1...k = e−2(R1+···+Rk), k ∈ L,

are achievable. Notice also that d1 ≥ d12 ≥ · · · ≥ d1...L. So let X1...k, k ∈ L be
Gaussian random variables such that

X → X1...L → X1...(L−1) · · · → X1, (8)

is a Markov chain and the distortion constraints (4) are satisfied: Ed(X, X1...k) =
d1...k. For example let σ2

k = d1...k/(1 − d1...k) and

X1...k =
1

1 + σ2
k

(

X +

L
∑

l=k

Zl

)

,

for k ∈ L, where Zl’s are zero-mean Gaussian random variables independent of X
and each other with

varZk =

{

σ2
k − σ2

k+1 if 1 ≤ k < L,

σ2
L if k = L.

We take all other decoder outputs to be identically zero: XK = 0 if K 6= {1, . . . , k}
for any k ∈ L. Consider the right hand side of the rate constraint (5) for any K of
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the form K = {1, . . . , k}:

−h(X(2K)|X) +
∑

M⊆K

h(XM|X(2M−M))

= −h(X1 . . .X1...k|X) +
k

∑

r=1

h(X1...r|X1X2 . . .X1...(r−1))

= −
k−1
∑

r=1

h(X1...r|X1...(r+1)) − h(X1...k|X) + h(X1) +

k−1
∑

r=1

h(X1...(r+1)|X1...r)

= I(X1...k; X) =
1

2
log(d−1

1...k) = RK,

where the second equality follows from (8) and the third follows by combining the
two summations and using the identity h(U |V ) − h(V |U) = h(U) − h(V ) followed
by simplification. Hence the rates Rl satisfy (5) for any K of the form {1, . . . , k}.
To check the remaining bounds in (5), suppose that K 6= {1, . . . , k} for any k ∈ L.
Then let k′ ≥ 1 be the largest integer, if it exists, such that K′ = {1, . . . , k′} ⊆ K.
Otherwise take K′ = ∅. If K′ is not empty, then it is easy to verify that the right
hand side of (5) for K reduces to the same quantity with K replaced by K′, which
was earlier shown to equal RK′. Since RK ≥ RK′, (5) holds. Finally if K′ = ∅, the
right hand side of (5) reduces to 0. Thus all the rate constraints (5) are satisfied as
well, and hence the RD region is given by (7).

4.1 Successive Refinement on Trees

We now consider a generalization of the successive refinement problem although it is
still a special case of the MD coding problem.

Definition 1. A finite collection C of sets of positive integers is said to define a tree
structure if (a) for any nonempty K ∈ C, there is a unique K′ ∈ K called the parent
node of K and denoted by p(K), such that K′ = p(K) ⊂ K and |K′| = |K| − 1 where
| · | denotes cardinality and (b) for distinct K1,K2 ∈ C − ∅, V(K1) 6= V(K2) where
V(K) = K − p(K).

The following is another way of stating the second condition. Suppose we assign
the value V(K) to a branch from K′ = p(K) to K, then distinct branches in the tree
have different values. An example of a tree structure is shown in Figure 4 for the case

C =
{

∅, {1}, {2}, {1, 3}, {1, 4}, {2, 5}
}

.

The values of the function V(K) = K−p(K) are indicated on the branches from p(K)
to K. Without loss of generality, we assume that

⋃

K∈C

K = {1, . . . , L} = L.
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Figure 4: Example of a tree structure

Theorem 3. Suppose that X is a successively refinable on a chain and C defines a
tree-structure. Then the RD region for XK, K ∈ C is given by the set of constraints

dK ≥ D(RK), K ∈ C, (9)

where D(·) is the distortion-rate function, i.e. X is successively refinable on trees.

Proof. First observe that (9) is an outer bound by Shannon’s rate-distortion theorem.
Therefore, it suffices to show that, for given rates Rl, we can achieve dK that satisfy
RK = R(dK). Let K0,K1, . . . ,KM be an ordering of the elements of C such that
K0 = ∅ and

dK1
≥ dK2

≥ · · · ≥ dKM
⇐⇒ RK1

≤ RK2
≤ · · · ≤ RKM

,

with the additional constraint that all subsets of K in C precede K. We write K ≺ M,
if K precedes M in the list. Then p(K) ≺ K. Now clearly

⋃

K∈C−∅

V(K) =
⋃

K∈C

K = L. (10)

Therefore for every l ∈ L, we can find a unique K such that V(K) = {l} because the
left hand side of (10) is a disjoint union. We denote this set by K = V−1({l}). Next
for 1 ≤ m ≤ M let

R̃m = RKm
− RKm−1

≥ 0. (11)

Now X is successively refinable. Therefore, for any ǫ > 0, we can find an integer N ,
descriptions J̃m, m = 1, . . . , M of XN and functions f̃m(·) such that

H(J̃m) ≤ NR̃m (12)

1

N
Ed

(

XN , X̃N
1...m

)

≤ D(R̃1 + · · ·+ R̃m) + ǫ (13)

where X̃N
1...m = f̃m(J̃1, . . . , J̃m). (14)

For any l ∈ L, define

Jl = {J̃m, ∀m : p(K) ≺ Km � K} where K = V−1({l}). (15)
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Then we claim that the following two sets of random variables are identical:

{Jl : l ∈ K} = {J̃m, ∀m : Km � K}. (16)

We prove this by induction. The result holds trivially for the first element in the list
K0 = ∅. Suppose that the result holds for every K′ ≺ K. Then

{Jl : l ∈ p(K)} = {J̃m, ∀m : Km � p(K)} (17)

because p(K) ≺ K. Now V(K) = {l0} for some l0. Then K = p(K) ∪ {l0} and hence

(Jl : l ∈ K) = (Jl0 and Jl : l ∈ p(K))

= (J̃m, ∀m : p(K) ≺ Km � K and J̃m, ∀m : Km � p(K))

≡ (J̃m, ∀m : Km � K),

where the second equality follows from (15) and (17). This result (16) implies that

{Jl : l ∈ Km} = {J̃m′ , ∀m′ : Km′ � Km} = {J̃1, . . . , J̃m}, 1 ≤ m ≤ M. (18)

We take XN
Km

= X̃1...m so that, in view of (14) and (18), XN
Km

is some function of the
descriptions Jl, l ∈ Km:

XN
Km

= fm(Jl, l ∈ Km). (19)

We use (11), (12) and (15) to argue, for l ∈ L, that

H(Jl) ≤
∑

m:p(K)≺Km�K

H(J̃m) where K = V−1({l})

≤
∑

m:p(K)≺Km�K

NR̃m

= N(RK(l) − Rp(K(l))) = NRl. (20)

Next we use (11) and (13) to deduce that

1

N
Ed

(

XN , XN
Km

)

≤ D(R̃1 + · · ·+ R̃m) + ǫ

= D(RKm
) + ǫ

= dKm
+ ǫ, (21)

for 1 ≤ m ≤ M . Finally (19), (20) and (21) imply that the rates Rl and distortions
dK, K ∈ C are achievable.

Corollary 1. The Gaussian source is successively refinable on trees.
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