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ABSTRACT

We consider the problem of periodic nonuniform sampling of a

multiband signal and its reconstruction from the samples.0é*
rive the conditions for exact reconstruction and find an iekpl
reconstruction formula. Key features of this method aré the
sampling rate can be made arbitrarily close to the minimuan{L
dau) rate and that it can handle classes of multiband sigmatiare
not packable. We compute various bounds on the aliasingduie
to mismodeling the spectral support and examine the pedioce
in the presence of additive white sample noise. Finally vezipie
optimal designs for the reconstruction system.

1. INTRODUCTION

The use of nonuniform sampling for efficiently representata
multiband signal has been well studied by various authqr,[3,
4]. The general case of interest, illustrated in fig. 1(ayvhen the

structure ofF (the spectral support of the signal) is such that it is

not packablei.e.,

inf {0 >0: FN(nddF) =0, VYn#0}=A[F])

where is the translation operator definedas F = {0+ f:
f € F}. In other words, the Nyquist rate for samplim¢t) ban-

dlimited to F is equal to the total width of the spectral span of

F, and sampling uniformly at any lower rate would cause aiigsi
One of the most important advantages of nonuniform samjding

that samplingz(¢) at an average rate arbitrarily close to the Lan-

dau minimum rate, will generally guarantee exact reconton
of z(t) from its samples [3, 4].

Our analysis explicitly addresses the schemes suggesf4H in
(apparently first proposed by [2]) but applies to any of thétimu
coset periodic sampling schemes.

1.1. SOME DEFINITIONS

The class of continuous complex multiband signals of finitrgy
with spectral supporf# (consisting of a finite union of bounded
intervals), is denoted by

B(F) = {z(t)e L*(R)NC(R): X(f) =0, f&F}

U[ai,bi), a1 < b <...

i=1

whereX (f) = ffooo x(t) exp(—j27 ft)dt is the the Fourier trans-

form of z:(t). We let[F] = [a1, b,), and denote thepectral span
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F = <an <bn 1)

of F. Here\(-) denotes the Lebesgue measure. We will frequently

usex(f; H) to denote the indicator function of a skt

x(f;H)—{ ot

2. MULTICOSET SAMPLING

Letz(t) € B(F). We assume with no loss of generality that=
0 andb, = +, the Nyquist rate for:(t). We first pick a suitable
integerL > 0 and then sample the input signanuniformlyat
the instants = (nL 4 ¢;)T for1 < ¢ < pandn € Z where{c;}
arep distinct integers contained in the set:

—1}

For a giver;, the set of sampling instants= (nL+c¢;)T, n € Z
has uniform intersample spacing equaltf. We call this the-th
active cosetWe shall refer to the s€t = {¢; : 1 <i < p} as the
sampling patterrand the integeL as theperiod of the pattern.
Now consider thd. discrete-time sequences defined below:

£2{0,1,...,L

oo
oy (nT) S a(nT) Y d(n—(Lj+1), 0<I<L-1
Jj=—00
It is clear that the sequenag. ;(n) contains the samples of the
th active coset with samples separatedby 1 interleaving zeros.

It is straigthforward to compute the discrete-time Foutians-
form of z; (n) using the Poisson summation formula.

oo

Xpy(e?™T) Z x (nT') exp(—j2nn fT)
_ ¥ J2mrl 2
- LTZ (f+_) p( )()
It follows from (2) that for anyr € Z
Xy (27 HTTITy = e(*jQ’T%)X[”(eﬂ”fT) ©)

Therefore it suffices to examing; (e’*™/ ") for f € [0, 27)

jor j 27l
X = 7 ZX (J Lr ) )
e g 2 x (1A 6
Fo 2 [0,55) (©)



In other wordsX.(f) is ther-th “spectral component” of the in-
put (corresponding to the range of frequencijgs < f < %)
shifted to the origin. Denoting the inverse Fourier transfaf
X (f) by z,(t), we observe that

#(t) = Y a0 exp (B2 ™

We will use (7) and (3) later in deriving the reconstructiaua-
tions. We shallnow lek = ¢;, 1 =1,2,...,pin (4) to get

L—-1
X[ci](eJQ fT):ﬁZeXp (J e T)X'r(f)7 fej:()

L
r=0
®)
This is the main equation relating the spectral compon&nts’)
to the information contained in the observed samples. Nute t

Xe;) (¢7*™T) in the intervalFy contains relevant about the sam-

ples becaus&.,)(e’>™/T)e?*" /™ is periodic with period2-.
Reconstruction of the original signa(¢) is achieved if we recover
its spectral componentsc, (t)}.

3. RECONSTRUCTION

Our primary objective is to invert the set of linear equasig8) to
obtainX..(f). The recovery of(¢) is then essentially an applica-
tion of (7). Notice that with no further assumptions abowat ¢ttass
of input signals, (8) cannot be solved because there are taya-
tions (p) than unknown variabled)) for eachf € F,. For a given
sampling patterit’, a sufficient condition for solving (8) is that
be chosen wisely and that at any frequerficg Fo, no more than
p of the quantities X-(f)} for » € £ be nonzero. More specif-
ically, we will show thatz(t) € B(F) can be reconstructed from
the samples if the indicator function &f satisfies

™~
-

(14 gpiF) <p feR ©

r=0

and ifC is “universal” (as defined later). Our focus in this section

will be the exact reconstruction af(t) € B(F) whenF satisfies
(9). The analogous problem for real signals has been carside
by Herley and Wong [4] who did not, however, provide an explic
reconstruction formula. We shall derive the reconstructqua-
tions formally.

Let F be as in (1) witha; = 0 andb,, = % Consider the
finite set

2 Qe o fus

i=1

| LT, |
LT

where | -] is the floor function. Repeated values are listed only

once inl'. Let {v.} be theM < 2n distinct elements of ar-
ranged in increasing order. Then = 0 sincea; = 0. Addi-

tionally, we defineyar41 2 ﬁ Then the collection of intervals

{Gm}

gm = [vafym‘Fl)v 1 S m S M
clearly partitions the sef,. The importance of the above con-
structions is clarified in the following theorem.

Theorem 1 For eachr € £andm € {1,2,..., M} the function
x(f + £7; F) is constant over the intervél,,.

The theorem states that each of the “subcefls"® G (i.e. trans-
lates ofG,,) is either fully contained ir¥ of disjoint from it. This
interpretation of the theorem motivates the following diifin of
setskC,,, and their complements fon € {1,2,..., M}.

r
LT
We can express these sets in terms of their elements,as=
{km() : 1 <1< gm}andp = {km(l) : 1 <1< L—gn}
whereg,, is the number of elements i8,,. In view of theorem
1, we see that the left-hand side of (9) equalswherem is the

unique index (for eaclf € Fo) such thatf € G,,. Therefore (9)
now reduces to

K:m é {7' eL: (&) gm C .7:} Km = [/\’Cm (10)

qm < D, 1<m< M (11)
Fig. 1 illustrates the entire process of construction oftedl rel-
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Figure 1: (a) Indicator function of the spectral support pars
% = 5 (b) Number of overlaps (fof. = 5) which is constant on
each of the four set§,,, (c) The active spectral subcells. For each
m, the translates df,,, are shown in the same color.

evant sets. Next we relate these spectral components taathe d
samples. We define thex 1 data matrixy (f) as

()], = TVLX e, (e”*T) (12)

This matrix clearly contains all the information presenttia sam-
ples taken nonuniformly. For each, we define matriced\,,,
B, x; () andx;, (f) (of sizesp X qm, p X (L — gm), gm X 1,
(L — gm) x 1 respectively) as follows:

[Anly = gpexp (Preg=d)

Bml, = Jrexp (7j me(l)) (13)
LD, = Xeno(Hx(f;Gm)
Xm(D, = Xg,.o)(Hx(f;Gm)

A,, andB,, are submatrices of the x L DFT matrix and the
quantitiesx;}, (f) andx;,(f) determine the “in-band” and “out-
of-band” portions of the spectrud (f). Evidentlyz,,(f) = 0
wheneverz(t) € B(F). However, whenc(t) ¢ B(F), z,,(f) #
0, leading to aliasing. Therefore (8), (12) and (13) yield

Y(f) = Amx::z(f) + Bmx:n(f)7 Vf€Gm (14)



for eachm. Supposer(t) € B(F). Then it is clear thai}, (f)
can be recovered from(f) if and only if A, has full rank. This
imposes a mild “universality” condition on the sampling tpat

[3].

Definition 1 A patternC = {ci,...,¢,} is said to be(p, q)-
universalif every selection of < p distinct columns of the matrix

[% exp (jzzcﬂ)]

is a linearly independent set. A pattern is simphyjversalif it is
(p, p)-universal.

(15)
il

Note that a(p, ¢)-universal patterr€ is (p, r)-universal for each

r < g. The “bunched” sampling patteth= {0,1,...,p— 1} is

an example of a universal pattern (for arbitrdrybecause any set
of p columns of (15) would form a Vandermonde matrix. Equa-
tion (11) and(p, ¢')-universality ofC (whereq’ = max., q,) are
sufficient for A, to have full column rank for each. we will

assume throughout that this is the case. We can now reconstru

the spectral components of the inp&; (f)
xE (f), using the following formula

%4 (f) } _ [ Al
Cnm

defined similarly as
i 16
% (f) (10)

for 1 < m < M, whereA™ andC,, (sizesg» x p and(L —
gm) X p respectively) are (nonunique) matrices satisfying

] y(H)x(f;Gm)

A™A,, =1 and CpnA,, =0 (17)

for eachm. ALV is guaranteed to exist by choice of a gadd
while C,,, exists trivially. Equations (14), (16) and (17) yield

{ (/) ] _ { I AMB,, ] [ x5 (f)
% (f) 0 CunBm || xm(f)

We have perfect reconstruction whety,(f) = 0 & z(t) €
B(F). One of the problems we will consider is picking “good”
matricesA ™ andC,,, that make the transformation matrix in (18)
as close to the identity matrix as possible. This is impartem
cause we want to minimize aliasing errors wheft) ¢ B(F).
These equations specify all the information required tomstruct
the spectrumX (f) on all its spectral subcells. We now present
the interpolation formula for:(t) € B(F) which is obtained by
converting (16) to the time domain

=3

i=1 jeZ

} (18)

(¢i + Li)T)pi(t — (c; + L)T)  (19)

m ()

whereg;(t) is the inverse Fourier transform &;(f),
TVIAR) e FE T, ezl eg,
TC’VTL(l)

®i(f) =
v { TVI[Cl, &, fe ’“m‘“@gm

Each of the filtersb,;(f), 1 < i < p has a piecewise constant
frequency response.

The reconstruction scheme is illustrated in fig. @;(z) is a
digital filter whose impulse resonse {®(nT")}. The filters used
are ideal. We ignore here the issues involved in their apprate
realization and concentrate instead on the aliasing edoesto
signal mismodelling.

4. ERROR BOUNDS

Suppose the inpui(t) ¢ B(F) then the signak(t) reconstructed
using (19) would be in error because the transformationiriatr
(18) will not equal the identity matrix in general. For exdmp
this would happen if, in the system design, we choose to &nor
certain frequencies that contain negligible signal enéngfavor

of having a smaller spectral suppdft In this section we obtain
bounds on the aliasing erreft) = z(t) — «(t) resulting from an
underestimation of the spectral support.

In the following analysis we will assume, for simplicity,ath
z(t) € B([F]). In other words we assume that the spectral span
[F] is correctly specified, but the multiband structure to whi¢h)
is band-limited within 7] may be misspecified.

4.1. RECONSTRUCTIONERROR

We denote the aliasing error yt) = z(t) —
spectral components;. (t) = X, (t)
using (18)

z(t). Then its
— x2(t) can be obtained

A B

We define matriceS,,,, D, andF,, for eachm as follows

e ()

We provide the relevant bounds on the sup-norm and the 2-abrm
the aliasing erroe(t) without going into the details of the proof.

D,

ANBo,
F, I } (21)

CnBm —

Theorem 2 Supposex(t) € B([F]) is sampled nonuniformly ac-
cording to a sampling patterd designed for the class of signals
B(F), the resulting aliasing erroe(t) satisfies

max |e(t)] < max S, / XDl @2
£ m [FI\F
[max HSI,IHQ]A\/E <lell2 £ max [|Som ||, VEous  (23)

where|| - |1 denotes the maximum column sum norm and

Eot = / X ().
[FI\F

The bounds in (23) are sharp but (22) may not be sharp.

(24)

4.2. PERFORMANCE IN THEPRESENCE OFNOISE

Finally we consider the effect of additive white sample raisp-
resenting, for example, quantization error. The sampigaidican

be modelled ag(nT') = x(nT) + w(nT) wherew(n) is a noise
process withE[w(mT)w(nT)] = ¢*§(m — n) andz(t) is the
actual signal we would like to be sampling. The correspandin
output noise power for the system is easy to calculate. We find
that the average power of the (nonstationary) output neise i

M
(Blo@))e =0T > AGm) (AR |F + [CulF)  (25)

m=1

where|| - || » denotes the Frobenius norm ak@,,) =
~vm ) is the length oG,,,.

(Ymt1 —
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Figure 2: Multicoset sampling and reconstruction. The btdtis an ideal sinc interpolator.

5. OPTIMIZING THE RECONSTRUCTION PROCESS

We will now examine the problem of optimial reconstructiéor
each fixed indexn, the multiplying constants in the upper bounds
(22) and (23) are related to the 1- and 2-norms, respectieély
the matrixS,, in (21). We will fix the indexm and drop it ev-
erywhere from now on, for readability. Given sampling patié
and a spectral index sét, our objective is to find matriceA ™
andC satisfying (17) that minimize the norm 8fdefined in (21),
where “norm” means eithéf- ||2 or || - ||1. The other possibility is
to minimize the output noise power. Equation (25) reveads te
need to minimize the quantity

JA™ |+ IC: (26)

over all valid matricesA ™™ andC.

Note that ifp = ¢, the matrixA is square and henc&™¥ =
A~ andC = 0 are the only valid matrices. Therefore, the re-
construction system only needs to be optimized when q. Let
this be the case in the rest of the section. The other poirdt®is
that the optimization needs to be carried out for each valikeo
indexm (the subscript we have chosen to omit).

5.1. MINIMIZING THE ALIASING ERRORENERGY

The problem of minimizing the spectral norm®fdefined in (21)
admits a simple analytic solution:

Theorem 3 Let[A | B] be ap x L submatrix of thel. x L DFT
matrix W, (W], = % exp(ﬂ—”mn) with possible rearrange-
ments of columns. Suppofehas full column rank; < p. Then

the minimization
ll’)VB
CB-1

performed over all matriceA ™" and C that satisfyAi“VA =1
andCA = 0, has the solution

27)

min ||S||2 = min

A = AT=(AA) A" (28)
C, = B*(I-AA" (29)
and the corresponding minumum value is
_ Amax((A*A)71), p<L
u&m-{07 rer @

5.2. MINIMIZING THE OUTPUT NOISE POWER

We seek the optimal matrices™" andC that satisfyA™ A =1
andCA = 0, in order to minimize the quantity (26)

min_ (IA™ % +IClIE) (31)

The solutionC, = 0 andA"™¥ = AT is straightfowrard to verify.
Further the minimum value of the objective function (31) is
|AT||F =

tr((A-A) 1) (32)

5.3. MINIMIZING THE PEAK ALIASING ERROR

The relevant quantity to minimize in order to obtain the testnd
in (22) is the 1-norm of the matri® defined in (21). The problem
of choosing valid matriceA ™ andC in order to minimize||S||1,
unlike the spectral or Frobenius normsSfcannot be solved an-
alytically. We resort to numerical methods instead.

lan
CB-1

We eliminate the constraint (17) by parametriziA@“V andC as
A = AT+ X, P andC = X,P whereP = (I - AA")isthe
least-squares projection operator onto the null spackof The
matrix X; is ag x p andXa, (L — ¢) x p. We can now rewrite
(33) in an unconstrained form as

min

: (33)
Aan 7C

H;énHSo + XF|1 (34)

whereS, = Aj—F} ,F=PBandX = [%]

It turns out that the optimization problem (34) is hard toveol
even numerically, even though it involves the minimizatafra
convex function. Solving it directly is difficult becauseethbjec-
tive function is nondifferentiable. Howeverdbeslend itself to an
approximate linear program formulation. In practice, apragi-
mate solution is generally sufficient.
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