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ABSTRACT

We consider the problem of periodic nonuniform sampling of a
multiband signal and its reconstruction from the samples. We de-
rive the conditions for exact reconstruction and find an explicit
reconstruction formula. Key features of this method are that the
sampling rate can be made arbitrarily close to the minimum (Lan-
dau) rate and that it can handle classes of multiband signalsthat are
not packable. We compute various bounds on the aliasing error due
to mismodeling the spectral support and examine the performance
in the presence of additive white sample noise. Finally we provide
optimal designs for the reconstruction system.

1. INTRODUCTION

The use of nonuniform sampling for efficiently representating a
multiband signal has been well studied by various authors [1, 2, 3,
4]. The general case of interest, illustrated in fig. 1(a), iswhen the
structure ofF (the spectral support of the signal) is such that it is
not packable,i.e.,

inf {θ > 0 : F ∩ (nθ ⊕ F) = Ø, ∀n 6= 0} = λ([F ])

where⊕ is the translation operator defined asθ ⊕ F ∆
= {θ + f :

f ∈ F}. In other words, the Nyquist rate for samplingx(t) ban-
dlimited to F is equal to the total width of the spectral span of
F , and sampling uniformly at any lower rate would cause aliasing.
One of the most important advantages of nonuniform samplingis
that samplingx(t) at an average rate arbitrarily close to the Lan-
dau minimum rate, will generally guarantee exact reconstruction
of x(t) from its samples [3, 4].

Our analysis explicitly addresses the schemes suggested in[4]
(apparently first proposed by [2]) but applies to any of the multi-
coset periodic sampling schemes.

1.1. SOME DEFINITIONS

The class of continuous complex multiband signals of finite energy
with spectral supportF (consisting of a finite union of bounded
intervals), is denoted by

B(F) = {x(t) ∈ L2(R) ∩ C(R) : X(f) = 0, f 6∈ F}

F =

n
⋃

i=1

[ai, bi), a1 < b1 < . . . < an < bn (1)

whereX(f) =
∫ ∞
−∞ x(t) exp(−j2πft)dt is the the Fourier trans-

form of x(t). We let[F ] = [a1, bn), and denote thespectral span
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of F . Hereλ(·) denotes the Lebesgue measure. We will frequently
useχ(f ;H) to denote the indicator function of a setH

χ(f ;H) =

{

1, f ∈ H
0, f /∈ H

2. MULTICOSET SAMPLING

Let x(t) ∈ B(F). We assume with no loss of generality thata1 =
0 andbn = 1

T
, the Nyquist rate forx(t). We first pick a suitable

integerL > 0 and then sample the input signalnonuniformlyat
the instantst = (nL + ci)T for 1 ≤ i ≤ p andn ∈ Z where{ci}
arep distinct integers contained in the set:

L ∆
= {0, 1, . . . , L − 1}

For a givenci, the set of sampling instantst = (nL+ci)T, n ∈ Z
has uniform intersample spacing equal toLT . We call this thei-th
active coset. We shall refer to the setC = {ci : 1 ≤ i ≤ p} as the
sampling patternand the integerL as theperiod of the pattern.

Now consider theL discrete-time sequences defined below:

x[l](nT )
∆
= x(nT )

∞
∑

j=−∞

δ(n − (Lj + l)), 0 ≤ l ≤ L − 1

It is clear that the sequencex[ci](n) contains the samples of thei-
th active coset with samples separated byL−1 interleaving zeros.
It is straigthforward to compute the discrete-time Fouriertrans-
form of x[l](n) using the Poisson summation formula.

X[l](e
j2πfT ) =

∞
∑

n=−∞

x[l](nT ) exp(−j2πnfT )

=
1

LT

L−1
∑

r=0

X
(

f +
r

LT

)

exp
(

j2πrl

L

)

(2)

It follows from (2) that for anyr ∈ Z

X[l](e
j2π(f+ r

LT
)T ) = e(−j2π lr

L
)X[l](e

j2πfT ) (3)

Therefore it suffices to examineXl(e
j2πfT ) for f ∈ [0, 1

LT
)

Xl(e
j2πfT ) =

1

LT

L−1
∑

r=0

Xr(f) exp
(

j2πrl

L

)

(4)

where
Xr(f)

∆
= X

(

f +
r

LT

)

χ(f ;F0) (5)

F0
∆
= [0,

1

LT
) (6)



In other wordsXr(f) is ther-th “spectral component” of the in-
put (corresponding to the range of frequenciesr

LT
≤ f < r+1

LT
)

shifted to the origin. Denoting the inverse Fourier transform of
Xr(f) by xr(t), we observe that

x(t) =

L−1
∑

r=0

xr(t) exp
(

j2πrt

LT

)

(7)

We will use (7) and (3) later in deriving the reconstruction equa-
tions. We shall now letk = ci, i = 1, 2, . . . , p in (4) to get

X[ci](e
j2πfT ) =

1

LT

L−1
∑

r=0

exp
(

j2πcir

L

)

Xr(f), f ∈ F0

(8)
This is the main equation relating the spectral componentsXr(f)
to the information contained in the observed samples. Note that
X[ci](e

j2πfT ) in the intervalF0 contains relevant about the sam-
ples becauseX[ci](e

j2πfT )ej2πfciT is periodic with period 1
LT

.
Reconstruction of the original signalx(t) is achieved if we recover
its spectral components{xr(t)}.

3. RECONSTRUCTION

Our primary objective is to invert the set of linear equations (8) to
obtainXr(f). The recovery ofx(t) is then essentially an applica-
tion of (7). Notice that with no further assumptions about the class
of input signals, (8) cannot be solved because there are fewer equa-
tions (p) than unknown variables (L) for eachf ∈ F0. For a given
sampling patternC, a sufficient condition for solving (8) is thatC
be chosen wisely and that at any frequencyf ∈ F0, no more than
p of the quantities{Xr(f)} for r ∈ L be nonzero. More specif-
ically, we will show thatx(t) ∈ B(F) can be reconstructed from
the samples if the indicator function ofF satisfies

L−1
∑

r=0

χ
(

f +
r

LT
;F

)

≤ p, f ∈ F0 (9)

and ifC is “universal” (as defined later). Our focus in this section
will be the exact reconstruction ofx(t) ∈ B(F) whenF satisfies
(9). The analogous problem for real signals has been considered
by Herley and Wong [4] who did not, however, provide an explicit
reconstruction formula. We shall derive the reconstruction equa-
tions formally.

Let F be as in (1) witha1 = 0 andbn = 1
T

. Consider the
finite set

Γ
∆
=

n
⋃

i=1

{

ai −
⌊LTai⌋

LT

}

∪
{

bi −
⌊LTbi⌋

LT

}

where⌊·⌋ is the floor function. Repeated values are listed only
once inΓ. Let {γm} be theM ≤ 2n distinct elements ofΓ ar-
ranged in increasing order. Thenγ1 = 0 sincea1 = 0. Addi-

tionally, we defineγM+1
∆
= 1

LT
. Then the collection of intervals

{Gm}
Gm = [γm, γm+1), 1 ≤ m ≤ M

clearly partitions the setF0. The importance of the above con-
structions is clarified in the following theorem.

Theorem 1 For eachr ∈ L andm ∈ {1, 2, . . . , M} the function
χ(f + r

LT
;F) is constant over the intervalGm.

The theorem states that each of the “subcells”r
LT

⊕Gm (i.e. trans-
lates ofGm) is either fully contained inF of disjoint from it. This
interpretation of the theorem motivates the following definition of
setsKm and their complements form ∈ {1, 2, . . . , M}.

Km
∆
=

{

r ∈ L :
r

LT
⊕ Gm ⊂ F

}

K̄m = L\Km (10)

We can express these sets in terms of their elements asKm =
{km(l) : 1 ≤ l ≤ qm} andK̄m = {k̄m(l) : 1 ≤ l ≤ L − qm}
whereqm is the number of elements inKm. In view of theorem
1, we see that the left-hand side of (9) equalsqm wherem is the
unique index (for eachf ∈ F0) such thatf ∈ Gm. Therefore (9)
now reduces to

qm ≤ p, 1 ≤ m ≤ M (11)

Fig. 1 illustrates the entire process of construction of allthe rel-
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Figure 1: (a) Indicator function of the spectral support of span
1
T

= 5 (b) Number of overlaps (forL = 5) which is constant on
each of the four setsGm (c) The active spectral subcells. For each
m, the translates ofGm are shown in the same color.

evant sets. Next we relate these spectral components to the data
samples. We define thep × 1 data matrixy(f) as

[y(f)]
i
= T

√
LX[ci](e

j2πfT ) (12)

This matrix clearly contains all the information present inthe sam-
ples taken nonuniformly. For eachm, we define matricesAm,
Bm, x+

m(f) andx−
m(f) (of sizesp× qm, p× (L− qm), qm × 1,

(L − qm) × 1 respectively) as follows:

[Am]il = 1√
L

exp
(

j2πcikm(l)
L

)

[Bm]il = 1√
L

exp
(

j2πcik̄m(l)
L

)

[x+
m(f)]

l
= Xkm(l)(f)χ(f ; Gm)

[x−
m(f)]

l
= Xk̄m(l)(f)χ(f ; Gm)

(13)

Am andBm are submatrices of theL × L DFT matrix and the
quantitiesx+

m(f) andx−
m(f) determine the “in-band” and “out-

of-band” portions of the spectrumX(f). Evidentlyx−
m(f) = 0

wheneverx(t) ∈ B(F). However, whenx(t) /∈ B(F), x−
m(f) 6=

0, leading to aliasing. Therefore (8), (12) and (13) yield

y(f) = Amx
+
m(f) + Bmx

−
m(f), ∀f ∈ Gm (14)



for eachm. Supposex(t) ∈ B(F). Then it is clear thatx+
m(f)

can be recovered fromy(f) if and only if Am has full rank. This
imposes a mild “universality” condition on the sampling pattern
[3].

Definition 1 A patternC = {c1, . . . , cp} is said to be(p, q)-
universalif every selection ofq ≤ p distinct columns of the matrix

[

1√
L

exp
(

j2πcil

L

)

]

il

(15)

is a linearly independent set. A pattern is simplyuniversalif it is
(p, p)-universal.

Note that a(p, q)-universal patternC is (p, r)-universal for each
r ≤ q. The “bunched” sampling patternC = {0, 1, . . . , p − 1} is
an example of a universal pattern (for arbitraryL) because any set
of p columns of (15) would form a Vandermonde matrix. Equa-
tion (11) and(p, q′)-universality ofC (whereq′ = maxm qm) are
sufficient forAm to have full column rank for eachm. we will
assume throughout that this is the case. We can now reconstruct
the spectral components of the input,x̃±

m(f) defined similarly as
x±

m(f), using the following formula
[

x̃+
m(f)

x̃−
m(f)

]

=

[

Ainv
m

Cm

]

y(f)χ(f ;Gm) (16)

for 1 ≤ m ≤ M , whereAinv
m andCm (sizesqm × p and(L −

qm) × p respectively) are (nonunique) matrices satisfying

A
inv
m Am = I and CmAm = 0 (17)

for eachm. Ainv
m is guaranteed to exist by choice of a goodC

while Cm exists trivially. Equations (14), (16) and (17) yield
[

x̃+
m(f)

x̃−
m(f)

]

=

[

I Ainv
m Bm

0 CmBm

][

x+
m(f)

x−
m(f)

]

(18)

We have perfect reconstruction whenx−
m(f) = 0 ⇔ x(t) ∈

B(F). One of the problems we will consider is picking “good”
matricesAinv

m andCm that make the transformation matrix in (18)
as close to the identity matrix as possible. This is important be-
cause we want to minimize aliasing errors whenx(t) /∈ B(F).
These equations specify all the information required to reconstruct
the spectrumX(f) on all its spectral subcells. We now present
the interpolation formula forx(t) ∈ B(F) which is obtained by
converting (16) to the time domain

x(t) =

p
∑

i=1

∑

j∈Z

x((ci + Lj)T )φi(t − (ci + Lj)T ) (19)

whereφi(t) is the inverse Fourier transform ofΦi(f),

Φi(f) =

{

T
√

L[Ainv
m ]

li
ej2π

cikm(l)

L , f ∈ km(l)
LT

⊕ Gm

T
√

L[Cm]
li
ej2π

cik̄m(l)

L , f ∈ k̄m(l)
LT

⊕ Gm

Each of the filtersΦi(f), 1 ≤ i ≤ p has a piecewise constant
frequency response.

The reconstruction scheme is illustrated in fig. 2.Ψi(z) is a
digital filter whose impulse resonse is{φ(nT )}. The filters used
are ideal. We ignore here the issues involved in their approximate
realization and concentrate instead on the aliasing errorsdue to
signal mismodelling.

4. ERROR BOUNDS

Suppose the inputx(t) /∈ B(F) then the signal̃x(t) reconstructed
using (19) would be in error because the transformation matrix in
(18) will not equal the identity matrix in general. For example,
this would happen if, in the system design, we choose to ignore
certain frequencies that contain negligible signal energyin favor
of having a smaller spectral supportF . In this section we obtain
bounds on the aliasing errore(t) = x̃(t) − x(t) resulting from an
underestimation of the spectral support.

In the following analysis we will assume, for simplicity, that
x(t) ∈ B([F ]). In other words we assume that the spectral span
[F ] is correctly specified, but the multiband structure to whichx(t)
is band-limited within[F ] may be misspecified.

4.1. RECONSTRUCTIONERROR

We denote the aliasing error bye(t) = x̃(t) − x(t). Then its
spectral componentse±

m(t) = x̃±
m(t) − x±

m(t) can be obtained
using (18)

[

e+
m(f)

e−
m(f)

]

=

[

Ainv
m Bm

CmBm − I

]

x
−
m(f) (20)

We define matricesSm, Dm andFm for eachm as follows

Sm =

[

Dm

Fm

]

=

[

Ainv
m Bm

CmBm − I

]

(21)

We provide the relevant bounds on the sup-norm and the 2-normof
the aliasing errore(t) without going into the details of the proof.

Theorem 2 Supposex(t) ∈ B([F ]) is sampled nonuniformly ac-
cording to a sampling patternC designed for the class of signals
B(F), the resulting aliasing errore(t) satisfies

max
t

|e(t)| ≤ max
m

‖Sm‖1

∫

[F]\F
|X(f)|df (22)

[max
m

∥

∥S
†
m

∥

∥

2
]−1

√
Eout ≤ ‖e‖2 ≤ max

m
‖Sm‖2

√
Eout (23)

where‖ · ‖1 denotes the maximum column sum norm and

Eout =

∫

[F]\F
|X(f)|2df. (24)

The bounds in (23) are sharp but (22) may not be sharp.

4.2. PERFORMANCE IN THEPRESENCE OFNOISE

Finally we consider the effect of additive white sample noise rep-
resenting, for example, quantization error. The sampled signal can
be modelled as̄x(nT ) = x(nT ) + w(nT ) wherew(n) is a noise
process withE[w(mT )w(nT )] = σ2δ(m − n) andx(t) is the
actual signal we would like to be sampling. The corresponding
output noise power for the system is easy to calculate. We find
that the average power of the (nonstationary) output noise is

〈E|w̃(t)|2〉t = σ2T

M
∑

m=1

λ(Gm)(‖Ainv
m ‖2

F + ‖Cm‖2
F ) (25)

where‖ · ‖F denotes the Frobenius norm andλ(Gm) = (γm+1 −
γm) is the length ofGm.
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Figure 2: Multicoset sampling and reconstruction. The block “I” is an ideal sinc interpolator.

5. OPTIMIZING THE RECONSTRUCTION PROCESS

We will now examine the problem of optimial reconstruction.For
each fixed indexm, the multiplying constants in the upper bounds
(22) and (23) are related to the 1- and 2-norms, respectively, of
the matrixSm in (21). We will fix the indexm and drop it ev-
erywhere from now on, for readability. Given sampling pattern C
and a spectral index setK, our objective is to find matricesAinv

andC satisfying (17) that minimize the norm ofS defined in (21),
where “norm” means either‖ · ‖2 or ‖ · ‖1. The other possibility is
to minimize the output noise power. Equation (25) reveals that we
need to minimize the quantity

‖Ainv‖2
F + ‖C‖2

F (26)

over all valid matricesAinv andC.
Note that ifp = q, the matrixA is square and henceAinv =

A−1 andC = 0 are the only valid matrices. Therefore, the re-
construction system only needs to be optimized whenp > q. Let
this be the case in the rest of the section. The other point to note is
that the optimization needs to be carried out for each value of the
indexm (the subscript we have chosen to omit).

5.1. M INIMIZING THE ALIASING ERRORENERGY

The problem of minimizing the spectral norm ofS defined in (21)
admits a simple analytic solution:

Theorem 3 Let [A | B] be ap × L submatrix of theL × L DFT
matrixW, [W]mn = 1√

L
exp( j2π

L
mn), with possible rearrange-

ments of columns. SupposeA has full column rankq ≤ p. Then
the minimization

min ‖S‖2 ≡ min

∥

∥

∥

∥

[

AinvB

CB − I

]
∥

∥

∥

∥

2

(27)

performed over all matricesAinv andC that satisfyAinvA = I

andCA = 0, has the solution

A
inv
o = A

† = (A∗
A)−1

A
∗ (28)

Co = B
∗(I − AA

†) (29)

and the corresponding minumum value is

‖So‖2 =

{
√

λmax((A∗A)−1), p < L
0, p = L

(30)

5.2. M INIMIZING THE OUTPUT NOISE POWER

We seek the optimal matricesAinv andC that satisfyAinvA = I

andCA = 0, in order to minimize the quantity (26)

min
Ainv,C

(‖Ainv‖2
F + ‖C‖2

F ) (31)

The solutionCo = 0 andAinv
o = A† is straightfowrard to verify.

Further the minimum value of the objective function (31) is

‖A†‖F =
√

tr((A∗A)−1) (32)

5.3. M INIMIZING THE PEAK ALIASING ERROR

The relevant quantity to minimize in order to obtain the bestbound
in (22) is the 1-norm of the matrixS defined in (21). The problem
of choosing valid matricesAinv andC in order to minimize‖S‖1,
unlike the spectral or Frobenius norms ofS, cannot be solved an-
alytically. We resort to numerical methods instead.

min
Ainv,C

∥

∥

∥

∥

[

AinvB

CB − I

]
∥

∥

∥

∥

1

(33)

We eliminate the constraint (17) by parametrizingAinv andC as
Ainv = A† +X1P andC = X2P whereP = (I−AA†) is the
least-squares projection operator onto the null space ofA∗. The
matrix X1 is aq × p andX2, (L − q) × p. We can now rewrite
(33) in an unconstrained form as

min
X

‖S0 + XF‖1 (34)

whereS0 =
[

A
†
B

−I

]

, F = PB andX =
[

X1
X2

]

.

It turns out that the optimization problem (34) is hard to solve
even numerically, even though it involves the minimizationof a
convex function. Solving it directly is difficult because the objec-
tive function is nondifferentiable. However itdoeslend itself to an
approximate linear program formulation. In practice, an approxi-
mate solution is generally sufficient.
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