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Sampling Theorems for Uniform and Periodic
Nonuniform MIMO Sampling of Multiband Signals

Raman Venkataramarnviember, IEEEand Yoram Bresler~ellow, IEEE

Abstract—We examine a multiple-input multiple-output  [9], geophysical data processing [10], and multichannel image
(MIMO) sampling scheme for a linear time-invariant con- restoration [11], [12].
tinuous-time MIMO channel. The input signals are modeled as In practice, the MIMO channel equalizer is implemented

multiband signals with different spectral supports, and the channel ina digital si | H the ch li t d
outputs are sampled on either uniform or periodic nonuniform USIng digial Signai processors. HOWeVer, the channe INputs an

sampling sets, with possibly different but commensurate intervals Outputs are continuous-time signals, implying that the channel
on the different outputs. This scheme encompasses Papoulis’outputs need to be sampled prior to processing by the digital
generalized sampling and several nonuniform sampling schemes system. Hence, the problem is equivalent to reconstructing the
as special cases. We derive necessary and sufficient Cond't'on%hannel inputs from the sampled output signals. In other words,

on the channel and the sampling rate that allow stable perfect the MIMO ch li . bl b tated
reconstruction of the inputs or, equivalently, perfect inversion of N channet version probiem can be rfestaied as one

the channel. From an implementation viewpoint, we note thatitis N sampling theory, and we call this sampling schei&éO
desirable that the reconstruction filters have continuous frequency sampling

responses. We derive necessary and sufficient conditions that To focus on the sampling issues, we restrict our attention
guarantee this continuity property. The frequency responses of the in this paper to the scenario of a linear time-invariant con-

reconstruction filters are specified as solutions to a system of linear fi ti MIMO ch | with k f
equations. Finally, we demonstrate that perfect reconstruction ‘nuous-time channel with known frequency response

may be possible, even when the channel outputs are sampled at anmatrix. The harder problem of sampling conditions for blind
average rate that does not allow the reconstruction of any output channel inversion is left for future work.
from its samples alone. In certain instances, this average rate can  The study of MIMO sampling has useful practical implica-
achieve the recently presented fundamental bounds on MIMO  ions  Most work to date on multichannel deconvolution has
sampling density. addressed discrete-time channel models, apparently assuming
~ Index Terms—interpolation, MIMO equalization, min-  that each output is sampled at the appropridgquist ratesuf-
:umtili)nr:_ritqiItsiglrgfi)::gg’t-mﬂllttilglaer-]gut%%?alzsﬁar:#eltllcﬁgggﬁlst(rjjgt?gr\:o- ficient for reconstruction of each output. Here, Nyquist rate is
source separation, stable sampling. ' ' dgﬁn_ed as the smallest uniform §ampllng rate that guarant_ee§ no
aliasing. i.e., no overlap of the signal’s spectral support with its
translates by multiples of the sampling frequency. However, as
. INTRODUCTION we demonstrate in this paper, this is not necessary, and appro-

HE study of multiple-input multiple-output (MIMO) priately chosen uniform or nonuniform sampling schemes with
I channel equalization is motivated by applications i}pwer_average sampling densit_y can suffice for perfect recon-
multichannel deconvolution and multiple source separatioffruction of the MIMO channel inputs.
Some example applications where MIMO channels ariseAlthough motivated by real-world problems, MIMO sam-
are multiuser or multiaccess wireless communications aRHNG i an important problem in sampling theory in its own
space-time coding with antenna arrays or telephone digifht. Several sampling schemes can be expressed as special
subscriber loops [1]-[4], multisensor biomedical signals [5§2ses of the MIMO setting. For example, for a single-input mul-
[6], multitrack magnetic recording [7], multiple speaker (Opple—output (SIMO) _channel, t_he ogtputs are filtered and uni-
other acoustic source) separation with microphone arrays [fﬂ_,rm'y sam.pled versions ofasmglg InputSIgljaI. In otherV\{qrds,
this is precisely Papoulis’ generalized sampling [13]. Addition-
ally, if the channel filters are chosen to be pure delays, one ob-
, . . . tains multicoset or periodic nonuniform sampling of the input
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; results are analogues of Landau’s classic minimum density re-
zo(t) —= Yo(t) )( z[n] ) sults for multiband single-channel sampling [26]. It is not clear
: whether those conditions are sufficient; however, they indicate

, the potential for reduction in the sampling density needed for
TR (t)—= X —=ip1(t) Stable sampling, relative to the Nyquist rate sampling of each

vra(t) izm[n] channel output. In this paper, we demonstrate how to achieve

stable sampling and reconstruction at rates close to the min-

. : . )
Channel - t=nT, - |Reconstruction

Fig. 1. MIMO sampling problem. imum density. We can think of these results as partial suffi-
cient conditions for stable MIMO sampling, although we do not
rovide explicit bounds on the sampling densities themselves.
(@) .’—II | |—‘ p p pling

These results thus complement our results in [29].
This paper is organized as follows. Section Il formulates the
problems and introduces some notation and definitions used in
b) [ ] the rest of the paper. In Section Ill, we present models for the
0 025 05 ' | channel and reconstruction, demonstrating that various nonuni-
form sampling schemes can be reduced to uniform sampling of
Fig. 2. Example multiband spectid,(f) and X, (f) of the inputs to a the outputs of a modified channel. Section IV deals with the
two-input MIMO channel. problem of perfect reconstruction of the channel inputs. We
explore the connection between MIMO sampling and frame

assumed to be continuous-time signals. The channel is modéfegpry. The computation of the frame bounds enables us to de-
as a linear time-invariant system. The channel outputs are sdffmine necessary conditions on the input signal spaces, the
pled at a uniform rate of/7" to produce discrete-time sequenceshannel characteristics, and the sampling rate for the existence
z,[n]. From a practical viewpoint, we can interpret this as thef reconstruction filters that achieves stable and perfect recon-
Samp"ng Step prior to processing d|g|ta||y The reconstructi(ﬁﬁruction of the inputs. We also present additional conditions
block, which is shown to the right of the dashed line, inverts théder which there exist reconstruction filters that are contin-
MIMO channel to produce estimatés(t) of the input signals. Uous in the frequency domain. This, as elaborated upon later, is
The MIMO channel and the specral supports of the inputs drgportant from the viewpoint of finite impulse response (FIR)
assumed to be given and fixed by the nature of the problem. ilter design.
have the freedom to choose the sampling scheme for the out-
puts of the channel and design the reconstruction system. We [l. DEFINITIONS AND NOTATION
emphasize that the focus of this paper is on sampling, motivateqye denote the Fourier transform of a continuous-time square-
by the interest in all-digital processing. Hence, we assume thgbgrable signak(t) by
continuous-time operations such as filtering and modulation of
th_e continuous-time MIMO outputs (or the inputs) prior to sam- X(f) = / w(t)e= 12t g,
pling them are not allowed. R

. As appropriate in many apphcgmons_, we assume the Ir”0§fmilarly, for a discrete-time signafn], we define its Fourier
signals are multiband, with possibly different band Strucw'i?ansform to be
(spectral support) for the different inputs. Fig. 2 shows such an
example for a two-input MIMO channel, which will be used Y[v] = Z y[n]e=I2mm,
throughout the paper for illustrative purposes. (In this example, nez

the spectra are one-sided, i.e., supported only on positive f[e- | denote di to-ti d i i ianal
quencies, so that the signals are complex-valued.) n general, we denote discrete-time and continuous-time signals

The problem we address in this paper is a special, unifoé%ither s_calar-\(alued or vector-valued) using Iower-case letters
sampling case of the general MIMO sampling problem intr ind their Fourier transforms_by the gorrespondmg.upper-case
duced in [29] and [30]. We study the following issues in thi etters. Let the class of continuous, finite-energy signals ban-
paper: a) the relation of stable MIMO sampling to frame theo imited to the set of frequencie’ be
and b) the necessary and sufficient conditions on the channeIB(j_-) ={z e I*R)NCR): X(f) =0,Yf ¢ F}. (1)
allowing to achieve perfect reconstruction of the inputs under
uniform sampling. Even though we consider oahjformsam- Denote the class of complex-valued matrices of dizex N
pling of the MIMO channel outputs, we will see later that thi®y C >, the conjugate-transpose Afoy A , and its pseudo
sampling scheme is fairly general, and it encompasses mostipgerse byA'. The identity matrix of sizeéV x N is denoted by
riodic nonuniform sampling of the channel outputs, with sanfy and the zero matrix b9. Let A,,.<(-) and Amin(-) denote
pling at different rates on different channels. the largest and smallest eigenvalues of a matrix with real eigen-

We derived necessary sampling density conditions for thalues.
general MIMO sampling problem in [29] and [30]. We showed For a given matrixA, let Az ¢ denote the submatrix of cor-
that stable sampling and reconstruction of the inputs imposesponding to rows indexed by the g&tind columns by the set
lower bounds on the sampling densities on the various chah-The quantityA, ¢ denotes a submatrix formed by keeping
nels, regardless of whether the sampling is uniform or not. Theslérows of A but only columns indexed bg, whereasAr o

0 0.4 0.715 0.9 I1
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denotes the submatrix formed by retaining rows indexe@®by wherex denotes convolution, and

and all columns. We use a similar notation for vectors. Hence,

X is the subvector oX corresponding to rows indexed by goo(t) -+ go,r-1(t)

R. We always apply the subscripts of a matrix before the su- g¢(t) = : ; € CPxE

perscript. Thereforeslg,c is the conjugate-transpose 4Af; .

When dealing with singleton index se& = {r} orC = {c},

we omit the curly braces for readability. Therefos,, and is the impulse response matrix of the channel. Therefore

A, . are therth row and the:th column ofA, respectively. For

convenience, we always number the rows and columns of a fi- Y(f)=G(HX(f), 4)

nite-size matrix starting from 0. For infinite-size matrices, the

row and column indices range ov&r whereX (f),Y (f),andG(f) are the Fourier transforms oft),
We denote the indicator function kx(-). Next, suppose that ¥(t), andg(t), respectively. In particula(f) is thechannel

S is a subset oR or Z, anda is an element oR or Z. Then transfer function matrixThe channel outputs are sampled at

nT, n € Z, and we denote these output quantitieszply:] =

yp(nT) or in matrix form by

gp-1,0(t) -+ gp—1,r-1(t)

SPa={s+a:s€S}

Soa={s—a:s€S8} def T
aS ={as:s € S} 2n]= (zo[n] aln] - zP_l[n]) =y(nl), nel
S moda = {smoda : s € S}. Then, using (4), it is clear that

dent_)te, respectively, the positive and negative translations, 2] = 1 ZY(I/ +l)7 veo,1)
scaling, and the modulus @ by a. Let x(S) denote the T T

Lebesgue measure and ifitandS the interior and closure of 1 v+l v+l

a setS C R, respectively. LetS| denote the cardinality of a =7 ZG( T )X( T )7 v€l0,1). (5)
finite setS. Finally, let ess inf and ess sup denote the essential z

infimum and supremum, i.e.,

lez

We model the reconstruction block as follows:

ess infg(t) = sup{vy: g(¢t) > vy a.e} E(t) = Z h(t — nT)z[n) (6)
esssup(t) = inf{y:g(t) < vyae} nez
. where
for any real functiory, where “a.e.” stands foalmost every-
where h070(t) s h07p_1(t)
h(t) = : ; € CRxP,
[ll. SAMPLING AND RECONSTRUCTIONMODELS hr—10(t) - hgr_1.p_1(t)

Let the input and output signals of the MIMO channel d

&t is clear from hat the entire MIM m (consistin
picted in Fig. 1 be represented in vector form as tis clear from (6) that the entire O system (consisting

of the channel, the samplers and the reconstruction block) is
invariant to a time-shift by a multiple df, i.e.,

2(t) = (a;o(t) ORE xR_l(t))T

. z(t) = £(t) = z(t —nT) — Et —nT), VneZteR.
y(t) = (yo(t) ya(t) - fol(t)) : @

Conversely, (6) is the most general linear transformation that al-
lows this invariance. Taking its Fourier transform and rewriting

For convemence defin®@ = {0,1,...,R — 1} andP = : .
matrix form yields

{0,1,..., P—1}. These sets index the components of the mpuq
and the output vectors. For eache R, we modelz,.(t) as a X(f) = H(AZLET R 7
multiband signalz,.(t) € B(F,.), where the spectral suppdh. (f) = H(HZIT], fe %

Is a finite union of disjoint intervals: whereH(f), which is the Fourier transform di(t), is there-

construction filter matrixOwing to the periodicity ofZ[v], we

N- can rewrite (7) as
-7:7‘ = U [arn7brn)7 ar1 < brl <Opg < -0 < ArN, < brNT-

n=1 = ll ll 1
®) X(f+f) :H(f+T)Z[fT], l'el, fe [O,T). ®)
We model the MIMO channel as a linear and shift-invariant
system. Thus, we can write We can now rewrite (5) and (8) compactly as

Z171] = G(HX() ©
o) = ga2lt) = [ glt=ra(r)ir X(f) =H(H)ZLfT] (10)
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for f € [0,1/T), whereX(f) and.«\.’(f)_arethemodulated input 0 05 3 35 6 6.5 995
and reconstructed vectarashose entries are
l - . - - - .
Xrue(F) =X, (f + —), (nheRxZ (1) o 2 1 & s 1
XRl—i-r(f) (f + )7 (r,l)eRxZ 12) Fig. 3. Commensurate periodic nonuniform sampling sets.

whereagj(f) andM( f) are themodulated channel and recon- Example 1: LetG(f) be the channel transfer function matrix
struction matriceswhose entries are of a MIMO channel withP = 2 outputs. Let the sampling sets

) for the channel outputs be as depicted in Fig. 3, i.e.,

gp,Rl—H‘(f) = TGI"‘ Ao ={3n,3n+0.5:n € Z}
I _ .
s (F) = Hop(f + ). (7)) € P X R X (1) Ao =fznm e )

These sets are clearly commensurate because sampling periods

Note that even though these matrices have infinitely mariy — 3andT; = 2 are such thal} /T; is rational. A common
columns or rows, only a finite summation is involved in (9) be-" = L= 0/~ 1 :

cause the components & f) are bandlimited, implying that period for the two sampling sets is obviously 6. Indeed, we have
only a finite number of entries i&’( f) are nonzero. In the next 3
section, we seek conditions on the channel and the inputs that=" | J (6Z + Ar.0), {M0:k=0,...,3} ={0,0.5,3,3.5}
guarantee perfect reconstruction of the input signals or, equiva- k=0
lently, perfect inversion of the channel. 2
We consider only uniform sampling in this paper. FortunateIQ1 U (62 + A1), {Aka ik =0,...,2} ={0,2,4}.
most periodic nonuniform sampling schemes can be expressed *=0
as special cases of uniform sampling. To see this, consider fignce, the modified channel has six outputs, and the rows of its

following situation where theth channel outpug,(¢) is sam- transfer function matrix’}(f) are given by
pled at

(f+ %) (p,r,1) € PXRXZ (13)

Gr.o(f) =Goo(f)e 2 Mo | =0,1,2,3
teNp={nTp+ Agp:k=0,...,K, —1}. ék+4,.(f) :le(.f)eszmk.l? k=0,1,2.

The period of the sampling pattern for thh output channel is |f the outputs of the hypothetical channel are sampled uniformly

T,, and the average sampling density of phieoutputisk, /T, att = 6n, n € Z, we essentially obtain a reordered sequence of
First, consider the case where all the periods are equalj.e, the samples of the original MIMO channel outputs taken on the

T. Then, we can write samples setd; andAs.
o1 We have shown that commensurate periodic nonuniform sam-
3 ling is really uniform sampling in disguise because their equiv-
A, = U (TZ + \iyp) piing y piing g q

alence is shown using the above modification trick. Therefore,
the study of uniform sampling automatically provides answers
In other words,A, is composed of a union of(,, uniform tothe commensurate periodic nonuniform sampling problem. In
sampling sets of density/T. Consider a hypothetical MIMO the subsequent sections, we present results for uniform MIMO
channel whose transfer function matrix is obtained by pesampling only.

forming the following modification toG(f). We replace the In practice, we would usually only attempt to reconstruct
pth row of G(f), namelyG, +(f), by the following K, rows: a version of the set of inputs that is uniformly sampled at a
G,o(f)e 72 ek = 0,...,K, — 1. The new channel sufficiently high rate and implemerfl(f) using FIR filters.
matrix hasz K, rows, and the samples of the new output¥he continuous-time version could then be reconstructed by
taken att = nT are precisely equal to the samples of tha bank of conventional D/A converters on the reconstructed
old MIMO channel outputs taken on the periodic nonuniforrdiscrete-time signals. In particular, it would be desirable to use
sampling sets{A,} and reordered. Next, suppose that tha reconstruction filter matrixZ(f) that is continuous inf.
different channels have unequal lmdmmensuratsampling The reason for this is roughly the following. Recall that a real
periods, i.e., that the ratios of sampling periods are ratiorfahction on a real compact set can be approximated arbitrarily
numbersT,, = (m,/n,)T for somem,,n, € N, andT € R. closely (in theL> sense) by polynomials if the given function
In this case, a common period for all the sampling $éts} is is continuous. Similarly, itH(f) is continuous inf, we can

T [Inp, and an argument, as before, allows us to convert tragproximate the matrix functiodl(f) arbitrarily closely in

to uniform sampling of the outputs of a hypothetical MIMCthe H> sense (and thus ensure an arbitrarily small worst-case
channel. The upshot of this argument is that most periodiZ reconstruction error) by choosing sufficiently long FIR
nonuniform sampling (except those with noncommensurate fitters. Although we will not delve into implementation issues
riods) may be recast as a uniform sampling problem. Of courge this paper, we do consider both casedtt{ andwithoutthe

the price to be paid is that the hypothetical MIMO channel hasntinuity requirement imposed di( f)) in the next section,
many more outputs. We illustrate this in the following examplevhen we derive conditions for perfect reconstruction.

k=0
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IV. PERFECTRECONSTRUCTION For f € Z,, the only nonvanishing components &f f) are
Xo(f), Xa(f), Xa(f), andXy(f), whereas forf € Z, they are

o - . _ Xo(f) and A5(f).
We begin with some definitions. Define the following two | the sequel, we derive the conditions on the channel and the

A. Preliminaries

spectral index setat frequencyf € [0,1/7): spectral support&, of the channel inputs for the existence of
I a reconstruction filter matri¥ ( f) that achieves perfect recon-
K% = {(7“7 )eERXZ: (f + T) € fr} struction of the inputs. We consider both caséth andwithout
R the continuity requirement imposed on the channel and recon-
Ky = {Rl +ri(rl)e ’Cf}' (15)  struction filters. As we will see later, the continuity &F(f)

may also require the continuity of the channel transfer function
matrix G(f).

Necessary Condition for Perfect Reconstructidn: the
subsection, we use frame theory to derive necessary and
sufficient conditions for stable and perfect reconstruction of the
channel inputs, but we first present a simple necessary condi-
tion. From (15), it is clear that all the nonzero entriesff)

are captured in the subvectii ; (f), and hence, we can rewrite

(9) and (10) together as

In other words Ky is a function off whose entries are indices
[ of the nonvanishing elements in the §sX (F' 4+ 1/T)}. Note
thatC; andKy contain the same information because the map, .
from the pair(r,l) € R x Z to a single indexRl + r € Z is
invertible. In addition, lekC$ = Z\K; denote the complement
of K. We now have the following proposition.

Proposition 1: Suppose that sets,., r € R have multiband
structure, as defined in (3), and th&tis the sampling interval
size. ThenC; is piecewise constant on [0/T)), i.e., there ex-
ists a collection of disjoint intervalg,, of the form|[a, 3), and
setsK™, m =1,..., M such thatC; = K™ for f € Z,, and

X, (f) =Hx, o(£)Gex, (H)Xi,(f) (16)
and j’lc;(f) ZHK;,.(f)g.,/cf(f)X/Cf(f)- (17)

M
1
U I = [0-/ f)- For perfect reconstruction, we require the existenc@{¢f)
m=1 such that¥(f) = X(f) a.e. Itis clear that this would happen if
This result is easily demonstrated by using an argument véryd only if
similar to the one in [25] for multicoset sampling. Hence, we

can write Hiyo(£)Gex,(f) =1k, ae.
Hie o(f)Go =0 ae. 18
T = D vmst), € M K50 (f)Gox; (f) (18)
7 <72 < <YM+l where|K¢| is the number of elements &f;. This can be ex-

pressed more compactly as
such thaty; = 0, andvyp41 = 1/7.

Example 2: In this example, we illustrate the sets in (15) and H(F)Gorx,(f) = Tojx,. (19)
the modulated input vectors for a simple case. Consider a MIMO o o
channel withR = 2 inputs, and input spectidy (/) and X (f) SinceG. «, (f) € CP*IX11, we require thaG. i . (f) have full
that have supports as illustrated in Fig. 2, i.e., column.faqua e This condition e - i

.e. guarantees that a solution (pos

sibly nonunique) to (19) exists. In view of Proposition 1, we now
obtain the following necessary condition for perfect reconstruc-
Let the sampling period BE = 4. For this choice, it is easy to tion:
verify that

Fo=1[0,04)U[0.75,0.9) and F; = [0.25,0.5).

rank(g.,/cm(f)) = |ICm| a.e. f € Im (20)
7, =[0,0.15) and Z, = [0.15,0.25).
However, this condition does not address the issue of stability

Furthermore, (15) and Proposition 1 imply that of reconstruction and, hence, may be insufficient.
: Example 3: The necessary conditions reduce to a familiar
o 0,0),(0,1),(0,3),(1,1)}, if feT ; ) ) .
K% = {‘{{50:0;. El 1%? )41} if ]; c I;. form for the special case of a single-input, single-output (SISO)

channel, with? = P = 1. This case then corresponds to (single
Therefore, K1 = {0,2,6,3}, andK, = {0,3}. Finally, we channel) deconvolution of a multiband signak B(F) from
illustrate the vecto®'(f) the sampled outpyt The Fourier transform& () andY ( f) of
the channel input and the output, respectively, and the channel
transfer functiorG( f) are all scalar in this case. Thus, the spec-

X_z.(f) Xo (f — %) tral index set defined in (15) reduceska = {l f+ 1T €
X0 — /":‘;1(10) _ Xl)gf - 1) F ¢, and the modulated channel mat@xf) has only one row.
(f) = XOEQ o XO% ) Hence, the necessary condition for perfect reconstruction in (20)
X;(f) X, (lf ¥ %) is equivalent to the following set of conditions:

K1 <1 and G(f)#0, feF. (21)
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The first condition says that there must be no aliasing@fue The inner product and norm dt are defined as
to sampling, and the second one says that the channel transfer

function cannot have any nulls on the get (z,w) = / w (H)z(t)dt, z,wecH
These conditions can be easily rederived “from first princi- R
ples” as follows. Suppose that any € B(F) can be recon- llz|| =/ (z,z).

structed from the samples @f Then,z can also be recon- ) o -
structed fromy itself, but this is only possible if (4) can pbeWe now pre_sent an important definition for the stability of
inverted. The necessary condition Gi f) then follows. Re- MIMO sampling (see [29]). _ _
turning to the assumption thatcan be reconstructed from the Deéfinition 2: The MIMO sampling scheme is callestable
samples ofy, it follows thaty can also be obtained using (4)f there exist constantd, B > 0 such that
However, as we know from classical results on uniform multi-
band samplingy can only be obtained from its uniform samples Allz|* < llelnlll* < Blj=(” (23)
if its spectrum is not aliased. Noting that, owing to the condition net
onG(f), Y(f) is supported o, the nonaliasing condition in for all z(t) € H.
(21) follows. This definition is readily verified to correspond to the require-
These conditions do not, however, guarantee stability of ifyentthat the linear operator mapping signald io the samples
version. For instance, if:(f) takes arbitrarily small or large of the channel output be a bounded linear operator and have a
values forf € F, we cannotinvert (4) in a stable way. We studyounded inverse. Suppose thatand B are the smallest and
the stability and present necessary and sufficient conditions ifirgest such constants, i.e., the best frame bounds. Then, the
mediately following this example. ratio K = \/B/A > 1 is thecondition numbeof this linear
Finally, specializing the example further to pure singlgperator, and we call it the condition number of the MIMO sam-
channel sampling, consider the casef) = 1. In this case, pling scheme. It depends on the properties of both the channel
the necessary condition @#( f) holds trivially. The only other and the sampling of its outputs. As is well known in linear al-
necessary condition is the no-aliasing conditjgiy| < 1 for gebra[31], [32],K2 is a bound on the amplification of the nor-
perfect inversion. Incidentally, this condition is both necessagyalized error energy due to the reconstruction filters. It follows
and sufficient for stable inversion, as we know for the classicgdat stability of reconstruction as defined above implies that the
problem of uniform multiband sampling. condition number is finite and that errors in the inputs or in the
sampled outputs cannot produce arbitrarily large errors in the
reconstructed inputs.
The MIMO channel can be viewed as a linear transformation Next, we consider the frame-theoretic implications of (23)
(operator) from the class of input signals to the space of its sastable MIMO reconstruction. Define the diagonal matrix
ples. The condition in (20) on the channel and the input signals
is necessary for stable perfect reconstruction. However, it does  J(f) = diag(x(f € Fo), .-, x(f € Fr-1))  (24)
not suffice because it does not answer the important question ) . )
regarding stability of the reconstruction. In this section, we Wm/herex(f € F.) is the indicator function of the sét,.. Then,
use frame theory to study the stability of the MIMO samplin§/® Nave
problem. Recall the definition of a frame. o
Definition 1: LetH be a separable Hilbert space. A sequence THX(f) =X () (25)

{1/)”} - H is a frame if there exist COﬂStamtSB > 0 such that becauseX'T<f) is Supported orﬂ.‘r' In view of (25)’ we can

rewrite z,[n] as
Allz)l* <> @by 2)* < Bl !

B. Stable Sampling

2pln] = yp(nT) = / TG (X (f)df

forall z € H. If A = B, then the frame is a tight frame. R
The frame operata$, which is defined as _ /R 27T QL (F)I(F)X(f)df
Sz = (z,Yn)tn, Vo eH
2 A (26)

is a bounded linear operator satisfyild < S < BI, where h

I is the identity operator. Defing,, = S~'4,,. Then,{v, } is where

also a frame (thdual framég for H with frame bounds3—! and N — pi2nfnT J
A~' and anyz € H can be expressed as mlf)=e pe (1))

£ =Y (@ Pu)n =D (%) 0. (22)

n n

= Yplt) = /R J(HGH(f)e?= =T gp  (27)

for (p,n) € P x Z. Itis clear thatp,,, € H. Using Parseval’s
In the context of MIMO sampling, the relevant Hilbert spacgheorem and (27), we conclude that

is the class of input signals:

M= BURo) x - x B(Fr_1). @) = [ WE 000t = [ WX = 2 ln)
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Thus,z,[n] can be expressed as an inner produatandsy,,, € First, observe that
H, and consequently, (23) is equivalent to the condition that
{#pn} forms a frame foiH. Suppose we denote its dual frame 2% = / z(0)||2dt = / IX()%df

by {¢,,, : n € Z, p € P}, then, (22) yields the following re-
o O
[0,1/T]

construction formula:
(®) 2
neZpeP neZ peP = Xk, (HIIdf (34)
[0,1/T]

Thus, the frame-theoretic approach provides a reconstruction
formula and a bound on the output errors in terms of the congvhere the norms on the right-hand side of (34) are the Euclidean

tion number of the sampling operator. norms. The equalitya) above follows from (11), an¢b) fol-
lows becaus&’x, (f) captures all the nonzero entries®{ f).
C. Conditions for Perfect Reconstruction Next

Our next result provides necessary and sufficient conditions
on the channel matrix for stable MIMO reconstruction. Since > _ |lz[n]||* = / l|2[v]||?dv
our analysis will rely on the modulated channel and reconstruc- nez

tion matricesG(f) andH(f), the following proposition will (a) 9
turn out to be useful. B 7 Joaym AT VIIFdf

Proposition 2:If G, .(f) is continuous onF,, then ®) ’ )
G..x~(f) is continuous orZ,,, and the following “boundary =T /[0 . 1Gexc, (f)Xic, (HII*df (35)

condition” holds:

1 where(a) is obtained by a change of variables, &g from
Ge (T) =Gexar(0), K CZ. (28) (9) and the fact thak'sc, (f) captures all the nonzero entries of
X(f). Therefore, (32)—(35) yield

The quantityH(f) is continuous if and only if the entries of

H(f) are continuous on [Q,/7] and satisfy the boundary con- A= infT/ 1Gaic, (H)Xx, (I’ df
dition 0,1/7]
1 st e (Dl =1
Hio(7) = Hrora(0), £ C L. (29) oa/m
— 2

We do not care abou,,.( f) outside the closure of the s&t B =supl /[0 L] 1Gexc, (F) X, (FIIdf
becauseX,.(f) vanishes there. This explains why the conditions ’ R
for G(f) andH(f) are different in Proposition 2. We omit its S-t-/[ . Xk, (HIIdf = 1.

0,1

proof since it is quite straightforward, following directly from
(13) and (14) and the definition & . The boundary conditions
imply that the entries of the matrix, x(0) are shifted versions
of those ofG, x(1/T), with a similar relationship foHy .

Theorem 1: The best frame bounds for the MIMO samplin
problem are given by

Now, the claimed results in (30) and (31) follow immediatmly.
Note that a simple necessary condition for perfect reconstruc-
tion is thatP > |K™| for eachm € M. Clearly, multiple solu-
ghonsH (f) existto (19) if P > |K™| for somem. The average
sampling density for this sampling schemeHAsT. Now, (15)

implies that
A =ngﬁ)81i/nf] Amin (G, ()G, () (30)
l
B=T es8 SUpuas (67, (NGex, (/). (31) Kl =3« <f rhe ﬂ) |
fel0,1/1] reR leZ

In particular,A > 0 and B < oo are necessary and sufficientHence
conditions for stable reconstruction of the MIMO inputs.

Proof: We need to compute py py
[ k=Y [ xrem) =Y uF) @)
. [Ovl/T] r=0 " R r=0
= inf Z l|z[n]||? andB = sup S llzll* (32)
B ez B ez wherep(-) denotes the Lebesgue measure. Supposefthat

|K™| for all m; then, (36) reduces to
whereB is the set of input signals of unit combined energy:

P
B={zeH:|z|=1}. (33) T =2 mF)
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which coincides with the minimum necessary density fdhatZ; = [0,0.15), Zo, = [0.15,0.25], andXC; = {0,2,6, 3},
stable MIMO sampling [29] using any sampling scheme fd€, = {0, 3}. It can be verified numerically that
the channel outputs, whether uniform or not. In addition, note

t;)mai v|vlgmr|1ave uniqueness of the reconstruction filters when rank(Gu x, (f)) =4, VfeT;
The following corollary to Theorem 1 provides a simpler rank(Ge . (f)) =2, VS €T
sufficient condition for the stability of the MIMO sampling
scheme. where the matrice§, i, (f) andG, i, (f) are given by (37)

Corollary 1: Suppose that( f) is such thats,,,.(f) is con- and (38), shown at the bottom of the page.

tinuous forf € F,., andG, i~ (f) has full column rank for all ~ SinceG(f) is continuous, we conclude using Corollary 1 that

m € M, f € L, = [Ym,VYm+1]. Then, the MIMO sampling stable perfect reconstruction of the inputs is possible from the

scheme is stable, i.e{4},,, } forms a frame. channel output samples. Hence, it suffices to sample each output
Proof: By Proposition 2, we have continuity 6§ - (f) ataratel/T = 0.25 for perfect stable reconstruction of the

on the compact sef,,. Therefore, both the smallest and thehannel inputs, instead of the sampling them at a éf€) =

largest eigenvalues G‘f’h (f)Ge xcm (f) are continuous func- 0.65, which is required for the naive approach. However, we see

tions onZ,,. Since the smallest eigenvalue is strictly positivéh Example 6 that the reconstruction filter matéik( f) would

for all f € [0,1/7] by hypothesis, it follows that the infimum necessarily have to be discontinuous. Finally, note that the total

in (30) is attained, implying that > 0. Similarly, B < oo be- combined sampling density of the outputdisT’ = 1, whereas

cause the supremum in (31) is attained. m the minimum density, as dictated by [29]4i6F0) + u(F1) =
We illustrate the MIMO sampling result of Theorem 1 for &.8.
simple MIMO channel. In Example 4, we showed that the combined sampling den-

Example 4: Consider a MIMO channel wittR = 2 inputs  Sity of 1 is achievable, but the lower bound on this density is 0.8.
andP = 4 outputs having the following transfer function ma-Therefore, we could potentially find a nonuniform MIMO sam-

trix: pling scheme that closes the gap. In fact, this is precisely what
we are going to show in the following example.
1 1 Example 5:Let the inputs signal characteristics and the
1 1 4 e—327f channel transfer function matrix be the same as in Example
G(f) = e—i2nf 0.25 4 e—d4=f | - 4. In this specific example, we show that by using a proper
14 0.5e=927f | 4 e—d4rf nonuniform sampling strategy at the outputs, we can achieve

the minimum combined sampling rate for all the output
channels equal to the sum of measures of the input spec-
tral supports [29]. Let the channel outputs be sampled on
the setsA, = {20n + Ay, : & = 0,..., K, — 1}, where
(K17K27K37K4) = (0737578) and

Let the input spectrd&,(f) and X (f) have supports as illus-
trated in Fig. 2, i.e.,

Fo=1[0,04)U1[0.75,0.9) and F; = [0.25,0.5).

0, p=0
Each output is a multiband signal supported®or: FoUF1 = () o< < g1 = {1,8,14}, p=1
[0,0.5)U[0.75,0.9). Note that a naive way to reconstructthein- \ 7~ ~ b {2,5,8,13, 18}, p=2
puts is to first reconstruct the individual outputs and then invert {0,2,4,5,7,8,14,17}, p=3.

the channel. This method requires a minimum sampling rate of

u(F) = 0.65 for each channel output. However, we demorkvidently, these are all periodic nonuniform sampling sets
strate in this example that we do not need to sample each outipating a common period dI' = 20 and consisting of 16
atits minimum rate to achieve perfect reconstruction, but we caosets in all. Hence, the modified MIMO channel has a transfer
jointly reconstruct them from fewer samples. Let the samplirfgnction matrixé(f) of size 16x 2, and its rows can be worked
period bel’ = 4. For this choice, we have seen in Example 8ut as in Example 1. Since the band edge&gpandF; are all

1 1 1 1
1 1 1 1 1+ e—327(f+1/4)
Gox:i(f) =7 o—i2nf =2 (f4+1/4) e—I2n(f43/4) (.95 4 g—it(F+1/4) (37)
14057927 1 40.5e327(f+1/49) 1 4 (0.5e=027(f+3/4) 1 4 g—d4r(f+1/4)
1 1
1 1 1 4 e—32n(f+1/4)
gO,ICz (f) = Z e—i2nf 0.25 + e—j47!'(f+1/4) : (38)

14 0.5e7927f 1 4 e 74n(f+1/4)
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multiples of 0.05, we trivially obtail/ = 1,Z; = [0,0.05), is guaranteed. We will first prove the necessity of (39) and (40).
and The first condition in (18) states that

K1 = {0,2,4,6,8,10,12, 14, 30, 32, 34}U{11, 13, 15,17, 19}. He, o(PGar,(f) = I, ae 42)
r-® oK r - f U

Now, (j.xl(f) is a continuous 16& 16 matrix, whose rank is ) ] )

verifiable to be 16 for allf. By Corollary 1, we conclude that ' nerefore, suppose thak(f) is a continuous solution of (42);
stable and perfect reconstruction of the channel inputs is p§a€": Proposition 2 implies thdtc- +(f) andGe - (f) are
sible from these periodic nonuniform MIMO samples. In facontinuous functions in the interior &f,, and, in fact, (42) must
the stability bounds ard = 8.0724 x 10~4 andB = 3.6833 hold for all f € int Z,,, and not just a.e., because both sides of

implying that the condition numbek = \/B—/A — g7.5487. (42) are gontinuous funct.ions. Now, (39.) follows immet_:iiately.
The sampling density ot is d, = K,,/T so that Next, Igttmgf 1l 71 = 0in (18) and using the continuity of
H(f) gives us

(do,d1,d2,ds) = (0,0.15,0.25,0.5)
is an achievable point in density region for stable sampling. Ob- Hict 0(0)Ge 1 (0) = Ty Hicyo(0)Gex, (0) = 0 (43)
viously, the densitie§ly, dy, d2, d3) must meetall the necessary, hile letting f 1 vas41 = 1/T in (18) instead, and using (28)
conditions for stable sampling derived in [29]. In particular, thg, (29), we obtain
total combined sampling rate of all the outputd g7 = 0.8,
which is precisely equal to the minimum joint sampling density Hicrtop,e(0)Ge xrrer(0) =1 x|
required, namely,(Fo)+u(F1). Finally, we learn from this ex- H ’ (0)G o 0)=0 (44)
ample that we need not sample the different outputs at the same K ®R e\ T kMR '
rate. In fact, one of the channels is not sampled at all, Un”keébmbining (43) and (44), we obtain the following set of neces-
Example 4, where, due to uniform sampling, we required Sary conditions:
ples from all channel outputs.

Hjl 7'(0)g07(71 (0) = Ile \

Theorem 1 does not guarantee the existence of a continuous Hta(0)Ge.7:(0) =0 (45)
filter matrix H(f), which, as we have seen earlier, may be dgghere 7, = i, U (KM @ R). Using a similar continuity argu-
sirable from an implementation point of view. The followingnent in the vicinity ofy,, for m = 2, ..., M yields
theorem shows that under a stronger set of conditions, we can
guarantee the existence of a continuous filter malfiy ). We Hi, o(Vm)Ge,7,, (Ym) =17,

begin with a lemma.
c.e m ° m :0 46
Lemmal: LetC(f) € CP*4 (withp > g)andD(f) € C"*¢ Hs0(m)Ge,7, (Ym) (46)
where 7,, = K™ U K™~!. Hence, (40) is necessary to meet

D. Existence of Continuous Solutions

be matrix-valued continuous functions pfe [«, 5] such that
rankIC(f) =q fpr all f € [a, 3], and letE,, Ez € C"™*P be  gnditions in (45) and (46).
matrices satisfying To prove sufficiency of (39) and (40), we construct an appro-
E.C(a) =D(a) and EsC(B) = D(B). priate reconstruction matrix(f) that is continuous irf and -
’ satisfies the boundary condition in (29), as well as the defining

Then, there exists a continuous(f) € C™7 such that reconstruction conditions in (18). We first define the function
E(f)C(f) = D(f)forall f € [, 8] and thatEi(a) = E, and  3( ) on the following finite set of frequencigsy,,, : m € M}:
E(B) = Ej are satisfied.

The proof of Lemma 1 can be found in the Appendix. We ~ H; o(vn) = giyjm (Ym):  Hze o(vm) = 0. 47
can now derive the conditions for the existence of continuous
reconstruction filters that achieve perfect reconstruction. Then, to satisfy (29), we define

Theorem 2: Suppose that the MIMO transfer function matrix
G(f)is suchthats,,.(f) is continuous forf € F,. Then, there Hiriro (l) —Hz,4(0) =G}, (0)
exists a reconstruction filter matriff ( f) that is continuous in { ’
f that achieves stable and perfect reconstruction of the MIMO Hjml,, (T) :HJXHIOR,,(()) =Hyg:e(0)=0
channel inputs if and only if

. m . where
rank(Ga o (f)) = K™, Vf €IMLy = (Y, Ym41)  (39) »
rank(Ga, 7,. (Ym)) = |Tm|, m € M. (40) Tus1=J16 R=(Kio R)UKM.
where Therefore, using (28), we now have
TImn =KmUK™ Y m=2,... M 1 1 1
’ —) =g — . —) =
Ji =K1 U (KM @ R). (41) HjM“”(T) =Ge g (T) HJMH”(T) 0. (48)

Proof: First, note that the hypotheses in this theorem aii®@ complete the proof, it suffices to construat@ntinuous ex-
stronger than those of Corollary 1. Thus, stable reconstructiamsiori(f) on [0,1/T7] that satisfies (18), (47), and (48). With
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the intention of applying Lemma 1, define the following quan
tities:
121 b
s
o ="Ym o)
C(f) =G (f) /\/,/«
E, = ( HKm’.(OO > :éaa- b
H(JmUjm+1)\Km,0(O‘) m_g
B =Ym+1 «fE
I“le §o,s— k
o= ("5)
0.4
Bo= (o, " ) g
‘ H(ijJm+1)\/Cm,0(ﬂ) 0zl
Observe thaC(f) = G = (f) has full column rank forf €
[Yms Ym+1]. Moreover, usingC™ C 7,, andK™ C Jpno1, it % 005 o o1s 02 025
follows from (47) that Frequency f

Fig. 4. Smallest and largest eigenvaluesSof ).

E.C(a) = (II’B’”) — D(a)
Hence,P > max,, |J.| = 5is necessary for the existence of a
EsC(B) = (IIKml) = D(B). continuoudH ( f), and clearly, the transfer function mata f)
0 of Example 4 does not suffice. Therefore, let us append a new

Thus, we have verified all the technical conditions required {r(}):N beneath the last row @ (f), thereby making the MIMO

. . channel a two-input five-output channel:
Lemma 1, and we are guaranteed a continuous solution

1 1
E(f) — (H HIC’”,'(f) ) 1 1+ e—]'27'7f
(T UTme\K™ 0 (f) G(f) = e=3%mf 0.25 4 e=iS
: - - 1+ 0.5e7927f 14 ¢=947]
that meets the desired boundary conditions and satisfies 0.25 4 e—4n T o—i2nf
Hicro(f)Gexcm (f) =1k, and The rank condition in (39) holds because the maixc ( f)
H 70T\ 0 ([)Gexm(f) =0 (49) of Example 4 has full column rank, and adding an extra row to
G(f) (and hence t@(f) as well) does not lower the column
for f € [V, Vm+1]- We also define rank ofG, o (f). Fig. 4 depicts the smallest and largest eigen-

values of the matrix

H(J,,,,uj,v,H)C,o(f) =0, f € [7m77m+1]' (50) -
S(f) = o,le(f)QO,/Cf<f)

Therefore, (49) and (50) provide us with a continuous extension
for H(f) on [ym,vm+1] that satisfies (18) for eacln € M  as afunction of frequency. Note that the discontinuities in these
and, hence, for the entire interval [0/T]. BecauseH(f) by plots are expected becaukg (f) is piecewise constant with
construction also satisfies the boundary conditions (29), the cahiscontinuities at the cell boundaries, i.e..fatz y1 = 0.15
tinuity of H( f) follows by Proposition 2. m inthis case. A numerical calculation yields the following frame

Remark 1: A simple necessary condition for perfect reconbounds for the MIMO sampling scheme:
struction using continuous reconstruction filters is tiat>
max,, | i |- A= feﬁ)sli/an] Amin(T'S(f)) = 0.1251

Remark 2 Although the continuity of the_ entries @¥(f) _ B= esssuphma(TS(f)) = 1.1105.
was essential in the above proof, it is not strictly necessary as it Fe0.1/T]
is possible to carefully construct examples where a continuous

H(f) exists, even thougl¥(f) may be discontinuous. Hence, the condition number ig’B/A = 2.9790. The other
Example 6: The purpose of this example is to illustrate Therank condition in (40), which needs to be verified at cell bound-
orem 2. Assume thal = 2 and7 = 4 and that the input aries, also holds. Now, Theorem 2 guarantees the existence of a
spectra have the same form as in Examples 2 and 4. The®,  continuous filter matrixH ( f) that achieves perfect reconstruc-

{0,2,6,3} andK; = {0, 3}. In addition, the index sets definedijgn of the MIMO channel inputs.
in (41) are The proof of Theorem 2 also provides, in principle, a method
to construct a continuous reconstruction filter math f)
T =K1 U (K2 2) ={0,2,6,3,5} when the conditions for its existence are satisfied. Specifically,
T2 =K UKy ={0,2,3,6}. fix H(f) at the boundary points per (47) and (48), and then find
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a continuos solutiorH( f) to the systems of linear equationdt follows that E1C(«) = E2C(3) = 0, implying that

(49) and (50) forf € [Ym,Ym+1],m € M. The solution
to these equations is, in general, nonunique, and a particular
solution can be selected using additional criteria (for examples
of such designs in the single channel case, see [33]). For

E1Py C(a)) = E2Pr(C(5)) = 0- (A.1)

ow, take

example, the minimum norm solution will lead to minimurrE(f) = D()C(f)

amplification of additive white noise on the sampled signals
(due to e.g., quantization error). In any event, the final filter
matrix H(f) is obtained front{(f) via (14).

(f —a) (B-1)
+<(ﬂ— oz)E2 e a)E1> (s = Prcsy)-

This is a valid solution because it is continuous and meets the
V. CONCLUSION requirements

In this paper, we studied the uniform MIMO sampling

problem. This scheme encompasses periodic nonuniform mul- E

ticoset sampling, Papoulis’ generalized sampling, and vector
sampling schemes as a special cases. The MIMO problem

(HC(f) =D(f) + (U — g, B0 El)

(8- a) (B—a)
x (C(f) - P’R(C(f))c(f)) = D(f)

is motivated by the problem of channel equalization from E(a) =D(a)C'(a) + E; —E\Py 0y = Ea
the sampled channel outputs. We presented necessary and E(3) = D(B\C! B — EP _E
sufficient conditions for perfect reconstruction of the signals () (BYCHB) + Bz = B2Pr ¢ s, pr
or, equivalently, perfect inversion of the channel, when thene |ast two equations follow from (A.1). -

input signals lie in the space of multiband signals with different
band structures. We also presented the appropriate conditions
for the existence of reconstruction filters with continuous 1
frequency responses and specified them as solutions to ‘[;1
system of linear equations. The continuity property is important
for the implementation of the reconstruction system becausd?
continuity allows arbitrarily closé{> approximation of the

filter responses by sufficiently long FIR filters. We address the [3]
problem of reconstruction filter design using FIR filters in [34].
Finally, we demonstrated that in some cases, the sum sampling
rate by multicoset sampling can equal the lower bound on the
sampling density derived in [29]; however, the question of 5]
whether these lower bounds are generally achievable remain%

open.
[6]

APPENDIX
PROOF OFLEMMA 1 (71
Observe thaC? (f)C(f) is nonsingular for allf € [a, (]

because rank(f) = ¢. In fact (8l
CH(f)C(f) > 621(17 fe [O@ﬂ] [9]

wheree is the minimum value of the smallest singular value of
C(f) on [a, B): [10]
. . [11]

= f min C = min C 0.
€= dnf o ) i o (c(f) >

This is becaus€( f) is continuous, implying that,,;n (C(f)), [12]

which is also continuous on the compact getd], attains its
infimum. Therefore (13]

clf) =(c"hHew) et () [14]
Prcoy =CWHCT(HC) e (f) [15]

are also a continuous functions pfNote thatP, ;) isthe ¢
orthogonal projection onto the range spac€¢f). Define

E,:=E, — D(a)C'(a) [17]
E, :=Es - D(B)C'(H).
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