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Nonuniform MIMO Sampling of Multiband Signals
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Abstract—We examine a multiple-input multiple-output
(MIMO) sampling scheme for a linear time-invariant con-
tinuous-time MIMO channel. The input signals are modeled as
multiband signals with different spectral supports, and the channel
outputs are sampled on either uniform or periodic nonuniform
sampling sets, with possibly different but commensurate intervals
on the different outputs. This scheme encompasses Papoulis’
generalized sampling and several nonuniform sampling schemes
as special cases. We derive necessary and sufficient conditions
on the channel and the sampling rate that allow stable perfect
reconstruction of the inputs or, equivalently, perfect inversion of
the channel. From an implementation viewpoint, we note that it is
desirable that the reconstruction filters have continuous frequency
responses. We derive necessary and sufficient conditions that
guarantee this continuity property. The frequency responses of the
reconstruction filters are specified as solutions to a system of linear
equations. Finally, we demonstrate that perfect reconstruction
may be possible, even when the channel outputs are sampled at an
average rate that does not allow the reconstruction of any output
from its samples alone. In certain instances, this average rate can
achieve the recently presented fundamental bounds on MIMO
sampling density.

Index Terms—Interpolation, MIMO equalization, min-
imum-rate sampling, multiband signals, multichannel deconvo-
lution, multiple-input-multiple-output channel, reconstruction,
source separation, stable sampling.

I. INTRODUCTION

T HE study of multiple-input multiple-output (MIMO)
channel equalization is motivated by applications in

multichannel deconvolution and multiple source separation.
Some example applications where MIMO channels arise
are multiuser or multiaccess wireless communications and
space-time coding with antenna arrays or telephone digital
subscriber loops [1]–[4], multisensor biomedical signals [5],
[6], multitrack magnetic recording [7], multiple speaker (or
other acoustic source) separation with microphone arrays [8],
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[9], geophysical data processing [10], and multichannel image
restoration [11], [12].

In practice, the MIMO channel equalizer is implemented
using digital signal processors. However, the channel inputs and
outputs are continuous-time signals, implying that the channel
outputs need to be sampled prior to processing by the digital
system. Hence, the problem is equivalent to reconstructing the
channel inputs from the sampled output signals. In other words,
the MIMO channel inversion problem can be restated as one
in sampling theory, and we call this sampling schemeMIMO
sampling.

To focus on the sampling issues, we restrict our attention
in this paper to the scenario of a linear time-invariant con-
tinuous-time MIMO channel with known frequency response
matrix. The harder problem of sampling conditions for blind
channel inversion is left for future work.

The study of MIMO sampling has useful practical implica-
tions. Most work to date on multichannel deconvolution has
addressed discrete-time channel models, apparently assuming
that each output is sampled at the appropriateNyquist ratesuf-
ficient for reconstruction of each output. Here, Nyquist rate is
defined as the smallest uniform sampling rate that guarantees no
aliasing. i.e., no overlap of the signal’s spectral support with its
translates by multiples of the sampling frequency. However, as
we demonstrate in this paper, this is not necessary, and appro-
priately chosen uniform or nonuniform sampling schemes with
lower average sampling density can suffice for perfect recon-
struction of the MIMO channel inputs.

Although motivated by real-world problems, MIMO sam-
pling is an important problem in sampling theory in its own
right. Several sampling schemes can be expressed as special
cases of the MIMO setting. For example, for a single-input mul-
tiple-output (SIMO) channel, the outputs are filtered and uni-
formly sampled versions of a single input signal. In other words,
this is precisely Papoulis’ generalized sampling [13]. Addition-
ally, if the channel filters are chosen to be pure delays, one ob-
tains multicoset or periodic nonuniform sampling of the input
which has been widely studied [14]–[25], as it allows us to ap-
proach the Landau minimum sampling rate for multiband sig-
nals [26]. Seidner and Feder [27] provide a natural general-
ization of Papoulis’ sampling expansions for a vector inputs
whose components are bandlimited to [, ]. Their sampling
scheme is clearly a special case of MIMO sampling. We deal
only with multiband signal spaces; see [28] for some results on
multichannel sampling for general signal spaces such as wavelet
and spline spaces.

Fig. 1 is the block diagram for MIMO sampling. The channel
is shown to the left of the dashed line, and its inputs are
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Fig. 1. MIMO sampling problem.

Fig. 2. Example multiband spectraX (f) andX (f) of the inputs to a
two-input MIMO channel.

assumed to be continuous-time signals. The channel is modeled
as a linear time-invariant system. The channel outputs are sam-
pled at a uniform rate of to produce discrete-time sequences

. From a practical viewpoint, we can interpret this as the
sampling step prior to processing digitally. The reconstruction
block, which is shown to the right of the dashed line, inverts the
MIMO channel to produce estimates of the input signals.
The MIMO channel and the specral supports of the inputs are
assumed to be given and fixed by the nature of the problem. We
have the freedom to choose the sampling scheme for the out-
puts of the channel and design the reconstruction system. We
emphasize that the focus of this paper is on sampling, motivated
by the interest in all-digital processing. Hence, we assume that
continuous-time operations such as filtering and modulation of
the continuous-time MIMO outputs (or the inputs) prior to sam-
pling them are not allowed.

As appropriate in many applications, we assume the input
signals are multiband, with possibly different band structure
(spectral support) for the different inputs. Fig. 2 shows such an
example for a two-input MIMO channel, which will be used
throughout the paper for illustrative purposes. (In this example,
the spectra are one-sided, i.e., supported only on positive fre-
quencies, so that the signals are complex-valued.)

The problem we address in this paper is a special, uniform
sampling case of the general MIMO sampling problem intro-
duced in [29] and [30]. We study the following issues in this
paper: a) the relation of stable MIMO sampling to frame theory
and b) the necessary and sufficient conditions on the channel
allowing to achieve perfect reconstruction of the inputs under
uniform sampling. Even though we consider onlyuniformsam-
pling of the MIMO channel outputs, we will see later that this
sampling scheme is fairly general, and it encompasses most pe-
riodic nonuniform sampling of the channel outputs, with sam-
pling at different rates on different channels.

We derived necessary sampling density conditions for the
general MIMO sampling problem in [29] and [30]. We showed
that stable sampling and reconstruction of the inputs imposes
lower bounds on the sampling densities on the various chan-
nels, regardless of whether the sampling is uniform or not. These

results are analogues of Landau’s classic minimum density re-
sults for multiband single-channel sampling [26]. It is not clear
whether those conditions are sufficient; however, they indicate
the potential for reduction in the sampling density needed for
stable sampling, relative to the Nyquist rate sampling of each
channel output. In this paper, we demonstrate how to achieve
stable sampling and reconstruction at rates close to the min-
imum density. We can think of these results as partial suffi-
cient conditions for stable MIMO sampling, although we do not
provide explicit bounds on the sampling densities themselves.
These results thus complement our results in [29].

This paper is organized as follows. Section II formulates the
problems and introduces some notation and definitions used in
the rest of the paper. In Section III, we present models for the
channel and reconstruction, demonstrating that various nonuni-
form sampling schemes can be reduced to uniform sampling of
the outputs of a modified channel. Section IV deals with the
problem of perfect reconstruction of the channel inputs. We
explore the connection between MIMO sampling and frame
theory. The computation of the frame bounds enables us to de-
termine necessary conditions on the input signal spaces, the
channel characteristics, and the sampling rate for the existence
of reconstruction filters that achieves stable and perfect recon-
struction of the inputs. We also present additional conditions
under which there exist reconstruction filters that are contin-
uous in the frequency domain. This, as elaborated upon later, is
important from the viewpoint of finite impulse response (FIR)
filter design.

II. DEFINITIONS AND NOTATION

We denote the Fourier transform of a continuous-time square-
integrable signal by

Similarly, for a discrete-time signal , we define its Fourier
transform to be

In general, we denote discrete-time and continuous-time signals
(either scalar-valued or vector-valued) using lower-case letters
and their Fourier transforms by the corresponding upper-case
letters. Let the class of continuous, finite-energy signals ban-
dlimited to the set of frequencies be

(1)

Denote the class of complex-valued matrices of size
by , the conjugate-transpose ofby , and its pseudo
inverse by . The identity matrix of size is denoted by

and the zero matrix by0. Let and denote
the largest and smallest eigenvalues of a matrix with real eigen-
values.

For a given matrix , let denote the submatrix of cor-
responding to rows indexed by the setand columns by the set

. The quantity denotes a submatrix formed by keeping
all rows of but only columns indexed by, whereas
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denotes the submatrix formed by retaining rows indexed by
and all columns. We use a similar notation for vectors. Hence,

is the subvector of corresponding to rows indexed by
. We always apply the subscripts of a matrix before the su-

perscript. Therefore, is the conjugate-transpose of .
When dealing with singleton index sets or ,
we omit the curly braces for readability. Therefore, and

are the th row and the th column of , respectively. For
convenience, we always number the rows and columns of a fi-
nite-size matrix starting from 0. For infinite-size matrices, the
row and column indices range over.

We denote the indicator function by . Next, suppose that
is a subset of or , and is an element of or . Then

mod mod

denote, respectively, the positive and negative translations,
scaling, and the modulus of by . Let denote the
Lebesgue measure and intand the interior and closure of
a set , respectively. Let denote the cardinality of a
finite set . Finally, let ess inf and ess sup denote the essential
infimum and supremum, i.e.,

ess inf a.e.

ess sup a.e.

for any real function , where “a.e.” stands foralmost every-
where.

III. SAMPLING AND RECONSTRUCTIONMODELS

Let the input and output signals of the MIMO channel de-
picted in Fig. 1 be represented in vector form as

(2)

For convenience, define and
. These sets index the components of the input

and the output vectors. For each , we model as a
multiband signal , where the spectral support
is a finite union of disjoint intervals:

(3)
We model the MIMO channel as a linear and shift-invariant

system. Thus, we can write

where denotes convolution, and

...
...

...

is the impulse response matrix of the channel. Therefore

(4)

where , , and are the Fourier transforms of ,
, and , respectively. In particular, is thechannel

transfer function matrix. The channel outputs are sampled at
, , and we denote these output quantities by

or in matrix form by

Then, using (4), it is clear that

(5)

We model the reconstruction block as follows:

(6)

where

...
...

...

It is clear from (6) that the entire MIMO system (consisting
of the channel, the samplers and the reconstruction block) is
invariant to a time-shift by a multiple of , i.e.,

Conversely, (6) is the most general linear transformation that al-
lows this invariance. Taking its Fourier transform and rewriting
in matrix form yields

(7)

where , which is the Fourier transform of , is there-
construction filter matrix. Owing to the periodicity of , we
can rewrite (7) as

(8)

We can now rewrite (5) and (8) compactly as

(9)

(10)
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for , where and are themodulated input
and reconstructed vectors, whose entries are

(11)

(12)

whereas and are themodulated channel and recon-
struction matrices, whose entries are

(13)

(14)

Note that even though these matrices have infinitely many
columns or rows, only a finite summation is involved in (9) be-
cause the components of are bandlimited, implying that
only a finite number of entries in are nonzero. In the next
section, we seek conditions on the channel and the inputs that
guarantee perfect reconstruction of the input signals or, equiva-
lently, perfect inversion of the channel.

We consider only uniform sampling in this paper. Fortunately,
most periodic nonuniform sampling schemes can be expressed
as special cases of uniform sampling. To see this, consider the
following situation where theth channel output is sam-
pled at

The period of the sampling pattern for theth output channel is
, and the average sampling density of theth output is .

First, consider the case where all the periods are equal, i.e.,
. Then, we can write

In other words, is composed of a union of uniform
sampling sets of density . Consider a hypothetical MIMO
channel whose transfer function matrix is obtained by per-
forming the following modification to . We replace the
th row of , namely , by the following rows:

, . The new channel
matrix has rows, and the samples of the new outputs
taken at are precisely equal to the samples of the
old MIMO channel outputs taken on the periodic nonuniform
sampling sets and reordered. Next, suppose that the
different channels have unequal butcommensuratesampling
periods, i.e., that the ratios of sampling periods are rational
numbers for some , and .
In this case, a common period for all the sampling sets is

, and an argument, as before, allows us to convert this
to uniform sampling of the outputs of a hypothetical MIMO
channel. The upshot of this argument is that most periodic
nonuniform sampling (except those with noncommensurate pe-
riods) may be recast as a uniform sampling problem. Of course,
the price to be paid is that the hypothetical MIMO channel has
many more outputs. We illustrate this in the following example.

Fig. 3. Commensurate periodic nonuniform sampling sets.

Example 1: Let be the channel transfer function matrix
of a MIMO channel with outputs. Let the sampling sets
for the channel outputs be as depicted in Fig. 3, i.e.,

These sets are clearly commensurate because sampling periods
and are such that is rational. A common

period for the two sampling sets is obviously 6. Indeed, we have

Hence, the modified channel has six outputs, and the rows of its
transfer function matrix are given by

If the outputs of the hypothetical channel are sampled uniformly
at , , we essentially obtain a reordered sequence of
the samples of the original MIMO channel outputs taken on the
samples sets and .

We have shown that commensurate periodic nonuniform sam-
pling is really uniform sampling in disguise because their equiv-
alence is shown using the above modification trick. Therefore,
the study of uniform sampling automatically provides answers
to the commensurate periodic nonuniform sampling problem. In
the subsequent sections, we present results for uniform MIMO
sampling only.

In practice, we would usually only attempt to reconstruct
a version of the set of inputs that is uniformly sampled at a
sufficiently high rate and implement using FIR filters.
The continuous-time version could then be reconstructed by
a bank of conventional D/A converters on the reconstructed
discrete-time signals. In particular, it would be desirable to use
a reconstruction filter matrix that is continuous in .
The reason for this is roughly the following. Recall that a real
function on a real compact set can be approximated arbitrarily
closely (in the sense) by polynomials if the given function
is continuous. Similarly, if is continuous in , we can
approximate the matrix function arbitrarily closely in
the sense (and thus ensure an arbitrarily small worst-case

reconstruction error) by choosing sufficiently long FIR
filters. Although we will not delve into implementation issues
in this paper, we do consider both cases (with andwithout the
continuity requirement imposed on ) in the next section,
when we derive conditions for perfect reconstruction.
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IV. PERFECTRECONSTRUCTION

A. Preliminaries

We begin with some definitions. Define the following two
spectral index setsat frequency :

(15)

In other words, is a function of whose entries are indices
of the nonvanishing elements in the list . Note

that and contain the same information because the map
from the pair to a single index is
invertible. In addition, let denote the complement
of . We now have the following proposition.

Proposition 1: Suppose that sets , have multiband
structure, as defined in (3), and thatis the sampling interval
size. Then, is piecewise constant on [0, ), i.e., there ex-
ists a collection of disjoint intervals of the form , and
sets , such that for and

This result is easily demonstrated by using an argument very
similar to the one in [25] for multicoset sampling. Hence, we
can write

such that , and .
Example 2: In this example, we illustrate the sets in (15) and

the modulated input vectors for a simple case. Consider a MIMO
channel with inputs, and input spectra and
that have supports as illustrated in Fig. 2, i.e.,

and

Let the sampling period be . For this choice, it is easy to
verify that

and

Furthermore, (15) and Proposition 1 imply that

if
if .

Therefore, , and . Finally, we
illustrate the vector

...

...

...

...

For , the only nonvanishing components of are
, , , and , whereas for , they are
and .

In the sequel, we derive the conditions on the channel and the
spectral supports of the channel inputs for the existence of
a reconstruction filter matrix that achieves perfect recon-
struction of the inputs. We consider both caseswith andwithout
the continuity requirement imposed on the channel and recon-
struction filters. As we will see later, the continuity of
may also require the continuity of the channel transfer function
matrix .

Necessary Condition for Perfect Reconstruction:In the
next subsection, we use frame theory to derive necessary and
sufficient conditions for stable and perfect reconstruction of the
channel inputs, but we first present a simple necessary condi-
tion. From (15), it is clear that all the nonzero entries of
are captured in the subvector , and hence, we can rewrite
(9) and (10) together as

(16)

and (17)

For perfect reconstruction, we require the existence of
such that a.e. It is clear that this would happen if
and only if

a.e.

a.e. (18)

where is the number of elements of . This can be ex-
pressed more compactly as

(19)

Since , we require that have full
column rank a.e. This condition guarantees that a solution (pos-
sibly nonunique) to (19) exists. In view of Proposition 1, we now
obtain the following necessary condition for perfect reconstruc-
tion:

rank (20)

However, this condition does not address the issue of stability
of reconstruction and, hence, may be insufficient.

Example 3: The necessary conditions reduce to a familiar
form for the special case of a single-input, single-output (SISO)
channel, with . This case then corresponds to (single
channel) deconvolution of a multiband signal from
the sampled output. The Fourier transforms and of
the channel input and the output, respectively, and the channel
transfer function are all scalar in this case. Thus, the spec-

tral index set defined in (15) reduces to

, and the modulated channel matrix has only one row.
Hence, the necessary condition for perfect reconstruction in (20)
is equivalent to the following set of conditions:

and (21)
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The first condition says that there must be no aliasing ofdue
to sampling, and the second one says that the channel transfer
function cannot have any nulls on the set.

These conditions can be easily rederived “from first princi-
ples” as follows. Suppose that any can be recon-
structed from the samples of. Then, can also be recon-
structed from itself, but this is only possible if (4) can be
inverted. The necessary condition on then follows. Re-
turning to the assumption thatcan be reconstructed from the
samples of , it follows that can also be obtained using (4).
However, as we know from classical results on uniform multi-
band sampling, can only be obtained from its uniform samples
if its spectrum is not aliased. Noting that, owing to the condition
on , is supported on , the nonaliasing condition in
(21) follows.

These conditions do not, however, guarantee stability of in-
version. For instance, if takes arbitrarily small or large
values for , we cannot invert (4) in a stable way. We study
the stability and present necessary and sufficient conditions im-
mediately following this example.

Finally, specializing the example further to pure single
channel sampling, consider the case . In this case,
the necessary condition on holds trivially. The only other
necessary condition is the no-aliasing condition for
perfect inversion. Incidentally, this condition is both necessary
and sufficient for stable inversion, as we know for the classical
problem of uniform multiband sampling.

B. Stable Sampling

The MIMO channel can be viewed as a linear transformation
(operator) from the class of input signals to the space of its sam-
ples. The condition in (20) on the channel and the input signals
is necessary for stable perfect reconstruction. However, it does
not suffice because it does not answer the important question
regarding stability of the reconstruction. In this section, we will
use frame theory to study the stability of the MIMO sampling
problem. Recall the definition of a frame.

Definition 1: Let be a separable Hilbert space. A sequence
is a frame if there exist constants such that

for all . If , then the frame is a tight frame.
The frame operator , which is defined as

is a bounded linear operator satisfying , where
is the identity operator. Define . Then, is

also a frame (thedual frame) for with frame bounds and
, and any can be expressed as

(22)

In the context of MIMO sampling, the relevant Hilbert space
is the class of input signals:

The inner product and norm on are defined as

We now present an important definition for the stability of
MIMO sampling (see [29]).

Definition 2: The MIMO sampling scheme is calledstable
if there exist constants such that

(23)

for all .
This definition is readily verified to correspond to the require-

ment that the linear operator mapping signals into the samples
of the channel output be a bounded linear operator and have a
bounded inverse. Suppose thatand are the smallest and
largest such constants, i.e., the best frame bounds. Then, the
ratio is thecondition numberof this linear
operator, and we call it the condition number of the MIMO sam-
pling scheme. It depends on the properties of both the channel
and the sampling of its outputs. As is well known in linear al-
gebra [31], [32], is a bound on the amplification of the nor-
malized error energy due to the reconstruction filters. It follows
that stability of reconstruction as defined above implies that the
condition number is finite and that errors in the inputs or in the
sampled outputs cannot produce arbitrarily large errors in the
reconstructed inputs.

Next, we consider the frame-theoretic implications of (23)
stable MIMO reconstruction. Define the diagonal matrix

diag (24)

where is the indicator function of the set . Then,
we have

(25)

because is supported on . In view of (25), we can
rewrite as

(26)

where

(27)

for . It is clear that . Using Parseval’s
theorem and (27), we conclude that
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Thus, can be expressed as an inner product ofand
, and consequently, (23) is equivalent to the condition that

forms a frame for . Suppose we denote its dual frame
by ; then, (22) yields the following re-
construction formula:

Thus, the frame-theoretic approach provides a reconstruction
formula and a bound on the output errors in terms of the condi-
tion number of the sampling operator.

C. Conditions for Perfect Reconstruction

Our next result provides necessary and sufficient conditions
on the channel matrix for stable MIMO reconstruction. Since
our analysis will rely on the modulated channel and reconstruc-
tion matrices and , the following proposition will
turn out to be useful.

Proposition 2: If is continuous on , then
is continuous on , and the following “boundary

condition” holds:

(28)

The quantity is continuous if and only if the entries of
are continuous on [0, ] and satisfy the boundary con-

dition

(29)

We do not care about outside the closure of the set
because vanishes there. This explains why the conditions
for and are different in Proposition 2. We omit its
proof since it is quite straightforward, following directly from
(13) and (14) and the definition of . The boundary conditions
imply that the entries of the matrix are shifted versions
of those of , with a similar relationship for .

Theorem 1: The best frame bounds for the MIMO sampling
problem are given by

ess inf (30)

ess sup (31)

In particular, and are necessary and sufficient
conditions for stable reconstruction of the MIMO inputs.

Proof: We need to compute

and (32)

where is the set of input signals of unit combined energy:

(33)

First, observe that

(34)

where the norms on the right-hand side of (34) are the Euclidean
norms. The equality above follows from (11), and fol-
lows because captures all the nonzero entries of .
Next

(35)

where is obtained by a change of variables, and from
(9) and the fact that captures all the nonzero entries of

. Therefore, (32)–(35) yield

s.t.

s.t.

Now, the claimed results in (30) and (31) follow immediately.
Note that a simple necessary condition for perfect reconstruc-

tion is that for each . Clearly, multiple solu-
tions exist to (19) if for some . The average
sampling density for this sampling scheme is . Now, (15)
implies that

Hence

(36)

where denotes the Lebesgue measure. Suppose that
for all ; then, (36) reduces to
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which coincides with the minimum necessary density for
stable MIMO sampling [29] using any sampling scheme for
the channel outputs, whether uniform or not. In addition, note
that we have uniqueness of the reconstruction filters when

.
The following corollary to Theorem 1 provides a simpler

sufficient condition for the stability of the MIMO sampling
scheme.

Corollary 1: Suppose that is such that is con-
tinuous for , and has full column rank for all

, . Then, the MIMO sampling
scheme is stable, i.e., forms a frame.

Proof: By Proposition 2, we have continuity of
on the compact set . Therefore, both the smallest and the
largest eigenvalues of are continuous func-
tions on . Since the smallest eigenvalue is strictly positive
for all by hypothesis, it follows that the infimum
in (30) is attained, implying that . Similarly, be-
cause the supremum in (31) is attained.

We illustrate the MIMO sampling result of Theorem 1 for a
simple MIMO channel.

Example 4: Consider a MIMO channel with inputs
and outputs having the following transfer function ma-
trix:

Let the input spectra and have supports as illus-
trated in Fig. 2, i.e.,

and

Each output is a multiband signal supported on
. Note that a naïve way to reconstruct the in-

puts is to first reconstruct the individual outputs and then invert
the channel. This method requires a minimum sampling rate of

for each channel output. However, we demon-
strate in this example that we do not need to sample each output
at its minimum rate to achieve perfect reconstruction, but we can
jointly reconstruct them from fewer samples. Let the sampling
period be . For this choice, we have seen in Example 2

that , , and ,
. It can be verified numerically that

rank

rank

where the matrices and are given by (37)
and (38), shown at the bottom of the page.

Since is continuous, we conclude using Corollary 1 that
stable perfect reconstruction of the inputs is possible from the
channel output samples. Hence, it suffices to sample each output
at a rate for perfect stable reconstruction of the
channel inputs, instead of the sampling them at a rate

, which is required for the naïve approach. However, we see
in Example 6 that the reconstruction filter matrix would
necessarily have to be discontinuous. Finally, note that the total
combined sampling density of the outputs is , whereas
the minimum density, as dictated by [29], is

.
In Example 4, we showed that the combined sampling den-

sity of 1 is achievable, but the lower bound on this density is 0.8.
Therefore, we could potentially find a nonuniform MIMO sam-
pling scheme that closes the gap. In fact, this is precisely what
we are going to show in the following example.

Example 5: Let the inputs signal characteristics and the
channel transfer function matrix be the same as in Example
4. In this specific example, we show that by using a proper
nonuniform sampling strategy at the outputs, we can achieve
the minimum combined sampling rate for all the output
channels equal to the sum of measures of the input spec-
tral supports [29]. Let the channel outputs be sampled on
the sets , where

and

.

Evidently, these are all periodic nonuniform sampling sets
having a common period of and consisting of 16
cosets in all. Hence, the modified MIMO channel has a transfer
function matrix of size 16 2, and its rows can be worked
out as in Example 1. Since the band edges ofand are all

(37)

(38)
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multiples of 0.05, we trivially obtain , ,
and

Now, is a continuous 16 16 matrix, whose rank is
verifiable to be 16 for all . By Corollary 1, we conclude that
stable and perfect reconstruction of the channel inputs is pos-
sible from these periodic nonuniform MIMO samples. In fact,
the stability bounds are and ,
implying that the condition number .
The sampling density of is so that

is an achievable point in density region for stable sampling. Ob-
viously, the densities must meet all the necessary
conditions for stable sampling derived in [29]. In particular, the
total combined sampling rate of all the outputs is ,
which is precisely equal to the minimum joint sampling density
required, namely, . Finally, we learn from this ex-
ample that we need not sample the different outputs at the same
rate. In fact, one of the channels is not sampled at all, unlike in
Example 4, where, due to uniform sampling, we required sam-
ples from all channel outputs.

D. Existence of Continuous Solutions

Theorem 1 does not guarantee the existence of a continuous
filter matrix , which, as we have seen earlier, may be de-
sirable from an implementation point of view. The following
theorem shows that under a stronger set of conditions, we can
guarantee the existence of a continuous filter matrix . We
begin with a lemma.

Lemma 1: Let (with ) and
be matrix-valued continuous functions of such that
rank for all , and let be
matrices satisfying

and

Then, there exists a continuous such that
for all and that and

are satisfied.
The proof of Lemma 1 can be found in the Appendix. We

can now derive the conditions for the existence of continuous
reconstruction filters that achieve perfect reconstruction.

Theorem 2: Suppose that the MIMO transfer function matrix
is such that is continuous for . Then, there

exists a reconstruction filter matrix that is continuous in
that achieves stable and perfect reconstruction of the MIMO

channel inputs if and only if

rank int (39)

rank (40)

where

(41)

Proof: First, note that the hypotheses in this theorem are
stronger than those of Corollary 1. Thus, stable reconstruction

is guaranteed. We will first prove the necessity of (39) and (40).
The first condition in (18) states that

a.e. (42)

Therefore, suppose that is a continuous solution of (42);
then, Proposition 2 implies that and are
continuous functions in the interior of , and, in fact, (42) must
hold for all int and not just a.e., because both sides of
(42) are continuous functions. Now, (39) follows immediately.
Next, letting in (18) and using the continuity of

gives us

(43)

while letting in (18) instead, and using (28)
and (29), we obtain

(44)

Combining (43) and (44), we obtain the following set of neces-
sary conditions:

(45)

where . Using a similar continuity argu-
ment in the vicinity of for yields

(46)

where . Hence, (40) is necessary to meet
conditions in (45) and (46).

To prove sufficiency of (39) and (40), we construct an appro-
priate reconstruction matrix that is continuous in and
satisfies the boundary condition in (29), as well as the defining
reconstruction conditions in (18). We first define the function

on the following finite set of frequencies :

(47)

Then, to satisfy (29), we define

where

Therefore, using (28), we now have

(48)

To complete the proof, it suffices to construct acontinuous ex-
tension on [0, ] that satisfies (18), (47), and (48). With
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the intention of applying Lemma 1, define the following quan-
tities:

Observe that has full column rank for
. Moreover, using and , it

follows from (47) that

Thus, we have verified all the technical conditions required in
Lemma 1, and we are guaranteed a continuous solution

that meets the desired boundary conditions and satisfies

and

(49)

for . We also define

(50)

Therefore, (49) and (50) provide us with a continuous extension
for on that satisfies (18) for each
and, hence, for the entire interval [0, ]. Because by
construction also satisfies the boundary conditions (29), the con-
tinuity of follows by Proposition 2.

Remark 1: A simple necessary condition for perfect recon-
struction using continuous reconstruction filters is that

.
Remark 2: Although the continuity of the entries of

was essential in the above proof, it is not strictly necessary as it
is possible to carefully construct examples where a continuous

exists, even though may be discontinuous.
Example 6: The purpose of this example is to illustrate The-

orem 2. Assume that and and that the input
spectra have the same form as in Examples 2 and 4. Then,

and . In addition, the index sets defined
in (41) are

Fig. 4. Smallest and largest eigenvalues ofSSS(f).

Hence, is necessary for the existence of a
continuous , and clearly, the transfer function matrix
of Example 4 does not suffice. Therefore, let us append a new
row beneath the last row of , thereby making the MIMO
channel a two-input five-output channel:

The rank condition in (39) holds because the matrix
of Example 4 has full column rank, and adding an extra row to

(and hence to as well) does not lower the column
rank of . Fig. 4 depicts the smallest and largest eigen-
values of the matrix

as a function of frequency. Note that the discontinuities in these
plots are expected because is piecewise constant with
discontinuities at the cell boundaries, i.e., at
in this case. A numerical calculation yields the following frame
bounds for the MIMO sampling scheme:

ess inf

ess sup

Hence, the condition number is . The other
rank condition in (40), which needs to be verified at cell bound-
aries, also holds. Now, Theorem 2 guarantees the existence of a
continuous filter matrix that achieves perfect reconstruc-
tion of the MIMO channel inputs.

The proof of Theorem 2 also provides, in principle, a method
to construct a continuous reconstruction filter matrix
when the conditions for its existence are satisfied. Specifically,
fix at the boundary points per (47) and (48), and then find
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a continuos solution to the systems of linear equations
(49) and (50) for . The solution
to these equations is, in general, nonunique, and a particular
solution can be selected using additional criteria (for examples
of such designs in the single channel case, see [33]). For
example, the minimum norm solution will lead to minimum
amplification of additive white noise on the sampled signals
(due to e.g., quantization error). In any event, the final filter
matrix is obtained from via (14).

V. CONCLUSION

In this paper, we studied the uniform MIMO sampling
problem. This scheme encompasses periodic nonuniform mul-
ticoset sampling, Papoulis’ generalized sampling, and vector
sampling schemes as a special cases. The MIMO problem
is motivated by the problem of channel equalization from
the sampled channel outputs. We presented necessary and
sufficient conditions for perfect reconstruction of the signals
or, equivalently, perfect inversion of the channel, when the
input signals lie in the space of multiband signals with different
band structures. We also presented the appropriate conditions
for the existence of reconstruction filters with continuous
frequency responses and specified them as solutions to a
system of linear equations. The continuity property is important
for the implementation of the reconstruction system because
continuity allows arbitrarily close approximation of the
filter responses by sufficiently long FIR filters. We address the
problem of reconstruction filter design using FIR filters in [34].
Finally, we demonstrated that in some cases, the sum sampling
rate by multicoset sampling can equal the lower bound on the
sampling density derived in [29]; however, the question of
whether these lower bounds are generally achievable remains
open.

APPENDIX

PROOF OFLEMMA 1

Observe that is nonsingular for all
because rank . In fact

where is the minimum value of the smallest singular value of
on :

This is because is continuous, implying that ,
which is also continuous on the compact set , attains its
infimum. Therefore

are also a continuous functions of. Note that is the
orthogonal projection onto the range space of . Define

It follows that , implying that

(A.1)

Now, take

This is a valid solution because it is continuous and meets the
requirements

The last two equations follow from (A.1).
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