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Abstract

We propose a new training based scheme for multiple antenna broadcast chan-

nels consisting of a base station (transmitter) and many users (receivers) in a flat

fading environment. Both the transmitter and the users transmit at a common car-

rier frequency so that, by virtue of reciprocity, the downlink and uplink propagation

matrices are equal. We show that by using appropriate training the base station

and users to learn the channel state information efficiently. With the knowledge of

the channel at both ends of the link, they diagonalize the channel optimally and

schedule power settings in order to maximize a performance criterion. This per-

mits independent coding over resulting sub-channels of the diagonalized channel.

The proposed training scheme also automatically allows both ends of the link to

agree on the rate scheduling. The practical advantages of this scheme are (a) the

simplicity of coding and (b) its robustness to the nature of the flat fading environ-

ment. In particular, the scheme provides a seamless transition between Rayleigh

propagation to specular (beamforming) propagation.

1 Introduction

It is well known that the capacity of a multiple antenna (MIMO) communication link

grows linearly with the smaller of the number of transmitter and receiver antennas in a

Rayleigh flat fading environment [1, 2]. The amount of channel state information (CSI)

that is available plays a critical role in MIMO. Unitary space-time modulation, which

dispenses with CSI and therefore all training, nearly achieves the capacity under certain

conditions [3, 4, 5, 6]. The alternative to space-time modulation is to use a training-based

scheme where the transmitter sends a training signal from which the receiver estimates

the channel propagation coefficients [7]. If the coherence intervals are short (fast fading
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environment) and there are many antennas, training based-schemes are not very feasible.

However, training-based schemes permit greatly simplified coding techniques compared

to space-time coding for unknown fading. BLAST is an example of a practical training-

based scheme that achieves high data rates [2, 7].

In this paper we consider a scenario where the transmitter and receivers uses a com-

mon carrier frequency, so that the uplink and downlink channels are equal by virtue

of reciprocity. We assume that the coherence interval is long enough that a training-

based scheme is affordable. We propose a new training-based scheme where both ends of

the link learn the channel state information by sending each other training signals. The

transmitter’s possession of the CSI permits simple and entirely different coding strategies.

The following is the outline of the paper. We first present uplink and downlink

models for the reciprocal channel. For a simple superposition coding strategy, we derive

expressions for the capacity and the optimal input distribution. Finally, we demonstrate

that the reciprocity of the channel allows very efficient training for both ends of the link

to learn the channel matrix, as well as agree the rate and power scheduling.

2 Signal and Channel Models

Consider a multiple antenna communication link consisting of a base station and K users

operating in a flat fading environment, where the base station has M antennas and the k-

th user has Nk antennas. In the complex baseband representation, the downlink received

signals are modeled as

Xk
t = StHk + W k

t , k = 1, . . . , K (1)

where St is the 1 × M vector transmitted at time t, Xk
t is the 1 × Nk vector received

by user k, W k
t is the additive receiver noise, and Hk is the M × Nk matrix of propaga-

tion coefficients between the base station and the k-th user. The matrices Hk and W k
t

are isotropically random and statistically independent of each other with entries being

CN (0, ρk) and CN (0, σ2
k) respectively. The power constraint on the transmitted signal is

E
M∑

m=1

|St,m|2 = 1. (2)

where E(·) denotes the expected value.

We assume that the base station and the users operate at a common frequency. Then,

by reciprocity, the uplink can be modeled as

Yt =
K∑

k=1

Rk
t H

T
k + Vt (3)



where the 1 × M vectors Yt and Vt ∼ CN (0, σ2I) are the received signal and receiver

noise respectively and Rk
t is the 1 × Nk vector transmitted by the k-th user at time t

satisfying the power constraint

E

Nk∑
n=1

|Rk
t,n|2 = 1. (4)

We assume that the users know their receiver noise variances σ2
k, and the base station

knows all the variances. We also assume that the coherence interval is T symbols, i.e.,

the propagation matrices remain essentially constant over intervals of duration T .

3 Partial Channel Inversion

We shall focus primarily on the broadcast (downlink) problem where the base station

sends messages to the K users. We refer to the base station as the transmitter and the

users as receivers. For the moment assume that the base station and the users have

perfect knowledge of the propagation matrices Hk and receiver noise variances σ2
k. We

assume that the columns of (H1 H2 . . . HK) are linearly independent. In particular, we

require that

M ≥
K∑

k=1

Nk. (5)

For convenience, we rewrite the downlink model (1) in its normalized form

1

σk

Xk
t = StH

◦
k +

1

σk

W k
t (6)

where H◦
k = Hk/σk is the normalized propagation matrix and the noise term (W k

t /σk)

has covariance I.

Consider the following superposition signaling scheme where the transmitter sends a

linear combination of the messages intended for the users on the downlink, i.e.,

St =
K∑

j=1

Aj
tGj (7)

where Ak
t is the 1×Nk vector that constitutes the message to user k and Gk is an Nk×M

matrix. From (6) and (7), we obtain the k-th user’s received signal:

1

σk

Xk
t =

K∑
j=1

Aj
tGjH

◦
k +

1

σk

W k
t . (8)

Since the users are non-cooperating, we enforce the following no-crosstalk condition on

Gk:

GjH
◦
k = δjkFk (9)



where Fk is an Nk × Nk matrix and δjk = 1 if j = k and zero otherwise. Therefore, (8)

reduces to

1

σk

Xk
t =

K∑
j=1

Aj
tGjH

◦
k +

1

σk

W k
t = Ak

t Fk +
1

σk

W k
t . (10)

Let the messages (A1
t , . . . , A

K
t ) be zero-mean and statistically independent of each

other with covariance Qk:

E[Al
t

†
Ak

t ] = δklQk.

Let Pk denote the power allocated to send messages to user k:

Pk = E‖Ak
t Gk‖2 = E tr[G†

kQkGk].

Then, the power constraint at the transmitter yields

K∑
k=1

Pk = 1 (11)

Thus, the capacity of the Gaussian channel is (10)

Ck = max
Qk,Fk

I(Xk
t ; Ak

t ) = max
Qk,Fk

log det(I + F †
kQkFk) (12)

subject to the power constraint

tr[G†
kQkGk] ≤ Pk. (13)

Let us define H◦ = (H◦
1 H◦

2 . . . H◦
K) and its least-squares left inverse E = (H◦†H◦)−1H◦†.

Let E be decomposed as

E = (ET
1 ET

2 . . . ET
K)T (14)

where the sub-matrix Ek has size Nk × M . Furthermore, let Ek = αkΓkβ
†
k be the sin-

gular value decomposition (SVD) where αk and βk have orthonormal columns and Γk is

diagonal. Then, it can be easily shown that the input distribution that maximizes Ck in

(12) is Gaussian. We can take arbitrarily take Qk = I, but this fixes the optimal Gk:

Gk =
√

Πkβ
†
k (15)

where Πk is yet to be determined. The substitution of (15) into (7) yields the optimal

superposition signaling scheme for the transmitter:

St =
K∑

j=1

Aj
t

√
Πjβ

†
j (16)

Clearly, the diagonal entries of Πk represent the powers allocated to the individual mes-

sage components of Ak
t and the power constraint in (13) reduces to tr[Πk] ≤ Pk.



Now, a simple calculation yields Fk = GkH
◦
k =

√
Λkα

†
k where Λk = ΠkΓ

−2
k . Using

this result in (10) we obtain Xk
t /σk = Ak

t

√
Λkα

†
k + W k

t /σk. Now, the k-th user applies a

unitary transformation to this equation to obtain a diagonal channel

X̃k
t =

1

σk

Xk
t αk = Ak

t

√
Λk +

1

σk

W̃ k
t (17)

where the transformed noise vector W̃ k
t = W k

t αk has the same statistics as W k
t . Equiva-

lently, the transformed channel is a set of parallel independent Gaussian channels. Since

the covariance matrix Πk is also diagonal, the coding of messages on each of these “virtual

sub-channels” can be performed independently of the others. The obvious advantage of

independent coding is the simplicity of implementation. From (17), we directly obtain

the capacity to the k-th user:

Ck = max
Πk

Nk∑
n=1

log(1 + λkn) = max
Πk

Nk∑
n=1

log

(
1 +

πkn

γ2
kn

)
s.t.

Nk∑
n=1

πkn ≤ Pk. (18)

where Γk = diag{γkn : n = 1, . . . , Nk} and Πk = diag{πkn : n = 1, . . . , Nk}. We briefly

examine the problem of optimal power allocation to attain maximum throughput. We

consider two cases (a) maximize each Ck for given powers Pk and (b) maximize the

sum-capacity Csum =
∑

k Ck over all power policies.

Maximum capacity for fixed Pk: Suppose that the powers Pk are fixed. What

are the optimal powers Π?
k? The problem (18) reduces to computing the capacities of K

independent sets of parallel Gaussian channels, whose solutions are given by the familiar

“water-filling” rule [1]: π?
kn = (µk − γ2

kn)+ for n = 1, . . . , Nk, where (·)+ denotes the

positive part and µk are chosen to satisfy the power constraint with equality

Nk∑
n=1

π?
kn =

Nk∑
n=1

(µk − γ2
kn)+ = Pk.

The capacities are given by

C?
k =

Nk∑
n=1

[
log

(
µk

γ2
kn

)]+

.

Maximum sum-capacity: Alternatively, we can also vary the total powers Pk

allocated to the users and maximize the sum of all capacities. Thus, the set of achievable

capacities (18) is convex and the best achievable sum-capacity is the solution to

Csum = max
K∑

k=1

Nk∑
n=1

log

(
1 +

πkn

γ2
kn

)
s.t.

K∑
k=1

Nk∑
n=1

πkn ≤ 1.

Again, the solution is given by the water-filling rule: π?
kn = (µ− γ2

kn)+ for k = 1, . . . , K,

and n = 1, . . . , Nk where µ is chosen to satisfy

K∑
k=1

Nk∑
n=1

π?
kn =

K∑
k=1

Nk∑
n=1

(µ− γ2
kn)+ = 1.



The maximum sum-capacity and the individual capacities to the users are

C?
sum =

K∑
k=1

C?
k , C?

k =

Nk∑
n=1

[
log

(
µ

γ2
kn

)]+

.

4 Training Scheme

In Section 3 we assumed that the base station and users had complete knowledge of all

the propagation matrices. The base station can easily learn the propagation matrices

by means of orthonormal training on the uplink. On the downlink, however, it would

be a formidable task for each user to learn the channel matrices corresponding to all

the users. However, a careful examination of (17) reveals that the k-th user needs to

learn the quantities αk and Λk = ΠkΓ
−2
k alone in order to diagonalize the channel. In

this section, we present a scheme that enables the base station and users to acquire the

knowledge to implement (16) and (17) using a small number of training symbols.

4.1 Uplink Training

In this phase of training, the all users send training signals simultaneously on the uplink

over a period of Tu symbols. Let us use the subscript τ for signal and noise quantities

occurring during training. The training signal of the k-th user is the matrix Rk
τ of size

Tu × Nk, where each rows of Rk
τ represents one training symbol. According to (3), the

corresponding received signal Yτ (of size Tu ×M) is given by

Yτ =
K∑

k=1

Rk
τH

T
k + Vτ = RτH

T + Vτ ,

where Vτ is the Tu ×M matrix of receiver noise values (having the same statistics as Vt)

and Rτ = (R1
τ R2

τ . . . RK
τ ) and H = (H1 H2 . . . HK). Note that we require Tu ≥

∑
k Nk

to obtain a meaningful estimate of H. The maximum likelihood (ML) estimate of H is

then given by

Ĥ =
(
(R†

τRτ )
−1R†

τYτ

)T
= H +

(
(R†

τRτ )
−1R†

τVτ

)T
. (19)

The covariance of any row of the estimation error (H − Ĥ) is σ2(R†R)−1. It is easy to

verify that this quantity is minimized for Rk
τ =

√
Tu/NkΦk where Φ = (Φ1 Φ2 . . . ΦK)

has orthonormal columns. Thus, the optimal training signals are orthogonal among all

the transmit antennas (the columns of Rk
τ ). We impose the above structure on Rk

τ and

use (19) to obtain

Ĥk = Hk +
√

Nk/Tu(Φ
†
kVτ )

T .

The estimation errors H̃k = Ĥk −Hk =
√

Nk/Tu(Φ
†
kVτ )

T are independent of each other

because Φ has orthonormal columns. The entries of H̃k are independent CN (0, σ2Nk/Tu)



random variables. These are the lowest estimation errors attainable individually for any

unbiased estimate of each Hk from the training signals meeting the power constraints.

Note that if the base station does not know the variances σ2
k, the users additionally needs

to encode and transmit these quantities separately on the uplink.

4.2 Downlink Training

Suppose that the base station (transmitter) had exact knowledge of the normalized prop-

agation matrices. Then, (16) could be implemented exactly. To implement (17), the k-th

user would need to learn (a) the unitary matrix αk and (b) the signal powers Λk = ΠkΓ
−2
k

which determine the transmission rates on the virtual sub-channels. More precisely, the

user estimates the matrix Jk :=
√

Λkα
†
k which can be decomposed uniquely into its factors

√
Λk and α†

k.

Let the base station choose Πj using some power allocation rule such that the power

constraint is satisfied, i.e.,
∑K

k=1 tr Πk ≤ 1. Consider the following downlink training

signal of length Td ≥ maxj Nj symbols:

Sτ =
√

Td

K∑
j=1

Ψj

√
Πjβ

†
j (20)

where Ψj is a Td ×Nj matrix of orthonormal columns known to the j-th user and βj is

the right unitary factor of the SVD Ek = αkΓkβ
†
k. The matrices Ψj are used to extend

the training interval. Note that the rows of the matrix
√

TdΨj appear like they are drawn

from a CN (0, I) distribution for large Td. Now, consider the signal power for a general

Td:

1

Td

tr[SτS
†
τ ] =

K∑
j=1

K∑
k=1

tr[Ψj

√
Πjβ

†
jβk

√
ΠkΨ

†
k]

=
K∑

j=1

K∑
k=1

tr[(β†
jβk)(

√
ΠkΨ

†
kΨj

√
Πj)]

If Td ≥
∑

k Nk, we can choose the matrices Ψj such that Ψ = (Ψ1 Ψ1 . . . ΨK) has

orthonormal columns. This would imply that the terms corresponding to j 6= k in the

double summation vanish and we obtain

1

Td

tr[SτS
†
τ ] =

K∑
j=1

tr[Πj] ≤ 1.

Now, if Td <
∑

k Nk, we cannot guarantee that the training signal meets the power

constraint in a particular coherence interval. However, the average power over many

coherence intervals can be made to satisfy the constraint:

1

Td

E tr[SτS
†
τ ] =

K∑
j=1

K∑
k=1

E tr[Ψj

√
Πjβ

†
jβk

√
ΠkΨ

†
k].



Now, the matrices βj can be chosen such that the terms corresponding to j 6= k in the

above summation vanish. For instance, let α′
k = αke

iφk and β′
k = βke

iφk , where i =
√
−1.

Then α′
kΓkβ

′
k
† = Ek is also a valid SVD of Ek. If the angles φk ∈ [0, 2π] are uniform and

independent of all other random variables in question, then E tr[Ψj

√
Πjβ

′
j
†β′

k

√
ΠkΨ

†
k] = 0

for j 6= k and the above summation reduces to

1

Td

E tr[SτS
†
τ ] = E

K∑
j=1

tr[Πj] ≤ 1

If our SVD algorithm does not produce factors that are uniformly random over the

possible values, it may be necessary to generate the angles φk explicitly. This is however

not an issue for K = 1 because there are no cross-terms in the summation.

Now, the SVD representation Ej = αjΓjβ
†
j and EjH

◦
k = δjkI imply that

β†
jH

◦
k = δjkΓ

−1
k α†

k (21)

The substitution of (20) and (21) into (6) gives the corresponding signal received by the

k-th user as

Xk
τ = σkSτH

◦
k + W k

τ = σk

√
Td

K∑
j=1

Ψj

√
Πjβ

†
jH

◦
k + W k

τ

= σk

√
TdΨk

√
ΠkΓ

−1
k α†

k + W k
τ = σk

√
TdΨk

√
Λkα

†
k + W k

τ

where Xk
τ and W k

τ are Td × Nk matrices representing the received signal and noise for

the downlink training phase. Therefore,

Ĵk =
1

σk

√
Td

Ψ†
kX

k
τ =

√
Λkα

†
k +

1

σk

√
Td

Ψ†
kW

k
τ (22)

is an estimate for Jk. We can now estimate Λk and αk from Ĵk.

In the above analysis, we assumed that the transmitter had exact knowledge of the

propagation matrices. In reality, it has only estimates of these quantities. We omit the

exact perturbation analysis that incorporates the effects of estimation errors in the uplink

training phase, but refer the reader to [10].

4.3 Rate Scheduling and Outage

We briefly examine the problem of rate scheduling for the downlink transmission. The

main advantage of diagonalizing the channel is the resulting simplified coding: the mes-

sages on the individual sub-channels are encoded independently and the users perform

independent decoding to recover the messages. The base station determines the trans-

mission rates for each of the sub-channels from its estimates of the signal to noise ratios,

namely Λk = ΠkΓ
−2
k . Likewise, the users can estimate the link capacities from their

estimates of Λk.



In a practical system, these capacities would have to be quantized to a set of finite set

of transmission rates for implementation purposes. An advantage of quantization also

generally ensures that both ends of the link to agree on the transmission rates in the

presence of estimation errors. However, near the edges of the quantization cells, the esti-

mation errors can cause the transmitter and receiver to arrive at quantized transmission

rates. Such an event constitutes a transmission outage for the entire coherence interval.

A second source of outage occurs when the estimation errors cause the transmission rate

exceeds the capacity of the link. We provide a detailed analysis of the perturbation

analysis and outage errors in [10].

4.4 Special Cases

We briefly examine the following two special cases of interest: (a) many users with single

antennas, i.e., Nk = 1, and (b) point-to-point MIMO link, i.e., K = 1.

In case (a) each Ek is a row-vector because Nk = 1. Thus, the right SVD factor

βk of Ek and the message Ak
t are both scalars. The transmitter learns the propagation

matrices on the uplink, and each user learns a single coefficient (representing the SNR

for the corresponding sub-channel) on the downlink. Since we enforce the no-cross talk

among users, this scheme essentially reduces to channel-inversion at the transmitter.

In case (b) there is only one receiver. The transmitter first learns H = H◦
1 from

the uplink training and then computes E1 = E = (H†H)−1H† and its SVD factors

E1 = α1Γ1β
†
1. Since E1 is the least-squares left-inverse of H◦

1 , we clearly also have

H◦
1 = β1Γ

−1
1 α†

1. In the subsequent downlink training the receiver learns α1 (the right-

SVD factor of H◦
1 ). Thus, both ends of the link have learned their respective unitary

factors of the SVD. Thus, they essentially undo the unitary transformations to render

the channel diagonal. Note that, even though the SVD, both ends of the link agree on

the same factorization that the transmitter chooses.

In the most general case, with many users with multiple antennas, the optimum

scheme can be viewed as a partial channel inversion at the transmitter, which renders

the channel matrix H◦ block-diagonal, followed by diagonalization of the blocks using

the SVD. The important feature of this training scheme is that the users learn just the

essential information rather than all the propagation matrices.

5 Conclusion

We proposed a new training based scheme for the multiple antenna communication link

consisting of a base station (transmitter) and K users (receivers). In a reciprocal setting,

where the uplink and downlink carrier frequencies are the same, the uplink and downlink

channel matrices. We showed that this property can be exploited in our training-scheme



to enable the base station and all the users to learn the relevant channel state infor-

mation using minimal training. Subsequently, the channel is diagonalized and one can

perform independent coding over the resulting sub-channels. Our proposed training also

automatically allows both ends of the link to agree on the rate scheduling. Apart from

the simplicity of coding and scheduling, the other advantage of this scheme is its ro-

bustness to the nature of environment. It works well whether the fading is Rayleigh or

specular because the transmitter has complete knowledge of the channel and can choose

the optimal encoding strategy for each coherence interval.
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