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Aliasing Error in Sub-Nyquist Nonuniform Sampling
of Multiband Signals

Raman Venkataramarstudent Member, IEEBNd Yoram Breslerellow, IEEE

Abstract—We examine the problem of periodic nonuniform of bandpass signals, it is not always possible to eliminate gaps
sampling of a multiband signal and its reconstruction from in the sampled spectrum, however, it is possible to minimize
the samples. This sampling scheme, which has been studiedpem Some results on bandpass sampling can be found in

previously, has an interesting optimality property that uniform . . .
sampling lacks: one can sample and reconstruct the clas8(F) [3], [4]. Thus while uniform sampling theorems work well

of multiband signals with spectral support F, at rates arbitrarily ~ for low-pass signals, they are quite inefficient for representing
close to the Landau minimum rate equal to the Lebesgue measure certain bandpass signals and, more generally, for multiband
of F, even whenF does not tile R under translation. Using signals, i.e., signals containing several bands in the frequency
the conditions for exact reconstruction, we derive an explicit domain. We refer the reader to Papoulis [5] and Jerri's tutorial

reconstruction formula. We compute bounds on the peak value 61 f lizati fthe WKS ling th
and the energy of the aliasing error in the event that the input [6] for some generalizations of the sampling theorem.

signal is band-limited to the “span of £ (the smallest interval To quantify the sampling efficiency for signals with a given
containing F) which is a bigger class than the valid signal8(:F), spectral supportF, we define its spectral spafif], as the
band-limited to F. We also examine the performance of the smallest interval containing, and its spectral occupancy as
reconstruction system when the input contains additive sample Q = \(F)/A([F]), whereX(-) denotes the Lebesgue measure.
noise. . . . .

The Nyquist ratef,,, for signals with spectral suppos is

Index Terms—Error bounds, Landau-Nyquist rate, multiband,  defined as the smallest uniform sampling rate that guarantees
nonuniform periodic sampling, signal representation. no aliasing

l. INTROGUCTION Joyqg =1nf{f > 0: F N (n@ @ F) =0, Vn € Z\{0}}
HE classical sampling theorem states that a signal ocomhere
pying a finite range in the frequency domain can be rep- dof

resented by its samples taken at a finite rate. Often attributed beF={0+[feF}

to Whittaker, Kotelikov, and Shannon, a more precise state-

ment of this so-called WKS sampling theorem is that a redl the translation of the séf by 6. Then, the Nyquist sampling

low-pass signal, whose Fourier transform is limited to the rané%te satisfies

(—fo, fo), can be recovered from its samples taken uniformly at AMF) < Fayq < A[FD.
the ratef, = 2f, (the Nyquist rate) or higher [1]. T
Sampling a signak(t) uniformly at f, causes the resulting We say that” tessellate® or F is packableif f, ., = A(F),
spectrum to contain multiple copies of the original spectruand nonpackableotherwise (,,q > A(F)). In other words,
X(f) located with uniform spacing of, between adjacent the Nyquist rate for nonpackable signals exceeds the total
copies. Hence the choigé > 2f, guarantees no overlaps inlength of its spectral support. At the other extreme is the case
the sampled spectrum, and thus allows recovery of the origingl., = A([F]) (totally nonpackablg where uniform sampling
signal by a low-pass filtering operation. This is the key idegannot exploit the presence of gapsAn
behind the classical sampling theorem. For efficient sampling, The general case of interest in this paper is thafdfeing
it is desirable to attain the lowest sampling rate possible, andnpackable such that the Nyquist rate for samplitig with
this is characterized by the absence of gaps or overlaps [2]sipectral SUPPOLE iS fuyq > A(F). On the other hand, Landau
the spectrum of the sampled signal. Unfortunately, in the cg$¢ showed that the sampling rate of an arbitrary sampling
scheme for the class of multiband signals with spectral support
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X(f) expansion is composed of time translates of a single function.
Simplicity of its implementation is an obvious advantage of
their scheme. However, because it only works for a restricted
class of signals, we do not consider their scheme in this paper,
- . . ‘ » focusing instead on multicoset sampling.

0 1 2 3 4 Herley and Wong [16], following [8], used filter bank theory
instead, to suggest a sampling scheme for minimum rate
Fig. 1. The spectrum of a nonpackable multiband signal. sampling. They choose the analysis filters of the filter bank to

be simple delaysH;(z) = »~¢, and then show that some of the

rate for this signal isfnyq = A([F]) = 4 (henceF is totally analysis channel outputs can be discarded, and yet, the input
nonpackable), whereas the Landau lower bount{J§) = 2. signal can be reconstructed from the other channels. It is clear
The spectral occupancy for this sign&l,= 0.5, suggests that that the reconstruction is performed by processing subsamples
it might be possible to sample the signal twice as efficiently debtained nonuniformly) of the original sample train at the
the Nyquist rate. We examine the problem of efficient samplifgyquist rates. As the number of channels goes to infinity,
of nonpackable signals in this paper. the average sampling rate converges to Landau’s minimum

Our results apply to the class of continuous complex-valusdampling rate, as expected. In fact, all of the schemes proposed
band-limited signals of finite energy with spectral supp8it in [8]-[11], [16] achieve the Landau minimum rate asymptoti-

namely, cally. Although we do not adopt a filter bank approach and use
) a different notation, the work in [16] will be the basis for all
B(F)={z(t) € L"R) n C(R): X(f) =0,f ¢ 7} the analysis in this paper.

whereX (f) is the Fourier transform af(¢). All the results ex- In this paper we continue along'the Imes of [16] to examine
the problem of nonuniform sampling. First, we present some

cept those about the peak aliasing error also apply to the big &W results about the sampling and reconstruction scheme it-

class self. Herley and Wong [16] suggest using an iterative projection
By(F) = {z(t) € L*(R): X(f) =0, f € F} qnto convex sets (PO_CS) algorit.h.m to design the reconstruction
filters, rather than derive an explicit reconstruction formula. Un-
if interpreted in the sense @f* convergence. like in their analysis, we provide exact expressions for the inter-
polation filters, or equivalently the explicit reconstruction for-
A. Nonuniform Sampling mulas for the sampling scheme. Beyond their obvious practical

Uniform sampling is not well suited for nonpackable signal@dvantage, these expressions are useful for analytical purposes.
However, it turns out that there is a clever way of samplingOr instance, they are useful in a) analyzing the reconstruction
the signal z(t) called “multicoset sampling” or “periodic error of the system; b) quantifying the effects of signal mismod-
nonuniform sampling” at a rate lower than the Nyquist rat€ling, i.e., computing the aliasing error and output noise; and c)
that captures enough information to recoveft) exactly. Optimizing the system for the given class of signals.

Multicoset sampling and reconstruction from the samples will
be described more fully in the following sections. First, w&. Error Bounds

survey some known work on nonuniform sampling. Kahn and gounds on sensitivity to mismodeling of the signal are im-
Liu [8] showed how to represent and reconstruct signals frogrtant to any sampling scheme. They are particularly impor-
a multiple-channel sampling scheme. They provide conditiofgnt for the sampling schemes considered in this paper because
for exact reconstruction from the sampling trains and relatetHese schemes achieve what is impossible with other schemes:
to the maximum number of overlaps. Their sampling schemgproach the Landau lower bound arbitrarily closely. This raises
which is essentially a filter bank, is more general than nonuRje question of a possibly increased sensitivity to signal mis-
form sampling since their “analysis filters” are not requireghodeling and sample noise, leading to an increased reconstruc-
to be simple delays. They express the reconstruction as {f error. Using our new explicit reconstruction formulas, we
solution to a matrix equation, but do not provide an explicfierive bounds on the peak amplitude or the energy of the error
interpolation formula. Cheung and Marks [9], [10] showedignal. We compute bounds on the aliasing error that results
that multicoset sampling allows sampling of two—dimensionglom input signals in the class of functio[F]), which is

(2-D) signals below their Nyquist density. A similar treatmengyger than the clas§(F). We find that the upper bound on the

and Bresler [11], and Bresler and Feng [12], respectively, in
the broader context of spectrum blind sampling. Filter bank
theory and periodic nonuniform sampling was also used to
obtain sampling rate reductions in [13]-[16]. Shenoy [17]
and Higgins [18] apply multicoset sampling to multibands it usually does for various other schemes. The bounding
signals that do not tessellate under translation. Their resuttinstanti,, can be used as a performance measure of the
indicate that signals with certain spectral supports requiresgstem. Different systems can be compared based on their
single interpolation filter as opposed tmore than onén the corresponding bounding constants. In particular, Beaty and
other analyses of the problem. In other words, the sampliktiggins [19] derive a similar bound on the aliasing error for

sgp lx(t) — &(t)| < 1/100/ | X ()| df

[FAF
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packable signals. The bounding constant for their case is
1o = 2. We also derive a bound on the energy of the aliasing
error which takes the form

T T I T 1 I T T T ]
IIx—illaSw\//m\FIX(f)I?df- /0 234 WS > 1

Finally, we derive an expression for the output noise power (a)
when the input is contaminated by additive white sample noise
with variances?

(Ela(t) — 2(6)*) = ¢uo?.

[ | | | [ T [ [ f 1
It turns out that the constants,., v, andy, depend on some /0 123 4 WS 9 10
parameters that are free to be chosen. An optimal choice of these
free parameters would minimizg,,, ¥», or ¢,. These results (b)
can then applied to the design of sampling patterns, but this - . e .
problem will be addressed elsewhere. E',?bz': I(]Wjolfjgs}t'.na sampling patterns fok. p) = (5,3). (@)¢ = {0.1,2}.
II. MULTICOSET SAMPLING (5,3). All other patterns for these parameters can be obtained by

We begin with a few definitions essential to the developmegyclic shifts of the patterns shown, namefy= {0,1,2} and
and analysis of the sampling scheme. The class of continuéus {0, 1, 3}. Patterns related to each other by cyclic shifts with
complex-valued of finite energy, band-limited to a real &t or without reflections are essentially equivalent in terms of the
(consisting of a finite union of bounded intervals) is defined bgssociated reconstruction problems and their error sensitivities.

B(F) Now, consider the following. discrete-time sequences ob-
tained by zeroing out all samplés(nT)} except those at=
B(F) = {=z(t) e L*(R) N C(R): X(f) =0, f ¢ 7} (mL+ )T, meZ
where 7 = U[aiabi) 1) zi(n) déra:(nT) Z 6(n — (mL +1)), 0<I<L
=1 mecZ
and whereé(n) is the Kronecker delta function. Itis clear that the se-
oo . guencez,, (n) contains the samples of thith active coset with
X(f)= / z(t) exp (—j2m ft) dt samples separated By— 1 interleaving zeros. It is straightfor-

ward to verify that the discrete-time Fourier transform of iime
is the Fourier transform of(¢). The span ofF, denoted by sequence is
[F], represents the convex hull &, i.e., the smallest interval -

containingF. X (3271 = z1(n) exp(—j2rnfT
Let z(t) € B(F). We shall assume, with no loss of gener- = ) Z aln) expl=2mn L)

ality, thatinf #/ = 0. In multicoset sampling, we first pick a T . 9

X ) _ _ k 1 7 J2mrl

suitable sampling perio@ (such that uniform sampling at rate =5m E X (f + —) exp (2)
C . . LT LT L

1/T causes no aliasing), and a suitable intefier- 0, and rez

then sample the input signa(¢) nonuniformly at the instants which, using the fact thaX (f) = 0 for f ¢ [0,1/T), gives us

t=(nL+¢)Tforl <i<pandn € Z. The set{¢;} contains ’ ’

p distinct integers chosen from the st 0,1,...,L —1}. p 1 k=t

The sampling process just described can{be viewed as fiEst sam&(eﬂwﬁ) ~IT Z X () exp <

pling the signal at the “base sampling rate” Iof" and then r=0

discarding all bup samples in every block af samples peri-

odically. The samples that are retained in each block are SPGfiere X,.(f) is defined as

ified by {c;}. The base sampling rate could be chosen equal to

the Nyquist rate, i.e1/7 = fuyq, but never lower. However, X ()% x (f + 7_) X(f € Fo) (4)

we choosd /T = A([F]), because, sampling at this rate always Lr

guarantees no aliasing for ay. Fo Xt [0’ L) (5)
For a giveng;, it is clear that the coset of sampling instants Lr

t = (nL + ¢;)T, n € 7 is uniform with intersample spacing and y

equal toL7T. We call this theith active cosetThe setC =

{¢;:1 < i < p}isreferredtoasafl, p) sampling pattermand

the integelL as the period of the pattern. Fig. 2 shows two mul- def [ 1, if feH

ticoset sampling patterns corresponding to paramélens) = x(feH) = { 0, if f&H.

J2mrl

)7 fEFO
(3)

(f € H) denotes the indicator function of a real $ét
consisting of a finite union of bounded intervals
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In other words, the “spectral componed(;.( f) is obtained by ~, = 0 as a consequence @f = 0. We defineyasy1 def 1/LT
first using an ideal bandpass filter to extract the signal in the get
frequency range/LT < f < r+ 1/LT and then performing

a frequency shift to the left by/LT units. Denoting the in- D=y <72 < < Yprg1 = 1
verse Fourier transform oX,.(f) by z,.(¢), it is evident from LT
the above definition that and a collection of interval§g,,,} that partitions the sef,
=1 j2mrt G [ ) M
) = A(t - . 6 m = [Ym, Ym+1), 1 S m S -
w0 =3 e (777 ©

We prove (in the Appendix) the following fact involving the
Another result that can be deduced from (2) or directly from thadicator function ofF and these set&G,,, }.

definition of z;(nT) is Lemma 1: For eachr € £ andm € {1,2,..., M} the func-

&l(ejQW(f-l—ﬁ)T) _ 6(-;'277%)&1(6]'2wa)7 re’. @ tion x(f + r/LT € F) is constant over the intervél,,.
) ) o _ Equivalently, the theorem states that each of the “subcells”
We will use (6) and (7) later in deriving the reconstruction equa; /1. 7) g G,,, for I € £ is either fully contained inF or dis-

tions. We now let = ¢;,i = 1,2,...,pin (3) to get joint from it. This interpretation of the theorem motivates the
following definition of the “spectral index sets(,, and their

L-1 .
iom 1 j2mwe;r c .
X, (20T = T 2: exp<J ) X.(f), feF, complementdCs, form € {1,2,...,M}:
=0

L
defl T

©® K {7 € Li 1z @G C J—"} and K2, = L\K .
This is the main equation relating the spectral componenibe index setk’,, tells us which subcells in the collection
X.,.(f) to the information contained in the observed sample§(r/LT) ® G,,: € L} are “active,” whilek;, indicates which
Note that (8) on the interval,, contains all the relevant of them are not. The following theorem, which is a restatement
information present in the samples since, from {7),(¢?2~ft)  of the main theorem in [16] using our notation, provides a
is essentially “periodic” with period /L7". Reconstruction of necessary condition for reconstruction:

the original signak:(¢) is achieved if we recover its spectral

componentsz,.()}. Theorem 1: Equation (8) admits a unique solution f&r.( /)

only if the indicator function ofF satisfies

I1l. RECONSTRUCTION def L-1 ,
= § — e F)< Fo.
a(f) . x(f+LT€ )_p, feF. (10)

r=

We now focus on the problem of reconstructing) € 5(F)
from its multicoset samples. Herley and Wong [16] considered
the analogous problem for real signals, but did not, howevénirthermore, an equality in (10) is necessary for attaining
provide an explicit reconstruction formula or system. We shdlendau’s lower bound on the sampling rate.

derive the reconstruction equations formally and devise a mul-1 .1 the paper self-contained, we provide a Proof of The-

tirate system to perform the reconstruction. ; . ; ;
o . X . orem 1 in the Appendix. Since, by Lemma is constant
Our objective is to invert the set of linear equations (8) to o% bp y /)

. i 2/ "2 70n eachg,,, the inequality (10) reduces to
tain X,.(f). The recovery of:(¢) is then merely an application o quality (10)
of (6). Notice that, iiC and.7 satisfy certain conditions, the in- P> max gm, whereg,, = q(f), f € Gm (11)
version of (8) can be accomplished even though there are fewer m

equationsg) than unknownsk) for eachf € F,. This is pos-  Evidently, ¢,,, is the cardinality of the set,,. We denote the
sible because our signals belong3r), which is smaller than glements ofC,, andke, by

B([F]).
Let 7 be the union of: bounded intervals as in (1) with the {bm(D): 1 <1< ¢ }
additional assumption that and
1 kE(D):1<I<L—qn
0:a1<b1<a2<b2<---<an<bn:T F @l ls G }

) ) ) o ] respectively. Later, we shall see that, for a suitable choicg of
made with no loss of generality. Consider the finitelseefined  (11) is also sufficient for unique reconstruction. In the following
below example, we show how to construct the releviirsets for the

rum illustr in Fig. 3.
F(l:ef{ai—w:1Si§n}U{bi—@:1SiSn} spectru ustrated g.-3 |
Lr Lr Example 1: Let the spectral support of our class of signals
(9) beF=10,1.3)U[2.7,3.7) U[4.5,5). Comparing this with (1),
we find that
where|-] is the floor function. Let” = {~{,v2,...,va } be the
M < 2n elements ol" arranged in increasing order. We havea; =0, a>x=2.7, a3=4.5, b;1=1.3, b;=3.7, and b3 =>.
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4 (12) makes it different. The “spectral componedd;, ) (f)

X is obtained by shifting the values o¥(f) on the subcell
(kn(D)/LT) & G,, to the origin. For eachn, we define a
P X ¢ Matrix A,,,, and vectory(f) € C?, 2} (f) € C? and

0 1.3 27 3.7 a5 5 f z,.(f) € Ct—2n as follows:
@ (Nl = (TVLX. () (f € Fo)
4 [} (N =X, (f)

[xrn(f)]l :kan(l)(f)

1 j27cikm (1)
Ayl =— ) 1
[ rn]zl \/z eXp< i3 ( 3)
(b) Note thatA4,, is the submatrix of thd x L DFT matrix Wy,

obtained by extracting its rows indexed 8yand columns in-
dexed byC,,,. We denote this by,,, = W (C, K). Next, using

' i l the fact thate,, (f) = 0 whenever:(t) € B(F), we can rewrite
N . - (8) in matrix form over each subcefl,, as follows:
0 1 2 3 4 s f

y(f) = Az (f)  Vf€Gm, 1<m< M. (14)

(©
Fig. 3. (a) Indicator function of the spectral supp®rof spanl/T = 5. (b) At this point, we introduce the following two definitions that

Left-hand side of (10) gives the number of overlapping pieces of the sampleHgracterize the sampling pattefn of sizep, in terms of the
spectrum (fotl = 5) which is constant on each of the sgts, m = 1,...,

(c) The active spectral subcells. For each = 1,...,4, the translates L x L DFT matrixW .

LT)® Gy 7 € K hown in th lor. . : :
(r/LT) & Grm. 7 € K., are shown in the same color Definition 1: Given anindex set with || = ¢ < p, we call

oo ) . . C aK-reconstructive sampling pattern if the mathx;(C, K)
The indicator functiony(f € ) of the set# is shown in <51l row rank.

Fig. 3(a). The length af is A(F) = 2.8 and its span i§7] =

[0,5). It can be checked easily th&tis nonpackable and hence Definition 2: A patternC with |C| = p > ¢is (p, g) universal
the Nyquist rate for signals i8(F) is 1/7 = A[F] = 5. Yet if the matrixW (C, K) has full row rank for every index set of
Landau’s lower bound gives a rate8 and the corresponding ¢ €lements, i.e., whenevgt| = q. A (p, p)-universal pattern is
occupancy i€2 = 2.8/5 = 0.56. Suppose we pick = 5. We simply called universal.

see that (9) yields
- than the first. For evenyL andp < L, there always exists
I'= =40,0.3,0.5,0.7 -
{70,71:72,78} = {0,03,05,0.7} a (p,p) universal pattern. The “bunched” sampling pattern

containingM = 4 elements, from which we construct st € = {0,1,...,p — 1} is an example since the resulting matrix

For fixed values op andg, the second definition is stronger

that partitionFo = [0,1/LT) = [0,1) A =W.(C,K)is a Vandermonde matrix for any choice/of
This guaranteesank (A) = ¢ for any spectral support with
G =[0,0.3) G =10.3,0.5) q < p active cells.
Gs =[0.5,0.7) Gy =1[0.7,1). Equation (11) together with the assumption tHgt has full
rank for eachn (i.e.,C being K ,,,-reconstructive for each)
The following are immediately apparent: is necessary and sufficient for reconstruction. A simpler suffi-

cient condition is universality af. For convenience, we assume
throughout tha€ is universal. This guarantees the existence of
left-inversesA ! of A,,. Therefore, inverting (14) gives

q1 =3, Ky = {07 1, 3}7 IC(ZE = {274}
@ =2 K= {07 3}7 ’Cg = {17 274}'
qs = 3, ’Cg = {0, 3, 4}, ]Cg = {1, 2}.
=3, Ky4={0.2,4}, Ki={1,3}. () = AL y(f)

Fig. 3(b) shows the left-hand side of (10) plotted on the interval 2 (f) = Cot(f)

[0, 1). Note that this function is piecewise-constant, equalio \here, in order that - (f) = 0 hold, C,,, is any(L — ¢,,) X p
on each of the intervalgg,,, } which are color-coded for conve- matrix satisfying

nience. Fig. 3(c) shows the indicator function/fcolor-coded

to show the active subcells derived by translatihg. C,A,=0 (16)

feGn,mel{l,...,. M} (15)

In direct analogy to (4), we define for eachm. The matricesA ' andC,,, are nonunique unless
der Em (1) p = qm- In other words, there is some freedom that can be used
X, () =X <f + 7) x(f €Gn)- (12) indesigning a reconstruction system. The actual choice of ma-
trices does not affect the reconstruction, but does influence the
However, beware of this definition since it is not equal to (dounds on aliasing error, as described later. This suggests that
evaluated at = #%,,(l). The extra factor ofy(f € G,,) in findingthe optimal matrices is of some interest. These equations
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¢

t
LT

]

t=nT)‘ - : (1)
25 VL AL P R S— iz —>@——> I =

\

x(1)

|
@O
|

Fig. 4. Multicoset sampling and reconstruction. The block “I” is an ideal sinc interpolator.

specify all the information required to reconstruct the spectrution of z(¢) would be exact. However, it(t) ¢ B(F) then
X(f) on all its spectral subcells, and hengg) itself. the signalz(¢) reconstructed using the right-hand side of (17)
The interpolation equation may be calculated from (15) inv@ould be in error. For example, this would happen if, in the
rather messy but straightforward manner. The result is sumnsgstem design, we underestimated the spectral support of sig-
rized in the theorem below, and we prove it in the Appendix. nals we expected to encounter, i.e., if we would choose to ignore
Theorem 2: Letz(t) € B(F) be sampled on aft, p) multi certain fre?uhgncies 'that' containe.d negligible si%nal Igngrgy. The
coset pattert?, andK,., m = 1,2, ... M be the spectral index purpose of this section is to obtain bounds on the aliasing error

sets ofF. Then, ifC is K,,,-reconstructive for each, x(t) can et) = (t) — x(t) resulting from an underestimation of the

be uniquely interpolated from its multicoset samples accordir:?‘geCtral support.
quey Imerp : P In the following analysisX(f) need not vanish oftF]\F
to the following formula:

although we assume, for simplicity, th&t /) = 0 for f ¢ [F].

P oo In other words, we assume that the spectral $fis correctly
z(t) = Z Z Ze,(NT)$i(t — nT) specified, but the multiband structure to whigty) is band-
i=1 n=—oco limited within [F] may be misspecified. We shall first derive

PoX ) ) bounds on the sup- ariinorms of the aliasing errar(t) for
= Z Z w((ci + L) T)$i(t — (ci + Li)T)  (17)  the nonuniform sampling process described in the last section.
=1 g=—eo Recall thatkCe, = {kg,(1):1 <1 < L—gq,,} tells us exactly
where the functions;(t), < = 1, .. ., p have Fourier transforms Which spectral subcells in the collectiq(y/L 1) ®Gp,: 7€ L}

&,(f) that are piecewise-constant (] are inactive. Now, for eacm € {1,2,...,M}, letB,, =
W(C,K,,) denote they x (L — g,,) submatrix of theL, x L

—1y jopsibm®) . km (D) DFT matrixW ,, with rows and columns indexed l6yand’¢,
oi(f) = T\/Z[Am Juie? S it f e LT b Im respectively, i.e.,
' . jQwQIiM H kfn(l) 1 ) ikc l
T\/Z[Orn]lz@ 5 if f S —LT @ Gnm. [Brn]il = ——exp <J WCL rn( )) . (19)
(18) VL

We can then rewrite (8) in matrix form as

Corollary 1: Theresultin Theorem 2 holdsifax,, ¢, < p, _
andC is universal. y(f) = Ana (f) + Bmz, (f), [ € Gm (20)

The reconstruction scheme is illustrated in Fig. 4. In th&herez,, (/) is the (L — g,») x 1 vector defined in (13). If
figure W,(z) is a digital filter whose impulse response igt(t) € B(F) thenz,,(f) would vanish. Denoting the recon-
$:(nT). The filters used are ideal. In practice, causal, possibfructed signal by:(t), it immediately follows from (15), (16),
finite impulse response (FIR) approximations are used, intrdd (20) that
ducmg some delay and d|stort|on'. The ana]yss of .the resul'tmg () =25 (f) + A Bz, (f) g o1
error is analogous to the truncation error in classical cardinal ;- (f) = Co Bz (f) f€G, (21)
series expansion and is beyond the scope of this paper. Instead, "
we assume that the filters are ideal and concentrate on Wieerez;! (f) andz;, (f) have definitions analogous e, (f)
aliasing errors due to signal mismodeling. andz,,(f), respectively. We define matricd3,,, and F,,, (of

sizesg,, X (L—q,,) and(L —g,,) x (L—g.,), respectively) for
IV. ERRORBOUNDS eachm
-1

For a system designed to sample and reconstruct signals in D, =A. B,

B(F), itis necessary that (11) hold. In this case, the reconstruc- F,=C.,B,, —1I (22)



VENKATARAMANI AND BRESLER: RECONSTRUCTION FORMULAS AND BOUNDS ON ALIASING ERROR IN SAMPLING OF MULTIBAND SIGNALS 2179

In the following subsections, we present bounds on the peakeref,.., the out-of-band energy, equals
aliasing error, the aliasing error energy, and evaluate the perfor-
mance of the system in the presence of input noise. Eout = / |X ()P df
FNF

A. The Sup-Norm of the Error with both bounds being tight.
The following theorem provides the time-domain expression

for the aliasing error. Once again, the proof can be found in the Appendix. We are

particularly interested in the upper bound on theorm of the

Theorem 3: The aliasing erroe(t) takes the form error
_ del
Mot le@®ll2 = llellz = v/ le(®)? dt.
= Z Z Nm,l(t)ﬂfkgn(l)(t) . )
m=1 I=1 Itis clearly related to the spectral norm of the matrix composed

of F,, andD,, as
wherep,,, ;(t) foreachl < m < M andl <[ < L — g, are

continuous,LT-periodic functions defined as
ke lell2 < 2v/Eom,  Where s, = max (?) . (24)
L—qn, m m 2
j2mks, (1)t G2k (7)1 . .
() = Y [Flue™ 27 +Z Dy} 77 . C. Performance in the Presence of Noise
r=1

Finally, we consider the effect of additive white sample noise,
Furthermore, the peak value efft) satisfies the tight bound  representing, e.g., quantization noise. The sampled signal can be

modeled as
B < X d
suple(t)] < /{W| ()l df HAT) = 2(nT) + w(nT)
def i i i
¢ = max( max |ttm 1 (E)])- wherew(n) is a noise process with

m  1<I<L—qm,t€[0,LT]
_ ) ) ) ) Elw(mT)wnT)] = o6(m — n)
We prove this theorem in the Appendix. The tightness of this
bound is proved by demonstrating an input signal that sat@ad z(¢) is the actual signal we would like to be sampling.
fies the equality in the bound. Note that the constamtan be Owing to its linearity, (17) directly gives us the following ex-

bounded from above as follows: pression for the output nois&(¢) which is independent of(¢):
gy j2nke, (r)t L&
v=mpr | 3 Fabiew (P 0= 3 ulle+ LT (6 + L))
z’”: D] eXP 127rkm ‘ Theorem 5: The output noisei(¢) is possibly nonstationary,

with average power given by

Gm
< max <max <Z Fm]7z|+z [[D0, 1l|>> (E(t)| >t2021/)n7

Dnl
Fnl 1
where]| - || is the maximum-column-sum norm for matrices (of € norm|| - || = represents the Frobenius norm. Theorem 5 is

the £, norm for column vectors.) Hence we obtain the weaképroved in the Appendix.
but more tractable bound

A

M
where ¢, =T > MG (14,517 + IComI7)-

m=1

= max
m

V. CONCLUSION

where 1., = max
m

swple(®] < v [ XN, ) _
t [FN\F We have presented the analysis of a scheme for sampling
D, multiband signals below the Nyquist rate. The sampling scheme
<Frn> . (23)  yses multicoset sampling and achieves the Landau minimum
sampling rate in the limif. — oo, whereL is the period of the
sampling pattern. However, for many spectra, the minimum rate
B. 2-Norm of the Error can be achieved for a finité. Typically, this scheme is useful
Theorem 4: The energy of the aliasing error is bounded byfor sampling signals with sparse and nonpackable spectra.
We determined necessary and sufficient conditions for the re-

/OO (1) dt < max Amax(F%,Fp + DD Eou construction of a multiband signal from its multicoset samples
—oo m and derived an explicit reconstruction equation. There are free
= ters in the reconstruction equation when the Landau min-
2 S - « parameters : _
/_ o (8 dt = T Povin(E 3 Eon o+ D5 D)l imum rate is not achieved for the particulachosen. We com-
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puted bounds on the aliasing error occurring in the event th&) (repeated below) containg /) nonzero terms, for each
the signal lies outside the valid class of multiband signals arfde F,

determined the sensitivity of the system to input sample noise. 9

The constants in the bounds and the noise-sensitivity factor ;. (¢/27/7) = T Z <J Ter ) X (f),

veal that some sampling patterns are better than others. In other

words, these bounds, which quantify the goodness of sampling i=1,....,p. (A3)

patterns, can be minimized to produce the optimal sampling pgf;ese equations form a setpfinear equations withy(f) un-
tern and parameter choice in the reconstruction formula. known variables on the right-hand side, and solving them re-
quiresp > q¢(f). Hence,p > q(f),V f € Fo is necessary
APPENDIX for reconstruction of the spectral componekts f). Next as a
Lemma 2: If w, v are integers and, 3 € [0,1/LT) satisfy ~ consequence gf > ¢(f) and the definition ofi(f) in (10), we
can bound the average sampling dengity.Z" from below by
the Landau minimum rate

ﬁ+a<ﬁ+/3 (A1) v
| y Loz [T anar=x)
thenw < v. Further ifu = v theno < 3 follows trivially. Lr 0
Proof: Equation (A.1) implies that with equality holding if and only ip=q¢(f) forall fe F,. O

Proof of Theorem 2:To derive the interpolation equations,

we begin by expressing (15) in scalar form
p

(u—v)/LT < B—a<1/LT

where the strictness of the second inequality comes from the [z ()] = Z (A uly(Dl:
fact that[0, 1/LT) is open on the right. Hence — v < 1, or " i
equivalently, < v. O P f€Gm.

Proof of Lemma 1:Let r andm be fixed. Then for each [ (e = ; [Conluily (PN
¢€41,2,...,n} we can express; andb; uniquely as We use the expressions fgtf), z;\ (f), andz;, (f) from (13)

v; to obtain
Xi, () =TVL Y A X (P )x(f € G),

where u;,v; are integers andy;, 3; are elements of’ with i=1
a;, 3 € [0,1/LT). Now we shall prove by contradiction that 1<I< gm

exactly one of the two conditions

Xk:n(l)( T\/_ Z "l]h ¢ CJQWfT) (fegrn)v

1 S { S L- gm
for f € G,,, and eachn. Or equivalently, using (12) we have

( P
T\/z Z [A;zl]lilci (63'2#()0_IWE_;I))T)7

(7/LT) 5% grn C [CLZ‘, bz)
and
(r/LT)® Gm Na;,b;) =0

holds. It is clear that both statements cannot be true simultane-

ously. So if neither of them holds, then it k(1)
i
, | , X(f) = » LT
Ym +7/LT <a; < Ym+1 +7/LT 27r(f— (l>)T
or Z ConluXe, (¢! ),
m /LT 7 m /LT - . kS (1
Y A7/ LT <bi < Ymprt 7/ \ if fe Z;)@gm.

or both must hold. If the first condition holds then (A.2) alongor eachm, which in view of (7), leads to
with Lemma 2 implies that < u; < r. Therefore;r = w; . P e '
andy, < @; < ¥m41. The last observation contradicts € TVL Y A e X, (o3I,
I" because the's are arranged in increasing order. Similarly, ;

the second statement above would also lead to a contradiction. Fm (1)

This proves our claim that the “subce(l*/LT) & G,, is either X(f) = . LT
contained in or disjoint fronfa,, b;). This fact, being true for I C.1. jgﬁ"f*M”X o FT
eachi, now implies that eithe(f + »/LT) € F for every vL ; [Crmluie o Ka(e )

f € G, oritis so fornosuchf. Thereforex(f + r/LT € F) _ ke (1)

is constant over the intervél,,. O { if fe T Gm-

Proof of Theorem 1:0bserve that the quantity (A.4)
g(f) in (10) equals the number of nonzero entries ifor 1 < m < M. Equations (A.4) specify the spectrulfy( f)
{X,.(f):r = 0,1,...,L — 1}. Hence the summation in over the active subcellg:,,({)/LT) & G,,, that partition*. For
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the rangef ¢ F, X(f) = 0 holds by our choice of’,,,’s. We ~ Consider the spectral componeis ;) (f) andEy. )(f) of

multiply the right-hand sides of (A.4) by the indicator functiong,e aliasing errorE(f) del

X(f) — X(f)) defined exactly as

corresponding to their regions of validity and add them togethgy. (12) with E(f) in place of X (f)

This gives us a single equation faf( f)

M gm

=IVIY Y

m=1 [=1 =1
A e &(eﬂffT)x(f

M L—g» p

+TVLY S Y

m=1 =1 ¢=1

c; ksn(l) -
RO g (2T <f

N [Orn]li Cj & L

050,

(D)
50,

=1
where
M qm
NS
m=1Il=1
_ jor Cikm©) k(1
e (e B 0
M L—qn
+TVES S
m=1 [l=1
ikg, U ke (1
[Crn]hej i L X <f S : ) @grn>
T
TVI[A; e
. km(D)
_ If(l}f €55 @ Om
\/_[Orn]lz 2T = m
k(D)
if fe —=—=>~ T ® G-

Each of the filtersP,(f), 1 < ¢ < p has a piecewise-constant
frequency response. Therefore, the reconstruction equation is
wherep.,, ;(t) foreachl < m < M andl1 <[ < L —g,, are

p o
2= 3w (nD)pi(t — nT)
=1 n=—o0
P oo
=Y > alle+ LD)eilt = (e + Lj)T)
=1 j=—o0
where¢;(t) is the inverse Fourier transform @ ( /). O

Proof of Theorem 3:The following equations (for each

andf € G,,) are (21) rewritten in scalar form:

L—qm
X () () =X oy (F) + Z (D)X 1y (f)s
=1
I1<r<gm
~ L—gm
Xie (m () = Xpe () () + (FrnlriXne 0y (f),

=1

1S7)SL_an-

L—gm
Ekm(1)(f) = Z [Dm]rle:n(l)(f)
o
Ekfn (s Z Frn]lekfn(l)(f) (AS)
=1

for f€ G, 1 <7 < @m,1<s<L—qm,,and eachn. When
expressed in the time domain, (A.5) becomes

Clhipn (1 Z

=1
eksn(s)(t) = Z [Fm]sl[xk:n(l)(t)]'

=1

m 1l xkf e (1) )]

~

(A.6)

The total aliasing error can be obtained by modulating the errors

on each subcell appropriately and adding. The result is that

M

e(t)=>_ ™)

m=1
where
(,rn) Im JQT]\m(lV -72"'1‘ (l>*
"™t = en, ot + Z ere (t)e 7,
=1

Employing (A.6) in the above equation gives

M & kg (e L
= Z ZCT < Z [-Dnl]rlxkgn(l)(t))

m=1r=1 =1

M L—gm j2mkS (r)t L—gm
PSS ( Folrs o >)

m=1 r=1 =1
M L—gm
= Y tma®)zre, (1) (A.7)
m=1 I[=1

continuous L7-periodic functions defined as

+Z

The sup-norm oé(¢) can be computed directly from (A.7) as

L—gpm

Z [Frn]rle A’ T( .

r=1

G2mkm (73t
rn]1 & T

an,l(t) =

follows:

M L—qn

N2 2 s lo @)
m=1 (=1

M L—qm

MY S [ 1wl
m=1 =1

M L—gm

Inax|uml |Z Z

m=1l I=1

./mpc( )x <fe (l)eagm) df.

sup e(t)| < (max |an l
t m,lt

< (i
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The double sum of the integrals reduces to the integri@{ ¢f )|  Now it readily follows from (A.5), (13), and the above equation
over the union of the subcel{gk¢,(1)/LT) & G, }, or equiva- that
lently, over the out-of-band regidtF]\F. Hence

oo M
- | A0d=Y" | @) EE DD, (1) df

saple() <o [ X(|f oo =l
t (FNF M L—q,,
where is the constant => > / Xy ()P df
m=1 =1 Gm

del
1 = max ( max
m  1<I<KL—q,,t€[0,LT

i (B)])-

We have used the fact that,, ;(¢) is a periodic function o
of period LT to restrict the range fot in the above max- Where, the last step follows from the definitionf,(f), and
imization. We demonstrate that is the smallest possible H., is defined as

- / X df (A.11)

m

coefficient in the bound (A.8) for the sup-norm eft). First L—gm ;.
note thaty) = |fm, 1, (fo)| for somemy € {1,...,M} and H,, = k(D ®G,,. (A.12)
lo € {1,2,...,L — g, } andty € [0, LT] sinceji, (t) is o LT

continuous orj0, LT]. Now define Note that the union of these setsH,, equals the total

) , k.. (o) out-of-band regiodF]\F. Therefore, we deduce from (A.11)
X(f)= { exp(—j2nfto), i f€ T ¥ Grmo and (A.12) that
0, otherwise.
(A.9) © M . . I
In the time domain this is equivalent to / A)dt<> )\max(FmFerDmDm)/ | X(HI” df.
e m=1 m

(t) =A(Gm, ) sine ()‘(gcmo)(t_tg)) This bound is not very useful in this form. We can weaken it a

krn l i iti - - i
X exp <j27r < E;O) +§('ymo+’7mo+1)> (t— t0)> little to express it in terms of the out-of-band signal enefgy

(A.10) / A(t) dt < maxApax(FrFr + D2 D) 0w (A13)

For the choice ofX(f) in (A.9) it is clear that there is only one - . i

nonzero term in the right-hand side of (A.7), namely, the ter\’m\'herego“t is defined as

corresponding ten = mg andl = ly. Hence we obtain M

fon= Y [ XOPd= [ IXDPA (A1)
Hom [FNF

m=1

sup e(t)] = sup |ty 1, (s, (1) ()]

2 [ptmo 15 (t0)| X |xk$n,0 (10)(t0)] By a very similar argument, we obtain the following lower
bound on the ener t):
X NG =0 [ X ay al?)

[FINF oo
In fact, both sides of the above inequality are equal since (A.8) c*(t) dt = H},iln[)‘min(F mFm 4 Dy D)|Eoui- (A.15)
holds. This proves that the bound in (A.8) is sharp with the ex- -
tremalz(¢) in (A.10) achieving the bound. O These bounds are indeed sharp. The constants multipfying
Proof of Theorem 4-We shall now derive a bound on thea.\re the pest.. To demonstrate this we construct. extre_m_al func-
energy of the errog(¢) Fir.st observe that by Parseval’s theorerrt1Ions satisfying each of the above bounds. It is sufficient to
' specify the active and inactive spectral componergig,f) and

<, _ 9 x,, (f) rather thanX (f). After all, one can be determined in
/ () dt = /[f] [ECHI™ df terms of the other. Consider the bound (A.13) first. Let

— [ @pa+ [ EDRG o = a1 max s (5 P + Dy Dy)
[F\F F m
M g ) and define for eachn
-3 [i E(DR
m=1jw7‘=; P OYm .’l}r—:(f) =0, f€Gn
- 2 . [0, if m £ mo
DN /%% E()P df 5N ={p im0
M L—qn . . o+ *#
_ Z Z / Bre o (P2 df wherep,,, is the eigenvector ofF’,, F.,,, + D;, D,,] cor-
= =g R () responding to its largest eigenvalue. Starting from (A.11), one
M o can readily verify that the above function is an extremal for
+ E. 2 gf. the bound (A.13). An extremal for (A.15) is constructed analo-
>3 [ B R e bor o
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Proof of Theorem 5:Recall that M s )
b e where ¢, =7 % AGn)(14: 1117 + Crll7)
~ . . =1
w(t) = > w(lei+ LiDgi(t — (i + Lj)T) "
i=1 j=—o0 where|| - || is the Frobenius norm. O

It is clear that

Elw*((Lj + ) T)w((Lj' + i) T)] = 028;1:65ir. 1

Hence, distinct terms in the above summation are uncorrelategp)
and we obtain

L& (3]
Eli@))? =02 > ¢t — LiT — 1))
i=1 j=—o0o [4]
for the output noise power at tinte The above expression, al- [5]

though not necessarily independent of time, is certainly periodic
with period LT. Hence theaveragenoise power can be com-
puted as follows:

(6]

2 | 2 (7]
-~ _ ~ 8
(BLa)P)e = 7 | Bl d 8]
0_2 LT P oo
=17/ Z Z |pi(t — LTj — e T)|* dt (9]
1=1 j=—o0 [101
0_2 p =) ) 0_2 p
EﬁZ/ |¢i(t — )| dt = ﬁzng- [11]
=1 7° =1
(A.16) [12]
where&,, is the energy contained igy;(¢t). Using Parseval’s
theorem and (18) we compufg, 131
1
& = [losnPar
M am . L—gm [14]
:TQL Z )\(gnl) Z |[A;l ]li|2 + Z |[O"l]li|2
m=1 =1 =1
(A17) 15
This computation was quite simple owing to the fact that/)
is piecewise-constant. Combining (A.16) and (A.17) gives  [16]
P M
El®)P) =TS S AGnm) (27
=1 m=1
dm L L—gm [18]
. - . 2 . 2
lz:; |[Am ]h| + lz:; |[Cm]h| [19]

= 0—21/}117
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