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Aliasing Error in Sub-Nyquist Nonuniform Sampling

of Multiband Signals
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Abstract—We examine the problem of periodic nonuniform
sampling of a multiband signal and its reconstruction from
the samples. This sampling scheme, which has been studied
previously, has an interesting optimality property that uniform
sampling lacks: one can sample and reconstruct the class( )
of multiband signals with spectral support , at rates arbitrarily
close to the Landau minimum rate equal to the Lebesgue measure
of , even when does not tile under translation. Using
the conditions for exact reconstruction, we derive an explicit
reconstruction formula. We compute bounds on the peak value
and the energy of the aliasing error in the event that the input
signal is band-limited to the “span of ” (the smallest interval
containing ) which is a bigger class than the valid signals ( ),
band-limited to . We also examine the performance of the
reconstruction system when the input contains additive sample
noise.

Index Terms—Error bounds, Landau–Nyquist rate, multiband,
nonuniform periodic sampling, signal representation.

I. INTRODUCTION

T HE classical sampling theorem states that a signal occu-
pying a finite range in the frequency domain can be rep-

resented by its samples taken at a finite rate. Often attributed
to Whittaker, Koteln´ikov, and Shannon, a more precise state-
ment of this so-called WKS sampling theorem is that a real
low-pass signal, whose Fourier transform is limited to the range

, can be recovered from its samples taken uniformly at
the rate (the Nyquist rate) or higher [1].

Sampling a signal uniformly at causes the resulting
spectrum to contain multiple copies of the original spectrum

located with uniform spacing of between adjacent
copies. Hence the choice guarantees no overlaps in
the sampled spectrum, and thus allows recovery of the original
signal by a low-pass filtering operation. This is the key idea
behind the classical sampling theorem. For efficient sampling,
it is desirable to attain the lowest sampling rate possible, and
this is characterized by the absence of gaps or overlaps [2] in
the spectrum of the sampled signal. Unfortunately, in the case

Manuscript received July 12, 1998; revised March 8, 2000. This work
was supported in part by the Joint Services Electronic Program under Grant
N00014-96-1-0129, the National Science Foundation under Grant MIP
97-07633, and DARPA under Contract F49620-98-1-0498.

The authors are with the Coordinated Science Laboratory, Department of
Electrical and Computer Engineering, University of Illinois at Urbana-Cham-
paign, Urbana, IL 61801 USA (e-mail: ybressler@uiuc.edu; raman@ifp.
uiuc.edu.

Communicated by C. Herley, Associate Editor for Estimation.
Publisher Item Identifier S 0018-9448(00)06996-0.

of bandpass signals, it is not always possible to eliminate gaps
in the sampled spectrum, however, it is possible to minimize
them. Some results on bandpass sampling can be found in
[3], [4]. Thus while uniform sampling theorems work well
for low-pass signals, they are quite inefficient for representing
certain bandpass signals and, more generally, for multiband
signals, i.e., signals containing several bands in the frequency
domain. We refer the reader to Papoulis [5] and Jerri’s tutorial
[6] for some generalizations of the WKS sampling theorem.

To quantify the sampling efficiency for signals with a given
spectral support , we define its spectral span, , as the
smallest interval containing , and its spectral occupancy as

, where denotes the Lebesgue measure.
The Nyquist rate for signals with spectral support is
defined as the smallest uniform sampling rate that guarantees
no aliasing

where

is the translation of the set by . Then, the Nyquist sampling
rate satisfies

We say that tessellates or is packableif ,
andnonpackableotherwise ( ). In other words,
the Nyquist rate for nonpackable signals exceeds the total
length of its spectral support. At the other extreme is the case

(totally nonpackable), where uniform sampling
cannot exploit the presence of gaps in.

The general case of interest in this paper is that ofbeing
nonpackable such that the Nyquist rate for sampling with
spectral support is . On the other hand, Landau
[7] showed that the sampling rate of an arbitrary sampling
scheme for the class of multiband signals with spectral support

is lower-bounded by the quantity , which may be
significantly smaller than the Nyquist rate. Thus the spectral
occupancy is a measure of the efficiency of Landau’s lower
bound over the Nyquist rate. Becausecan be low for certain
nonpackable signals (in fact, it is easy to construct examples
of nonpackable with arbitrarily small ), uniform sampling
is highly inefficient for such signals. Fig. 1 illustrates a typical
case of such a nonpackable multiband signal. The Nyquist
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Fig. 1. The spectrum of a nonpackable multiband signal.

rate for this signal is (hence is totally
nonpackable), whereas the Landau lower bound is .
The spectral occupancy for this signal, , suggests that
it might be possible to sample the signal twice as efficiently as
the Nyquist rate. We examine the problem of efficient sampling
of nonpackable signals in this paper.

Our results apply to the class of continuous complex-valued
band-limited signals of finite energy with spectral support,
namely,

where is the Fourier transform of . All the results ex-
cept those about the peak aliasing error also apply to the bigger
class

if interpreted in the sense of convergence.

A. Nonuniform Sampling

Uniform sampling is not well suited for nonpackable signals.
However, it turns out that there is a clever way of sampling
the signal called “multicoset sampling” or “periodic
nonuniform sampling” at a rate lower than the Nyquist rate,
that captures enough information to recover exactly.
Multicoset sampling and reconstruction from the samples will
be described more fully in the following sections. First, we
survey some known work on nonuniform sampling. Kahn and
Liu [8] showed how to represent and reconstruct signals from
a multiple-channel sampling scheme. They provide conditions
for exact reconstruction from the sampling trains and relate it
to the maximum number of overlaps. Their sampling scheme,
which is essentially a filter bank, is more general than nonuni-
form sampling since their “analysis filters” are not required
to be simple delays. They express the reconstruction as the
solution to a matrix equation, but do not provide an explicit
interpolation formula. Cheung and Marks [9], [10] showed
that multicoset sampling allows sampling of two–dimensional
(2-D) signals below their Nyquist density. A similar treatment
for one–dimensional (1-D) and 2-D signals was done by Feng
and Bresler [11], and Bresler and Feng [12], respectively, in
the broader context of spectrum blind sampling. Filter bank
theory and periodic nonuniform sampling was also used to
obtain sampling rate reductions in [13]–[16]. Shenoy [17]
and Higgins [18] apply multicoset sampling to multiband
signals that do not tessellate under translation. Their results
indicate that signals with certain spectral supports require a
single interpolation filter as opposed tomore than onein the
other analyses of the problem. In other words, the sampling

expansion is composed of time translates of a single function.
Simplicity of its implementation is an obvious advantage of
their scheme. However, because it only works for a restricted
class of signals, we do not consider their scheme in this paper,
focusing instead on multicoset sampling.

Herley and Wong [16], following [8], used filter bank theory
instead, to suggest a sampling scheme for minimum rate
sampling. They choose the analysis filters of the filter bank to
be simple delays, , and then show that some of the
analysis channel outputs can be discarded, and yet, the input
signal can be reconstructed from the other channels. It is clear
that the reconstruction is performed by processing subsamples
(obtained nonuniformly) of the original sample train at the
Nyquist rates. As the number of channels goes to infinity,
the average sampling rate converges to Landau’s minimum
sampling rate, as expected. In fact, all of the schemes proposed
in [8]–[11], [16] achieve the Landau minimum rate asymptoti-
cally. Although we do not adopt a filter bank approach and use
a different notation, the work in [16] will be the basis for all
the analysis in this paper.

In this paper we continue along the lines of [16] to examine
the problem of nonuniform sampling. First, we present some
new results about the sampling and reconstruction scheme it-
self. Herley and Wong [16] suggest using an iterative projection
onto convex sets (POCS) algorithm to design the reconstruction
filters, rather than derive an explicit reconstruction formula. Un-
like in their analysis, we provide exact expressions for the inter-
polation filters, or equivalently the explicit reconstruction for-
mulas for the sampling scheme. Beyond their obvious practical
advantage, these expressions are useful for analytical purposes.
For instance, they are useful in a) analyzing the reconstruction
error of the system; b) quantifying the effects of signal mismod-
eling, i.e., computing the aliasing error and output noise; and c)
optimizing the system for the given class of signals.

B. Error Bounds

Bounds on sensitivity to mismodeling of the signal are im-
portant to any sampling scheme. They are particularly impor-
tant for the sampling schemes considered in this paper because
these schemes achieve what is impossible with other schemes:
approach the Landau lower bound arbitrarily closely. This raises
the question of a possibly increased sensitivity to signal mis-
modeling and sample noise, leading to an increased reconstruc-
tion error. Using our new explicit reconstruction formulas, we
derive bounds on the peak amplitude or the energy of the error
signal. We compute bounds on the aliasing error that results
from input signals in the class of functions , which is
larger than the class . We find that the upper bound on the
peak aliasing error takes the form

as it usually does for various other schemes. The bounding
constant can be used as a performance measure of the
system. Different systems can be compared based on their
corresponding bounding constants. In particular, Beaty and
Higgins [19] derive a similar bound on the aliasing error for
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packable signals. The bounding constant for their case is
. We also derive a bound on the energy of the aliasing

error which takes the form

Finally, we derive an expression for the output noise power
when the input is contaminated by additive white sample noise
with variance

It turns out that the constants , , and depend on some
parameters that are free to be chosen. An optimal choice of these
free parameters would minimize , , or . These results
can then applied to the design of sampling patterns, but this
problem will be addressed elsewhere.

II. M ULTICOSET SAMPLING

We begin with a few definitions essential to the development
and analysis of the sampling scheme. The class of continuous
complex-valued of finite energy, band-limited to a real set
(consisting of a finite union of bounded intervals) is defined by

where (1)

and

is the Fourier transform of . The span of , denoted by
, represents the convex hull of, i.e., the smallest interval

containing .
Let . We shall assume, with no loss of gener-

ality, that . In multicoset sampling, we first pick a
suitable sampling period (such that uniform sampling at rate

causes no aliasing), and a suitable integer , and
then sample the input signal nonuniformly at the instants

for and . The set contains

distinct integers chosen from the set .
The sampling process just described can be viewed as first sam-
pling the signal at the “base sampling rate” of and then
discarding all but samples in every block of samples peri-
odically. The samples that are retained in each block are spec-
ified by . The base sampling rate could be chosen equal to
the Nyquist rate, i.e., , but never lower. However,
we choose , because, sampling at this rate always
guarantees no aliasing for any.

For a given , it is clear that the coset of sampling instants
is uniform with intersample spacing

equal to . We call this the th active coset. The set
is referred to as an sampling patternand

the integer as the period of the pattern. Fig. 2 shows two mul-
ticoset sampling patterns corresponding to parameters

(a)

(b)

Fig. 2. Two distinct sampling patterns for(L; p) = (5; 3). (a)C = f0; 1; 2g.
(b) C = f0;1; 3g.

. All other patterns for these parameters can be obtained by
cyclic shifts of the patterns shown, namely, and

. Patterns related to each other by cyclic shifts with
or without reflections are essentially equivalent in terms of the
associated reconstruction problems and their error sensitivities.

Now, consider the following discrete-time sequences ob-
tained by zeroing out all samples except those at

where is the Kronecker delta function. It is clear that the se-
quence contains the samples of theth active coset with
samples separated by interleaving zeros. It is straightfor-
ward to verify that the discrete-time Fourier transform of theth
sequence is

(2)

which, using the fact that for , gives us

(3)

where is defined as

(4)

(5)

and denotes the indicator function of a real set
consisting of a finite union of bounded intervals

if
if .
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In other words, the “spectral component” is obtained by
first using an ideal bandpass filter to extract the signal in the
frequency range and then performing
a frequency shift to the left by units. Denoting the in-
verse Fourier transform of by , it is evident from
the above definition that

(6)

Another result that can be deduced from (2) or directly from the
definition of is

(7)

We will use (6) and (7) later in deriving the reconstruction equa-
tions. We now let in (3) to get

(8)

This is the main equation relating the spectral components
to the information contained in the observed samples.

Note that (8) on the interval , contains all the relevant
information present in the samples since, from (7),
is essentially “periodic” with period . Reconstruction of
the original signal is achieved if we recover its spectral
components .

III. RECONSTRUCTION

We now focus on the problem of reconstructing
from its multicoset samples. Herley and Wong [16] considered
the analogous problem for real signals, but did not, however,
provide an explicit reconstruction formula or system. We shall
derive the reconstruction equations formally and devise a mul-
tirate system to perform the reconstruction.

Our objective is to invert the set of linear equations (8) to ob-
tain . The recovery of is then merely an application
of (6). Notice that, if and satisfy certain conditions, the in-
version of (8) can be accomplished even though there are fewer
equations () than unknowns () for each . This is pos-
sible because our signals belong to , which is smaller than

.
Let be the union of bounded intervals as in (1) with the

additional assumption that

made with no loss of generality. Consider the finite setdefined
below

(9)

where is the floor function. Let be the
elements of arranged in increasing order. We have

as a consequence of . We define
to get

and a collection of intervals that partitions the set

We prove (in the Appendix) the following fact involving the
indicator function of and these sets .

Lemma 1: For each and the func-
tion is constant over the interval .

Equivalently, the theorem states that each of the “subcells”
for is either fully contained in or dis-

joint from it. This interpretation of the theorem motivates the
following definition of the “spectral index sets” and their
complements for :

and

The index set tells us which subcells in the collection
are “active,” while indicates which

of them are not. The following theorem, which is a restatement
of the main theorem in [16] using our notation, provides a
necessary condition for reconstruction:

Theorem 1: Equation (8) admits a unique solution for
only if the indicator function of satisfies

(10)

Furthermore, an equality in (10) is necessary for attaining
Landau’s lower bound on the sampling rate.

To make the paper self-contained, we provide a Proof of The-
orem 1 in the Appendix. Since, by Lemma 1, is constant
on each , the inequality (10) reduces to

where (11)

Evidently, is the cardinality of the set . We denote the
elements of and by

and

respectively. Later, we shall see that, for a suitable choice of,
(11) is also sufficient for unique reconstruction. In the following
example, we show how to construct the relevant-sets for the
spectrum illustrated in Fig. 3.

Example 1: Let the spectral support of our class of signals
be . Comparing this with (1),
we find that

and
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(a)

(b)

(c)

Fig. 3. (a) Indicator function of the spectral supportF of span1=T = 5. (b)
Left-hand side of (10) gives the number of overlapping pieces of the sampled
spectrum (forL = 5) which is constant on each of the setsG ;m = 1; . . . ; 4.
(c) The active spectral subcells. For eachm = 1; . . . ; 4; the translates
(r=LT) � G ; r 2 K are shown in the same color.

The indicator function of the set is shown in
Fig. 3(a). The length of is and its span is

. It can be checked easily thatis nonpackable and hence
the Nyquist rate for signals in is . Yet
Landau’s lower bound gives a rate of and the corresponding
occupancy is . Suppose we pick . We
see that (9) yields

containing elements, from which we construct sets
that partition

The following are immediately apparent:

Fig. 3(b) shows the left-hand side of (10) plotted on the interval
. Note that this function is piecewise-constant, equal to

on each of the intervals which are color-coded for conve-
nience. Fig. 3(c) shows the indicator function ofcolor-coded
to show the active subcells derived by translating.

In direct analogy to (4), we define

(12)

However, beware of this definition since it is not equal to (4)
evaluated at . The extra factor of in

(12) makes it different. The “spectral component”
is obtained by shifting the values of on the subcell

to the origin. For each , we define a
matrix , and vectors , and

as follows:

(13)

Note that is the submatrix of the DFT matrix
obtained by extracting its rows indexed by, and columns in-
dexed by . We denote this by . Next, using
the fact that whenever , we can rewrite
(8) in matrix form over each subcell as follows:

(14)

At this point, we introduce the following two definitions that
characterize the sampling pattern, of size , in terms of the

DFT matrix .

Definition 1: Given an index set with , we call
a -reconstructive sampling pattern if the matrix

has full row rank.

Definition 2: A pattern with is universal
if the matrix has full row rank for every index set of

elements, i.e., whenever . A -universal pattern is
simply called universal.

For fixed values of and , the second definition is stronger
than the first. For every and , there always exists
a universal pattern. The “bunched” sampling pattern

is an example since the resulting matrix
is a Vandermonde matrix for any choice of.

This guarantees for any spectral support with
active cells.

Equation (11) together with the assumption that has full
rank for each (i.e., being -reconstructive for each )
is necessary and sufficient for reconstruction. A simpler suffi-
cient condition is universality of. For convenience, we assume
throughout that is universal. This guarantees the existence of
left-inverses of . Therefore, inverting (14) gives

(15)

where, in order that hold, is any
matrix satisfying

(16)

for each . The matrices and are nonunique unless
. In other words, there is some freedom that can be used

in designing a reconstruction system. The actual choice of ma-
trices does not affect the reconstruction, but does influence the
bounds on aliasing error, as described later. This suggests that
finding the optimal matrices is of some interest. These equations
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Fig. 4. Multicoset sampling and reconstruction. The block “I” is an ideal sinc interpolator.

specify all the information required to reconstruct the spectrum
on all its spectral subcells, and hence itself.

The interpolation equation may be calculated from (15) in a
rather messy but straightforward manner. The result is summa-
rized in the theorem below, and we prove it in the Appendix.

Theorem 2: Let be sampled on an multi-
coset pattern , and , be the spectral index
sets of . Then, if is -reconstructive for each , can
be uniquely interpolated from its multicoset samples according
to the following formula:

(17)

where the functions , have Fourier transforms
that are piecewise-constant on

if

if .

(18)

Corollary 1: The result in Theorem 2 holds if ,
and is universal.

The reconstruction scheme is illustrated in Fig. 4. In the
figure is a digital filter whose impulse response is

. The filters used are ideal. In practice, causal, possibly
finite impulse response (FIR) approximations are used, intro-
ducing some delay and distortion. The analysis of the resulting
error is analogous to the truncation error in classical cardinal
series expansion and is beyond the scope of this paper. Instead,
we assume that the filters are ideal and concentrate on the
aliasing errors due to signal mismodeling.

IV. ERRORBOUNDS

For a system designed to sample and reconstruct signals in
, it is necessary that (11) hold. In this case, the reconstruc-

tion of would be exact. However, if then
the signal reconstructed using the right-hand side of (17)
would be in error. For example, this would happen if, in the
system design, we underestimated the spectral support of sig-
nals we expected to encounter, i.e., if we would choose to ignore
certain frequencies that contained negligible signal energy. The
purpose of this section is to obtain bounds on the aliasing error

resulting from an underestimation of the
spectral support.

In the following analysis need not vanish on
although we assume, for simplicity, that for .
In other words, we assume that the spectral spanis correctly
specified, but the multiband structure to which is band-
limited within may be misspecified. We shall first derive
bounds on the sup- and-norms of the aliasing error for
the nonuniform sampling process described in the last section.

Recall that tells us exactly
which spectral subcells in the collection
are inactive. Now, for each , let

denote the submatrix of the
DFT matrix , with rows and columns indexed byand
respectively, i.e.,

(19)

We can then rewrite (8) in matrix form as

(20)

where is the vector defined in (13). If
then would vanish. Denoting the recon-

structed signal by , it immediately follows from (15), (16),
and (20) that

(21)

where and have definitions analogous to
and , respectively. We define matrices and (of
sizes and , respectively) for
each

(22)
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In the following subsections, we present bounds on the peak
aliasing error, the aliasing error energy, and evaluate the perfor-
mance of the system in the presence of input noise.

A. The Sup-Norm of the Error

The following theorem provides the time-domain expression
for the aliasing error.

Theorem 3: The aliasing error takes the form

where for each and are
continuous, -periodic functions defined as

Furthermore, the peak value of satisfies the tight bound

We prove this theorem in the Appendix. The tightness of this
bound is proved by demonstrating an input signal that satis-
fies the equality in the bound. Note that the constantcan be
bounded from above as follows:

where is the maximum-column-sum norm for matrices (or
the norm for column vectors.) Hence we obtain the weaker,
but more tractable bound

where (23)

B. -Norm of the Error

Theorem 4: The energy of the aliasing error is bounded by

where , the out-of-band energy, equals

with both bounds being tight.

Once again, the proof can be found in the Appendix. We are
particularly interested in the upper bound on the-norm of the
error

It is clearly related to the spectral norm of the matrix composed
of and as

where (24)

C. Performance in the Presence of Noise

Finally, we consider the effect of additive white sample noise,
representing, e.g., quantization noise. The sampled signal can be
modeled as

where is a noise process with

and is the actual signal we would like to be sampling.
Owing to its linearity, (17) directly gives us the following ex-
pression for the output noise which is independent of :

Theorem 5: The output noise is possibly nonstationary,
with average power given by

where

The norm represents the Frobenius norm. Theorem 5 is
proved in the Appendix.

V. CONCLUSION

We have presented the analysis of a scheme for sampling
multiband signals below the Nyquist rate. The sampling scheme
uses multicoset sampling and achieves the Landau minimum
sampling rate in the limit , where is the period of the
sampling pattern. However, for many spectra, the minimum rate
can be achieved for a finite. Typically, this scheme is useful
for sampling signals with sparse and nonpackable spectra.

We determined necessary and sufficient conditions for the re-
construction of a multiband signal from its multicoset samples
and derived an explicit reconstruction equation. There are free
parameters in the reconstruction equation when the Landau min-
imum rate is not achieved for the particularchosen. We com-
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puted bounds on the aliasing error occurring in the event that
the signal lies outside the valid class of multiband signals and
determined the sensitivity of the system to input sample noise.
The constants in the bounds and the noise-sensitivity factor re-
veal that some sampling patterns are better than others. In other
words, these bounds, which quantify the goodness of sampling
patterns, can be minimized to produce the optimal sampling pat-
tern and parameter choice in the reconstruction formula.

APPENDIX

Lemma 2: If are integers and satisfy

(A.1)

then . Further if then follows trivially.
Proof: Equation (A.1) implies that

where the strictness of the second inequality comes from the
fact that is open on the right. Hence , or
equivalently, .

Proof of Lemma 1:Let and be fixed. Then for each
we can express and uniquely as

and (A.2)

where are integers and are elements of with
. Now we shall prove by contradiction that

exactly one of the two conditions

and

holds. It is clear that both statements cannot be true simultane-
ously. So if neither of them holds, then

or

or both must hold. If the first condition holds then (A.2) along
with Lemma 2 implies that . Therefore,
and . The last observation contradicts

because the ’s are arranged in increasing order. Similarly,
the second statement above would also lead to a contradiction.
This proves our claim that the “subcell” is either
contained in or disjoint from . This fact, being true for
each , now implies that either for every

or it is so fornosuch . Therefore,
is constant over the interval .

Proof of Theorem 1:Observe that the quantity
in (10) equals the number of nonzero entries in

. Hence the summation in

(8) (repeated below) contains nonzero terms, for each

(A.3)

These equations form a set oflinear equations with un-
known variables on the right-hand side, and solving them re-
quires . Hence, , is necessary
for reconstruction of the spectral components . Next as a
consequence of and the definition of in (10), we
can bound the average sampling density from below by
the Landau minimum rate

with equality holding if and only if for all .

Proof of Theorem 2:To derive the interpolation equations,
we begin by expressing (15) in scalar form

We use the expressions for , , and from (13)
to obtain

for and each . Or equivalently, using (12) we have

if

if

for each , which in view of (7), leads to

if

if

(A.4)

for . Equations (A.4) specify the spectrum
over the active subcells that partition . For
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the range , holds by our choice of ’s. We
multiply the right-hand sides of (A.4) by the indicator functions
corresponding to their regions of validity and add them together.
This gives us a single equation for

where

if

if

Each of the filters , has a piecewise-constant
frequency response. Therefore, the reconstruction equation is

where is the inverse Fourier transform of .

Proof of Theorem 3:The following equations (for each
and ) are (21) rewritten in scalar form:

Consider the spectral components and of

the aliasing error ( ) defined exactly as
in (12) with in place of

(A.5)

for , , , and each . When
expressed in the time domain, (A.5) becomes

(A.6)

The total aliasing error can be obtained by modulating the errors
on each subcell appropriately and adding. The result is that

where

Employing (A.6) in the above equation gives

(A.7)

where for each and are
continuous, -periodic functions defined as

The sup-norm of can be computed directly from (A.7) as
follows:
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The double sum of the integrals reduces to the integral of
over the union of the subcells , or equiva-
lently, over the out-of-band region . Hence

(A.8)

where is the constant

We have used the fact that is a periodic function
of period to restrict the range for in the above max-
imization. We demonstrate that is the smallest possible
coefficient in the bound (A.8) for the sup-norm of . First
note that for some and

and since is
continuous on . Now define

if

otherwise.
(A.9)

In the time domain this is equivalent to

(A.10)

For the choice of in (A.9) it is clear that there is only one
nonzero term in the right-hand side of (A.7), namely, the term
corresponding to and . Hence we obtain

In fact, both sides of the above inequality are equal since (A.8)
holds. This proves that the bound in (A.8) is sharp with the ex-
tremal in (A.10) achieving the bound.

Proof of Theorem 4:We shall now derive a bound on the
energy of the error . First observe that by Parseval’s theorem

Now it readily follows from (A.5), (13), and the above equation
that

(A.11)

where, the last step follows from the definition of , and
is defined as

(A.12)

Note that the union of these sets equals the total
out-of-band region . Therefore, we deduce from (A.11)
and (A.12) that

This bound is not very useful in this form. We can weaken it a
little to express it in terms of the out-of-band signal energy

(A.13)

where is defined as

(A.14)

By a very similar argument, we obtain the following lower
bound on the energy of :

(A.15)

These bounds are indeed sharp. The constants multiplying
are the best. To demonstrate this we construct extremal func-
tions satisfying each of the above bounds. It is sufficient to
specify the active and inactive spectral components, and

rather than . After all, one can be determined in
terms of the other. Consider the bound (A.13) first. Let

and define for each

if
if

where is the eigenvector of cor-
responding to its largest eigenvalue. Starting from (A.11), one
can readily verify that the above function is an extremal for
the bound (A.13). An extremal for (A.15) is constructed analo-
gously.
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Proof of Theorem 5:Recall that

It is clear that

Hence, distinct terms in the above summation are uncorrelated
and we obtain

for the output noise power at time. The above expression, al-
though not necessarily independent of time, is certainly periodic
with period . Hence theaveragenoise power can be com-
puted as follows:

(A.16)

where is the energy contained in . Using Parseval’s
theorem and (18) we compute

(A.17)

This computation was quite simple owing to the fact that
is piecewise-constant. Combining (A.16) and (A.17) gives

where

where is the Frobenius norm.
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