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Optimal Sub-Nyquist Nonuniform Sampling and
Reconstruction for Multiband Signals

Raman Venkataramani and Yoram Breskezllow, IEEE

Abstract—We study the problem of optimal sub-Nyquist sam- bound is often much lower than the corresponding Nyquist rate.

pling for perfect reconstruction of multiband signals. The signals This motivates the study @fub-Nyquist samplingf multiband

are assumed to have a known spectral suppot” that does nottile i 015 and their perfect reconstruction, cf. [7]-[14]
under translation. Such signals admit perfect reconstruction from . . . . L
periodic nonuniform sampling at rates approaching Landauw's ~ From a practical viewpoint, sub-Nyquist sampling is very

lower bound equal to the measure ofF. For signals with sparse importantin several Fourier imaging applications such as sensor
J, this rate can be much s_maller than the Nyquist rate. Unfortu-  array imaging, synthetic aperture radar (SAR), and magnetic
nately, the reduced sampling rates afforded by this scheme can yagonance imaging (MRI), where the physics of the problem

be accompanied by increased error sensitivity. In a recent study, . | fth K o .
we derived bounds on the error due to mismodeling and sample provides us samples of the unknown sparse object in its Fourier

additive noise. Adopting these bounds as performance measures,domain[15]-[18]. Ourobjective, then, istoreconstruct the object
we consider the problems of optimizing the reconstruction sections from the Fourier data. Itis often expensive or physically impos-
of the system, choosing the optimabase sampling rateand de-  sjble to collectmany samples, and itbecomes necessary to sample
signing the nonuniform sampling pattern We find that optimizing  inimajly and exploit the sparsity (i.e., multiband structure)
these parameters can improve system performance significantly. . . .. U
Furthermore, uniform sampling is optimal for signals with = N the object to form its image. These problems are, of course,
that tiles under translation. For signals with nontiling 7, which ~duals to the problem considered here since the sparsity is in the
are not amenable to efficient uniform sampling, the results reveal spatial domain and sparse sampling in the frequency domain.
increased error sensitivities with sub-Nyquist sampling. However, For a given signak(t), its spectral support¥ is defined as
these can be controlled by optimal design, demonstrating the the set of frequencies V\,Ihere the Fourier transfdé does
potential for practical multifold reductions in sampling rate. . q . . )

not vanish, and thepectral spari.F] is defined as the smallest
interval containingF. We consider here only spectral supports
that can be expressed as a finite union of finite intervals called
bands The set of multiband signals bandlimited ¥ is de-
noted by3(F). Landau’s lower bound for these signals\(sF),
. INTRODUCTION where\(-) is the Lebesgue measure. However, in general, the

HERE has been a long history of research [1]-[4] devotd¥yauist ratefnyq for samplingz(¢) € B(F) without aliasing

to sampling theory, with perhaps the most fundamental afveriap between translates sfby multiples offyy) is equal
importantpieceofworkinthisareabeingtheclassicalsamplingt@-the width of its spectral spafy, = [#]. Hence, for multi-
orem. Alsoknownasthe Whittaker—Kotétov—Shannon(wks) Pand signals with sparse spectral suppts the Nyquist rate
theorem, it states that a lowpass signal bandlimited to the frequé@D be much larger than the lower boux(d).
cies(— fo, fo) can be reconstructed perfectly from its samples A favorable case is v_vhen the. WIdthS. of th.e bands and the_
taken uniformly atno less than the Nyquistrat2 4f[5]. Another 92PS between them sat_lsfy special relationships SO that there is
importantresultinsamplingtheory duetoLandauisalowerboufi@ ©veriap between uniform translatesBfby multiples of a
onthe sampling density required for any sampling scheme that@antity fo < A([#]). In these cases, when the spectral support
lows perfectreconstruction [6]. Formultiband signals, this fund’ Packable fnyq = fo < A([#]). The most favorable situa-
mentallowerboundisgivenbythetotallength(measure)ofsuppHfi Of these is wherr tiles the real line u‘nder uniform trans-
ofthe Fourier transform of the signal. Landau’s bound applies @/°NS: €., is packable without gaps, of s an explosion of
an arbitrarily sampling scheme: uniform or not, and the minimume interval” [4]. In this (very special) cas¢yq = A(F), i.e.,

rateisnotnecessarily achievable exceptasymptotically. Landa aspdau s lower bound IS achievable bY unlform samplmg.
Instead, the case of interest to us in this paper is the gen-

eral case, With\(F) < fuyq < A([F]). Without loss of gen-
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proaching the Landau lower bound [8]-[24]n fact, the work In addition, we solve the problem of an optimal choice of the
in [19]-[22] typically addresses signals with lowpass spectrbhse sampling frequency to minimize the average sampling rate
supports, which, being packable, are best sampled uniformdghievable by a design with a given sampling petiod his al-

as we show in this paper. lows us to minimize the sampling rate for a given system com-

We note that the related problem of perfect reconstructiguexity, rather than asymptotically, with — oc. This problem
in filter banks (cf. [23]) is fundamentally different from theis related to the problem of pairing band edgesFof13]. We
problem considered here. In the filterbank work, all samples @tovide a simple algorithm to solve the problem, whether or
the Nyquist rate are assumed available, and the analysis stagel.andau’s lower bound is attainable for the particuffaand
can be designed together with the synthesis stage. In contrastlinice of L.
our problem, Nyquist-rate acquisition is too expensive or evenWe derive additional relationships and bounds that allow us
impossible, and only the minimum number of samples of the quantify the performance loss in terms of increased error sen-
continuous time signal is acquired. As shown later, the filterbaskivity due to nonpackability of the spectral support and com-
interpretation for this is that the analysis filters are restricted pare uniform and nonuniform sampling patterns for packable
the form ofz—*, wherek € Z. spectra. Not surprisingly, perhaps, we find that uniform sam-

Given the obvious advantages of such reduced sampling rgtéag is more suitable for packable spectra. Most importantly,
(by, e.g., afactor of 10 in one of the examples in this paper), ohewever, we find that the sensitivity penalty for sub-Nyquist
would expect extensive use and applications of these methaslmpling of signals with nonpackable spectra can be controlled
However, a very high sensitivity to errors has been observedty optimal design and by backing off slightly from the minimum
some cases [9], [12]. In fact, it turns out that unless the samate. The resulting low error sensitivities with multifold reduc-
pling and reconstruction system is very carefully designed atidns from the Nyquist rate in our numerical examples suggest
optimized, the sensitivity to small errors can be so great that #tat these techniques have considerable practical potential.
though perfect reconstruction is possible with perfect data, the
signal is corrupted beyond recognition in most practical situa- 1. MULTICOSET SAMPLING
tions.

The goal of this paper is to explore these limitations a
devek)p Systema’[ic design methods to minimize the Samp”nd_et the class of continuous Complex-valued signals of finite
rate and, at the same time, minimize the error sensitivity of t§&ergy, bandlimited to a subsgtof the real line (consisting of
system. This will provide the necessary tools for practical ap-finite union of bounded intervals), be denotedZ{y-)
plications of minimum-rate sub-Nyquist sampling.

We consider the problem of periodic nonuniform sampling?(¥) = {(t) € L*(R)N C(R): X(f) =0, f ¢ F}
and reconstruction of multiband signals. We focus primarilwhere
on the results presented in [14], where we derived an explicit " .
reconstruction F;ormula and E’:\ r}wItirate realization for a sgm— 7= U[“i’ bi) and X(f)= /Rx(t) exp(—j2 ft) dt.
pling scheme calledhulticoset samplinghat allows us to ap- =t 1)
proach the Landau minimum rate arbitrarily closely. As an im-

portant tool for systematic feasibility evaluation and design qjhespan of £, which is denoted byF], is the convex hull of
the system, we derived estimates of the error resulting fro ie the srr;allest interval containiﬂ'g

signal mismodeling. More precisely, we derived bounds on a)’Definition 1: The spectral SUppOIF is said to be packable

the peak value and energy of the aliasing error resulting Whgpratef : - .

. . L oif FN(Fdnfo) =0,Yn e Z\{0}, whereg is the
the input signak(t) lies in B([#]), rather thar3(¥), and b) the .-~ <|ation operator defined by@® F = {f + 2: z € S} for
output noise variance when the input samples contain additié{ﬁy real setF and f € R. ' '

. : ; 9
white noise of variance . _ o In other words/F is packable at ratg, if signals with spectral

In this paper, we use these various bounds to optimize §ig,nort7 can be sampled uniformly at rafg without inducing
pen‘ormance_o.Ic t_hg sub-Nqus.,t. §ampl|ng and reconstruct|gnasing_ HenceF is always packable at raté[]). We call #
system by minimizing the sensitivity bounds. It turns out th"ﬁonpackabléf itis not packable at any rate smaller thef.]).
the reconstruction system that provides perfect reconstructigR, assume thaf is nonpackable and thatf F = a; = 0 and
of signalsz(#) € B(Z) in the modeled class has free paramsy;, 7 — ,,. There is no loss of generality because any signal
eters, which can be chosen to optimize the sensitivity boundgectrum whose spdrt] is known can be shifted to the origin
We present closed-form or otherwise efficient approximatiggy multiplication of the signal in the time domain by a suitable
numerical algorithms to solve these optimization problemgemplex exponential. Since multiplication and sampling in the
Likewise, we use the bounds to determine the best samplif{ge domain commute, we are justified in making the assump-
pattern among all patterns that achieve a given sampling ratefien.
agivent. We now describe multicoset sampling. Given a bandlimited

signalz(t) € B(F), we obtain its samples taken on a periodic

2This discussion and intentional use of nonuniform sampling are fundamemenuniform grid consisting of the sampling locatiofrsL, +

tally distinct from other extensive recent work on nonuniform sampling in which P i
it is usually regarded as a “necessary evil” imposed by sampling jitter or oth%r)r for_n €z E_md t=1...,p where {c”} Is a set Ofp
physical limitations [19]-[22]. Istinct integers in the set = {0, 1, ..., L — 1}, and1/T

n'%l' Signals and Data
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t=(nL+c,)T which is nonpackable witfiF] = [0, 1) and2 = 0.1. Hence,
N the Nyquist rate equals([F]) = 1, and the Landau minimum
rate isA\(F) = 0.1. For the choicd. = 20, we find thatA/ = 19

x(t) —— andT’ = {m/200: m = 0, ..., 19}. Hence, the partitions of
Fo = [0, 1/20) and the spectral index sets are given by
K
t=(nL+c,)T ; _
(nL+c,) [0, 25, ifm=1
F. 1 . . ) g'rn —
ig. 1. Model for multicoset sampling 27 m-+1 7 <m<19
400" 400
is the “base frequency,” which is at least equal to the Nyquiahd _
rate forz(t): 1/ > A([F]). This is illustrated in Fig. 1. In {01}, ifm=1
Section 1V, we address the problems of selecting the optimal " {0, m), 2<m<19.

base frequency/T and sampling patterfc; }.
Denote the number of elements/6f, by ¢,,, = |K,.|. Then,

B. Definitions and Notation |Km| = L — gm. Observe that
This section is largely a collection of definitions and notations
needed to describe the various error bounds derived in [14]. For a(f) = qm, VSEGm
any real setS € R, denote its indicator function by where
L—1
s(1, iffes & L erF €Fo. (3
X(fes)d:f{ f . a(f) Z_:X(f+LT >7 f 0 )
0, otherwise r=0

and for the given spectral suppdit= | J,[a;, b;), define afinite N€Xt, define the following matrices for each:

setl’ as .
A, =W, K,) ofsize:px gn

e LTa/z . — .
rf {ai — %: 1<:4< n} B,,=W_(C, K,,) ofsizexpx (L—qm) 4)
U s, LLTb;] 1 << @) whereW , is theL x L unitary DFT matrix whosém, n) entry
i T o =tEn iS WL mn = 1/VLexp(j2rmn/L), andW (C, K) denotes

the submatrix oW ;, obtained by selecting its rows indexed by

where [-| is the floor function. Suppose we write¢ and columns byC. Observe thatl,,, andB,, satisfy
I' = {y1,7,...,vm} as a set ofM < 2n elements of

I" arranged in increasing order; then, = 0 as a consequence ALAY + BB =1 (5)
of a; = 0. Furthermore, definionJrldéfl/(LT), we see that
0=m <7 < - < yuq = (LT)7L, and a collection These matrices play in important role in the error bounds, as
of intervals{G,,} that partitions the sefF, = [0, 1/(LT))is we will see later. A necessary and sufficient condition for re-
given by construction of every signal € B(F) is the existence of left
inversesA” for eachA,, such thatd” A,, = I. This, in turn,
Gm = [Ymyr Yma1), 1<m< M. requires thatd,,, have full rank for each < m < M. This

N o ) _motivates the definition of two notions of goodness that charac-
The reason we partitiork, in this manner, as discussed ingrize sampling patterns.

[14], is so thatx(f € F) is constant (either O or 1) fof € pefinition 2: Given anindex set with |K| = ¢ < p, we call

Gm@r/(LT), and each pair ofindicea andr. In other words, ¢ 3 k-reconstructive sampling pattern if the mathix,, (C, K)
each “subcell” of the forn@,,, & »/(LT), forl € £Landl < pas full row rank.

m < M, is eith_er disjoint from or fuII_y contained it. Now, Definition 3: A patternC with |C| = p > qis(p, ¢) universal
define spectral index set&’,,, and their complementk.,,, for i the matrixW 1,(C, K) has full row rank for every index sét

m € {1, 2, ..., M} as follows: of g elements, i.e., whenevBt| = ¢. A (p, p)-universal pattern
de , _ is simply calleduniversal
K= {7’ €L 7 ®0m C 5’:} s K= L\K. The existence of a universal pattern is demonstrated by the

) o ) _ bunched sampling patteré = {0, 1, ..., p — 1}. It is uni-
The setk’,,, contains the indices of subcells in the collectiogersal because the resulting mathk,,(C, K) has a Vander-
{r/(LT) & Gm: v € L} that are contained if. The following  monde structure for ani<| = p. A (p, q) universal pattern is

example illustrates the construction of. these sets. KC-reconstructive for even with |K| < ¢ so that the second
Example 1: Suppose we want to design sampling patterns fagfinition is stronger than the first for fixgdandg. Therefore,
a class of bandlimited signal(#) with C has to bek,,,-reconstructive for each [14] for perfect re-

19 construction. However, for simplicity, we assume in the rest of
- [0 ﬂ) U U [21_7” 2lm + L) the paper thaf is universal withp > max,,, ¢,,. This automat-
400 , L 400" 400 ~ 400 ically satisfies the reconstruction condition. In view of (3), this
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’=”TA/ . . ' (1)
> L @ Z<i Yz N
x(t)

]

Fig. 2. Multicoset sampling and reconstruction. The block “I” is an ideal sinc interpolator.

condition reduces tp > maxy ¢(f). Hence, the average sam-C. Error Bounds

pling rate f,, satisfies Assume thate(t) lies in B([F]) rather than in the class of
1 I—1 ] signals for which it was designed, nameB(F). Thus, x(¢)
Fave = L o> = max Y x (f + e ]—“) . (6) has out-of-band frequency components. This causes the recon-
LT = LT fero £ Lr structed signat(¢) to be in error, which, for simplicity, we call

The equality in (6) is achieved for universal sampling patterﬁgeahasmg error. The followmg are some error bounds derived
C with p = max,,, gm. The conditiorp > max,, g, guarantees in [14]. The peak value oi(t) is bounded as

that A,,, has full column rank for eacte. Under this condition,

we obtain the following explicit reconstruction formula feft) Sup ()] < oo /[F]\F XA df

from its multicoset samples:

where
P o -
W =3 S alle+ LDG(— (e + LT (D) v = mpelSnll ()
=1 j=—o0 while the energy o&(t) and an upper bound on it are given by
where the functionsg);(¢), ¢ = 1, ..., p are the (nonunique) v
interpol_ationzilters._ These filters can be pgrameterized in terms le(8)|? dt = / (o () (S5 Sm)zn (f)df  (11)
of matricesA,;, of sizeg,, x p andC,, of size(L — ¢,,) x p, R =G

which are defined by

2 h2 2 po = max |5,
®) /Rle(t)l dt <_7/2/[]\ [X(OIPdf, 42 = max [ Sl
(12)

AlA, =1, and C,A,, =0.

It is clear that these matrices are nonunique if ¢,,,, and this
reflects the nonuniqueness of the interpolation filters. A mtk}vhere:c;l(f), which is defined forf € G,,, are vectors con-
tirate realization of the reconstruction scheme is illustrated {8ining the out-of-band signal components

Fig. 2. The analysis part, to the left of the broken line, is a model

for the multicoset sampling process of the continuous-time .- (f) = {X <f+ i) ke Km}, £ € Gm.
signal (see Fig. 1). In other words, the simple structure of the Lr

anIaIyS|s p?rt of thti flltert;?nk |std|c.t§1ted by thle Sllssun;ptlon tt tppose the input sampleénT") contain additive white noise
only samples on the MUTicoset grid are avarable, whereas w?n) with varianceo? representing, for instance, sensor noise
synthesis part has a fully general structure. The digital filte

bt guantization error associated with sampling. Then, the corre-

Yi(z), 2 = 1, ..., p on the synthesis side are related to thg, 4o output noise has average power equal to
interpolation filters by

U;(z) = Z Pi(nT)z7".

necZ

(Elw(t)]*)r = ot
M

Yo =T Y M) (14515 + ICallF) . (13)

m=1

See [14] for the exact expressions for these interpolation filters

in terms of A~ andC,,..

We summarize the bounds below as they will be the basis fbf€ bounds (12) and (13) are tight because there exist nonzero
all the results in this paper. All our error bounds are express&put signals that satisfy the bounds with equality; however, (10)

in terms of AL, C,,,, andS,,, defined as need not be tight. All three bounds depend only on a measure
. of the out-of-band signal content, which is either the magnitute
5 - A B ) of the spectrum X (f)| or its square integrated over the out-
"\ CpBm — 1./’ of-band region ]\ F.
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lll. OPTIMAL RECONSTRUCTION and the corresponding minimum value of the objective function

The multiplying constantg.,, 12 in the bounds (10) and (12) Is

are nondecreasing functions of the 1- and 2-norms, respectively, 5\ TA-D. if I
of the matrixS,,, for eachm. Hence, our problem is to mal,, ISl = { mae(( )7, _ p< a7
have the smallest norm possible for eachand this is clearly a ) if p=L.

collection of mutually independent problems. Therefore, for the ) ) o

sake of readability, we drop the index everywhere from now Furthermore, the solution (16) simultaneously minimizes all
on with the understanding that the solution needs to be appl%ﬂgUIar values o§ and, therefore, its F_ro_bgnlus norm as well.
to eachm. Given sampling patteref and a spectral index set VeXt, we address the problem of optimizing the actual recon-
K, our objective is to pick appropriate matricdd andC that Struction in terms of the aliasing error energy.

. . . . L .
satisfyA” A = I andC A = 0 [viz. (8)] and minimize the norm Theorem .1..The choice of opt'lmgl matriced,’ and C' in
of Lemma 2 minimizes thactual aliasing error energyor each

. x(t) € B([F]) as well as the aliasing error bound (12).
P < A"B ) (14) Proof: Equation (16) clearly minimizes the constafy
CB-1 in the bound (12), or equivalently the bound itself. Moreover,
Lemma 2 says that (16) minimizes all the eigenvalueS .
where “norm” means eithéf- || (spectral norm) off -[|1 (max-  Hence $*S — $*S, is non-negative definite for any feasitfe
imum-column-sum norm). The other possibility is to minimizgxamining the expression for the actual aliasing error energy
the output noise power in (13). A close look at this expressiggee (11)], we see that (16) is indeed the best solution. [
reveals that we need to minimize (for each fixejithe quantity Remark 1: Suppose that < L, and we letd” = A" and

L P i L )
47| + ||C]|% over all valid matricesA™ andC. C = 0. Then, (14) yieldsS = (*'P), whose spectral norm can
Note that ifp = ¢, the matrixA4 is square, and hence, the lefty,e shown to be

inverseA’ is unique. In addition, the only matri& that would
satisfyC A = 0 is trivial in this case, namely; = 0. In other
words, there are no free parameters wpen q. Therefore, the || 5|, = \/AmaX(ATB(ATB)* +1) = \/)‘Inax(AT (A%
reconstruction system only needs to be optimized wheng.

We assume that > g,,, in the rest of the section. The other point =V Amax((A"A4)71) = [|S4]|2

to note is that the optimization needs to be carried out for each

value of the indexn, the subscript of which we have chosen teising (5). Thus, the pajiA™, C) = (A", 0) produces precisely
omit. We will see in a moment that the selection of the best the optimal constant multiplies» in the bound (12) but does
andC to minimize a) the spectral norm &fand b) the output hot minimize the actual aliasing error energy. In other words,
noise power in (13) can be solved analytically. Minimizing théhese matrices produce the same worst case but not the same
quantity ||S||; is a little harder, however, requiring the use og¢ase-by-case performance as the optimal matrices in (16).
numerical methods.

B. Minimizing the Output Noise Power

A. Minimizing the Aliasing Error Energy We seek the optimal matriced” and C that satisfy

The following lemmas (whose proofs can be found inthe Ajy* 4 = 1 and CA = 0 and minimizey, in (13), or
pendix) address the problem of minimizing the bounding cogguivalently,|A“||% + [|C||%. This is a fairly easy problem
stanty, for the aliasing error energy (12). becauseC and A" are independent of each other, and the

Lemma 1: The solution X, to the problemminx ||[R +  objective function is separable. Therefore, we need to minimize
XQ)|2, for given R and @ with compatible dimensions, is yin 4, ||A*||2. andmine ||C||2 individually. For the second

X. = —RQ', whereQ is the pseudo-inverse &. Further- term, ¢, = 0 is clearly the unique solution, whereas for the
more, X, simultaneously minimizesll singular values of fijrst term, we use the representatidt = A" + X P, where
R+ XQ. P is the projection operator onto the null spaceAdf namely,

Lemma 2: Let (A B) be ap x L submatrix of theL x L Pdgf(l — AAY) = (I — A(A*A)~1A%). This representation is

DFT matrix W whose entries ar& ., = exp(—j2rmn/L), jystified in the proof of Lemma 2 in the Appendix. This yields
with possible rearrangements of the columns. Suppbseth 1,4 following minimization:

g < p columns has full rank. Then, the minimization of the

largest singular value &8
A'B
( ) (15)
CB-1

performed over all matriced” andC that satisfyA*A = I
andCA = 0 has the solution

/
AL = AT = (A"A)7'A" and C,=B*(I- AA") (16) A" F = [tlr(AT(AT)*)}1 = V(A" A)-1).  (18)

in ||A"]|% = min [|AT + X P||%.
Iglglll I H;}nll + X Pl

min ||S]|2 = min

Applying Lemma 1, we obtain the minimizing solutidf, =
—A'P" = —A"P = 0. Therefore A = A'. Finally
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C. Minimizing the Peak Aliasing Error Suppose we denote the (real positive) eigenvalues af the
The relevant quantity to minimize in order to obtain th&atiXx A"A by Ai, Ao, ..., Ag in decreasing order. Then, we

tightest bound in (10) is the 1-norm of the mat@xdefined in have from (17) that
(14):
A"B X A= I 19
CB-1T C “\o/’ (19) whereS, is optimized to obtain the lowest aliasing error energy.
Of course A, > 0 sinceA is assumed to have full rank. Notice
The problem of choosingt” andC to minimize||S]|;, unlike thatwecanuse the faf_tt”aﬁiﬂ = 1/V/L to bound the average
the spectral or Frobenius norms$fcannot be solved analyti- 819envalué\a,, = tr(A"A)/q:

cally. We resort to numerical methods instead. As shown in the q
proof of Lemma 2, we can represeat andC as follows: N = Z Z |42 = % (23)

i=1 j=1

||S||§ z ||S*||§ = Amax ((A*A)_l) = )\_ (22)
q

min
C AL

| subject to <A
1

E=

AL =A"+ X, P and C=X,P (20) B

This result along with (22) andl, < A, yields

whereX is ag x p matrix, andX, a(L — ¢) x p matrix. We
can now rewrite (19) in an unconstrained form as

i
<A B) + <X1>PBH = H%ll IS0+ XM (21)
1

1Sl = 4/ = (24)

=

p
min

X1,X2 -1 Xo

Our next bound on||Af||r provides an estimate for the
worst-case output noise power. Equation (18) implies that
whereS, = (A_Tf) X = (§;) andM = PB. This problem

q
may be solved approximately using a linear program. We first JAT|E =tr (A" A7) =D A = ¢/ Aum
rewrite (21) as follows: =
min d sub.tod > ||z|ly, Z=So+XM. whereAp,, is the harmonic mean of the eigenvalues. Using the

standard inequalitp,, < Aam and (23), we immediately ob-
Each constrain}|z||; < d can be approximated by the set otain

linear inequalities:

K

Z Umik eXP(—727rk/K) = Zmi> va 1
k=1

AT = tr ((4"4) ) 2 % (25)

See [25] for some stronger bounds on the eigenvalues of
these matrices, but they hold only for special sampling patterns
LXK . and bandpass spectral supports. Our next theorem concerns the

Z Z Uik < d, Vi tightness of the bounds (24) and (25).

m=1 k=1 Theorem 2: The bounds (24) and (25) are tight in that they

Umik 20, Vm, i, k. hold whenC is a uniform sampling pattern anfl is packable
corresponding t@.

This region is clearly a subset p£;|| < d, but it can be verified Proof: Assume that = {0, a, 2a, ..., (p — L)al, i.e.,
easily that it is a superset of the regifyg;|| < d/cos(n/K). ¢, = (i — 1)a, wherea = L/p is an integer. This corresponds
Hence, the approximate LP produces an answer that is aCCUE8t§ubsamplingp(nT) by a factor ofa. Let G,,, andk.,,, denote
to within a factor okcos(7/ K) of the correct answer. Hence, thgpe spectral subcells and index sets corresponditf toet
normalized error is bounded by— cos(n/K) < 7°/(2K?), e a fixed index, and X, = {ki, ho, ..., kg, }. We see
and the approximation is quite good for moderately lafge  that packablility of# implies thatk; — k; cannot be a multiple
This is essentially like approximating circles B§+sided poly- of p for i # j for otherwise, the subcel§,, & (k;/LT) and
gons. The optimization (21) can also be solved using semi-inf- & (k;/LT) will overlap in the spectrum of (nZ’) when

nite programming [24]. subsampled by = L/p. Therefore, thei, [) entry of A,,, is
. 1 — 1)ak
D. Lower ?ounds orzi;o'o,z/;Q andy, o | At = exp <j27r(L Ja l)
The choice of sampling patte¢ththat minimizes the optimal VL L
constants) .., ¥2, andi, can be a difficult problem. It is there- 1 (i =1k
fore useful to know, even before attempting such a design, how = \/—a_p exp <‘72W7>
small these constants can be made. In this section, we present
lower bounds on these “error gain constanis]|», ||A”||z,and wherex; € {0, 1, ..., p— 1} is such thak; = k; (mod p).

|IS|l.- These are the relevant quantities that affect the bourigeidently,{r;} are distinct becausf is packable. We see that
(10) and (12) and the noise power (13). All bounds presented:A,,, is a submatrix of the x p DFT matrix consisting of
here are independent of the sampling pattern and only depetidits rows andq of its columns. It immediately follows that
on L, p, andg. Amax(AmAm) = 1/a = L/p and t(A, Ay) = gm/a =
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gm L /p. Hence, the optimal matrices satisf§,..||» = /L/p E. Which Criterion to Optimize?

"de_”“lT 17 = qu_/p. ] ) D As seenin Sections I1I-A—C, each of the three criteria leads to
Finally, we provide a lower bound dff|[, just as we did in g gitferent optimal choice fad” andC. Furthermore, the com-
the case of the spectral norm. From the definition of the 1‘”°”E5\utation of those matrices is more difficult in one of the cases

we have (minimizing the peak error). Therefore, the following question
L L 1/2 arises: Suppose that” andC are chosen to optimize one of the
11S]|, = max Z 1S,.| > max <Z |S7wsl2> criteria. Then_, how .far fro.m the optimum wogld the other cri-
St s\ teria be for this choice? First of all, it is not fair to compare the
optimum matrices corresponding to the critefinands),, be-
where the last step follows from the positivity of terms in theause the two problems have different underlying settings: The
sum. Therefore error energy is due to input signal mismodeling, whereas the
. 1/2 output noise power is due to additive sample noise. Yet we have
9 seen that the “least-squares” solutidh is the optimal choice
<msax Z |Ss] ) for A" for both criteria, although the optimal choices Brare
=t different. However, it is more meaningful to compare the op-
1 Lbg 1/2 1 timal matrices for the criterig, and ., because the two prob-
(e e

1511,

v

Z 1S5 | IIS||F- (26) lems are similar: The imperfections in the input signal in both
s=1 r=1 VL—q cases are due to mismodeling. It is therefore reasonable to ex-
pect the optimal matrices that minimize the 1-nornsafo be
close to those that minimize its 2-norm for which, of course, we
I18]1% = HALBH% +||eB - I|1% zav_e th(_e analyticgl least-squares solution (16). A questi(_)n t_hat
prings into mind is whether or not the least-squares solutionis a
>||A'B|j% + ||B*PB — I||% good enough approximation to the exact solution for the 1-norm
problem. The answer partially lies in the following result, which
which follows from the fact that the solution (16) minimizes thés a bound on the improvement factor that the solution to (21)
Frobenius norm of. Therefore can offer over the least-squares solution (16). Observe that (21)
can be rewritten in a slightly different constrained form as

Observe that

15|12 > tr(ATBB*(A")) + tr (B*PB — I)?)

min ||S subject taS¢ =S1.&, V& such thatPBE = 0
A'B )

B'PB-1 (29)

The expressions in the last step were obtained using the facts wheresy, = <

that BB* = I — AA™ and that(I — B*PB) is a projection . .
operator. These are justified in the proof of Lemma 2. TherefoPéf].Ce the differencesS — ‘LSIS) caTn be expressed B for a
: . _ N . ty suitableX. Recall thatA™ = A" + X P andC = X, P for
usingPBB* = P(I — AA™) = Pand t(P) = tr(I — AA") . . : .
_ Ay suitableX; and X,. Note thatSy, is the optimal matrix for the
=p—tr(A'A) = p — ¢, we conclude that C :
2-norm minimization. Therefore, (29) yields

2 > * -1y _ _ _ r
181 2t (A7) — g+ (L= q) ~t(PBBY) ISULlll, = lISuell Ve € NPB) = [1S]]
=tr ((A*A)_l) —g+L—-p m ||SIS£||1 (30)
Combining the last inequality with (26) and (25), we finally eextem - [lél
btai
obtain whereN (-) denotes the null space. In the proof of Lemma 2, we
1 qL show thatV(PB) = R(K), whereKdéf(I — B*PB)isanor-
151lx = NoEDLA R q+L—-p thonormal projector. Furthermor§i. K = S, is easy to check.
7 Hence, for ease of computation, we can weaken the bound (30)
(L - p)(q+p) by maximizing over the set consisting of the- ¢ columns of
VN Gogp (27) K, rather than the subspadé(PB) = R(K). Thus, letting
vp {k;} denote the columns d&, we obtain
We can obtain a stronger bound (27) wheg- 4. In this case, Sk max ||Ski|1 S K
we see that the matrice$” andC = 0 are unique. Therefore S|, > max IS1skills o 7 _ 15Kl
15]lx = >
A max [kl K12
ALB) L 1Bl
S| = =1+||A"B]|, > 1+ =2. (28) ISl
il H< S e 71 =R = ISl < ISl (31)

This bound, although applicable only fpr = ¢, is indeed In other words, using the least-squares solution (16) instead of
stronger than (27), whose right-hand side evaluateg2dor the solution to (21) cannot amplifyS||; by a factor of more
p=q. than|| K|, > 1.
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We can apply these results to the normsSgf and AL for the average sampling rate. We also provide a polynomial-time
eachm to obtain lower bounds on a) the constants present in (J&lyorithm to findZ,, which may be larger thaty f,,q, and we
and (12) and b) the average output noise power in (13). Withaltow this by example. This problem is related to that of pairing
explicitly deriving them, we summarize the bounds below ihand edges [13] that Herley and Wong suggested. They provide

terms of{2, L, p, andq’ = max,,, ¢,.: a necessary and sufficient condition on the band edge frequen-
ciesa; andb; of the spectral suppotk for achieving the min-
llellso < tbos /f , | X (Ol df imum rate. They also show that for sufficiently lathewith LT’
A fixed, the minimum rate can be approached arbitrarily closely.
1/2 In our case, however, we fik and the corresponding optimal
lle(@®)l2 < 92 </ XN df) base sampling frequendy'7T” because. determines the com-
(7] plexity of the reconstruction.
(E|i(1))2)e = pno> All _the results derived for the specific casgl’ = fuyq _(the
Nyquist rate) extend to the general cdg&” > f,,q, provided
where we replace the spectral spaA| everywhere by0, 1/7). We
B g N (L —p)(q +p) 2 already know that for giveih and7’, 'the.smallest average sam-
Yoo = max [[Spl1 > - (32) pling rate [equal tanax,, ¢., /(LZT)] is given by the right-hand
side of (6):
o = max 1S, ]2 > \F (33) ! r
o = max [[S,,||2 = — T )= — a —_— .
: b ool 1) = e S0 x (4 g € 7)
Ya =T Y MGn)lALIE > 0 %, (34) Therefore, we seek the solution to
m 1

T, = arg min Jave(T, L) wherely = (35)

In each of the first two equations, we have a lower bound and fayq

an upper bound, which cannot be combined. However, note thgt 5 fixed . For spectral supports expressible & =

the bounds fof|e(?)[| Or [|e()[|> are tight. Hence, the lower | j» (4, 4,), we have seen that the construction of the sets
bounds on/ ., and«, tell us how large the aliasing error can b@m_ and K,, can be done in polynomial time. Therefore
in the worst cases for the corresponding bounds. However, thay computation off,.,(7, L) requires polynomial time as
do not tell how large or small the errors are in other cases. || The minimization (35), however, is over a continuous
addition, note that the constants, (w = 2, n, o) decrease as parametefr’. The following theorem allows us to transform the

expected whep is increased for a fixedq,, }. If we increase minimization problem to an exhaustive search over a finite set
L, p, andg,, in such a way thap/L andq/L remain constant ¢ yajues forT.

(as would happen if one attempts to approach the Landau ratgnegrem 3: The optimum value fof’, in (35) for a spectral

by increasingl), we find that none of the bounds above ge{ypport of the form? = | J_, [a;, b;) must satisfy
worse. These bounds represent errors inherent to any sampling =

procedure, whether they are uniform or not, for any multiband 1 — bj —ai
signals, whether they are packable or not. In Section V, we study LT, k
the increase in error sensitivity incurred for nonpackable signdts some integers, j, andk such thatl < ¢ < 7 < n and
that are sampled at a sub-Nyquist rate. 0 <k < LTy(bj —a;) < L.
The proof can be found in the Appendix. Theorem 3 enables
IV. OPTIMAL SAMPLING us to generate no more thagn + 1)(L — 1)/2 possible candi-

: : . : . - (gates forZ,, which may then be used to minimize the average
In this section, we discuss two important issues pertaining 10"~ . . .
sampling rate. It turns out thdt, = 7 is optimal for the spec-

opt|mal sampling, namely, _determmmg the_ optimal pase Sart?él supportF of [14, Ex. 1]. However, as the following example
pling frequency and sampling pattern design. The first one

| . .
concerned with choosing the peri@tthat produces the Iowestiﬁg\’n\%lsrjewal supports exist for whigh= T; is highly sub-
average sampling rate for a givéhand L. The second issue is pExam. le 2: For a givenL. consider the spectral support
concerned with finding good sampling patteththat optimize pie = 9 ' P PP

the aliasing error bounds or sensitivity to noise. Our study of L=l
this latter problem is somewhat numerical in nature. F= U [ryr+e) UL —¢ L)
r=0
A. Optimizing the Choice &f wheree < 1/(L + 1) is a small positive number. For the choice
In all our previous analysis, we set the base sampling fré-= To = 1/L, we havel/(LT) = 1 and
quencyl/T = fuyq for convenience. This corresponds to sam- L, ifo< f<e

pling the original signal uniformly at the Nyquist rate before o _ : _
some samples are dropped. Clearly, we could have chosen a ; X (f + LT < ]:) 1% ff esf<l-e
slightly larger rate than the Nyquist rate and still obtained sim- 1L ifl-e<f<L
ilar results. In this section, we examine the problem of choosingince L pieces of the spectrum overlap, we require= L,
for given L andF, the optimal valuel’, for 7" that minimizes and this makes the average sampling rate equafta7) =
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TABLE | 10 T ' ' ! 7 ; f
DESIGN CRITERIA EVALUATED AT THE CANDIDATE OPTIMAL SAMPLING : : 3 : : : :
PaTTERNS C, = {0, 1, 2, 13, 16},C, = {0, 4, 7, 14, 15} AND
C. = {0,1, 2,8, 17}. THE BOXED ENTRIES ARE OPTIMAL IN
THEIR RESPECTIVEROWS

Criterion | C =C, C=0C C=C.

P2 [2.9032] | 3.0641 | 3.5241
¥n 0.4811 | [0.4769] [ 0.4918

Voo 2.3929 | 2.6479 [|2.2583]

L. Next, for the optimal choic&’ =T, = (L(1+¢))7!, we

have
L—1

Zx(f—k%e]—")

1 iffe0,e)U[l—Le 1— Le+te)
Ul — Le+2¢, 1+ ¢) 2
0 if felg1l—Le
U[l — Le,+€l — Le + 2¢).
Therefore,p, = 1 is required, and the average sampling ral
p+/(LT) = (1+4¢). Hence, the choic& = T, can improve the
sampling rate over the choi@= T} by a factor ofL/(1 + ¢),
which is nearly as large as it can get because this factor ne
exceeds.
P > P < 1 < p

—_— since?, <1, and
LT, " LT, ~ L LT0> =70
P

Pr=t=7

(2]

o

Although Example 2 is an extreme situation, it shows thi
optimizingZ” may be of significance, with the largest gains oc
curring typically for signals with sparse spectral supports.

B. Sampling Pattern Design

We now examine the problem of designing good samplir 9, 7 6 e 10 12 12 6 15 20
patterns. We propose to use the following minimizations as el
pirical design criteria:

C, = argmin 9, (C, {,n}M_) for w=2 00,1 Fig. 3. Normalized error gain constants andn,, shown as functions of the

c number of multicoset samplesin each period.

where ,(C, {K,n}) for w = 1,2, n are maxy,, ||S.wml|2,
MaX,, ||z, @nd T3, A(Gn)|| AL, ||%, respectively, and
the subscript *” denotes optimality ofS,,, with respect to
the matricesA” andC,,,, which is discussed in the previou
section. The functiong,,(C, {K,,}) are invariant under cyclic
shifts ofC in {0, 1, ..., L — 1}, and this follows easily from
the definitions of these functions.

Example 1 (Continued)for the chosen spectral support an

three objective functions evaluated for each of these three can-

didate optimal patterns. It is evident that none of the three can-
Sdidate sampling patterns is simultaneously optimal for all three
design criteria. However, all three candidate solutions are close
to optimal for each of the criteria, and we lose little in terms of

ptimality by restricting our attention to any one of the criteria.

) or example, we can pick,,, which is the easiest to compute.
L = 20, we haveg,, = 2 for all m. Hence,p > 2 is neces- P pick P

L . . Let o, = i C,{K,. D) and ¢, = i
sary and sufficient for perfect reconstruction from the multicoset V2 ming ¥2(C, {Am}) 4 wwiie

samples. For example, fpr= 5, an exhaustive search over all 'n(C, {Km}) denote the optimal constants for a given
Pes. pie, Tor=o, Define the following quantities:
sampling patterns yields

Yau = Wi (C, {Kon }) = 2.9032 8tC, = {0,1,2,13,16} _— /% =t 2
far = 0 u(C, {Kn}) = 0.4769 atCy = {0,4,7,14, 15}
foon = 0 Yoc(C, 1K }) = 22583 atC, = {0,1,2,8, 17} e =ty | L= O0P

. . _ (L—p)(d +p)
whereming 1.,(C, {K,,}) was computed using the approxi-
mate LP method wittK" = 12 and, hence, cannot be claimedvhich are obtained by normalizing the quantitigs. and),,.
to be truly optimal. In this example, the three design criter@nd ... by their lower bounds (32)—(34). Fig. 3 illustrates (for
produce different optimal sampling patterns. Table | shows tBe< p < 20) the behavior of), and#,. These were computed
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TABLE I patterns are indeed the best patterns suited for packable spectra
NORMALIZED ERRORGAIN CONSTANT 7)oc FOR2 < p < 5 because the aliasing error bounds in (10) and (37) have identical
p 5 3 1 3 forms, with the only .diffetrence being the premultiplyin_g con-
oo | 0.8256 | 3.3764 | 2.3049 | 2.0908 stants. The constantis 2in (37), bwx,, ||.S,. |1 in (10). Since

the lower bound (28) implies that,, = max,, ||S,.||1 > 2 for

i ) ) ) p = maxgq,,, we see that for packable signals, uniform sam-
by first computings, and+,, by exhaustively searching overyjing is most appropriate. Theorem 2 verifies this claim for the

all _sam_pling patterns Qf size followe(_j by normalization. Due iner two performance criteria because the constangnds),,

to its higher computational complexity, we compuigd only  5tain their respective lower bounds for uniform sampling. In
for2 < p < 5, which is summarized in Table II. The two plotsgmmary, for packable signals, uniform sampling is the best.
in Fig. 3 show that the optimal error gain constamtsand,,

approach their lower bounds rather quickly whes increased. B. Penalty for Nonpackability

This behavior suggests the following design recommendation

For given with opcupancﬁ and g|yenL, choosq; LO+1 Unfortunately, the answer to this question is not easy to deduce
orp = LQ+ 2. This results in sampling ragg’ L slightly larger . . . . .
. S T .2~ analytically. From various numerical computations, it seems
than§2 but provides significant reduction in error sensitivities, " . . .
that there is a price to pay for nonpackability.6f We provide

Table Il shows that),, also approaches its lower bound, onIyan example here to support the conjecture.

What is the penalty in error sensitivity for nonpackability?

more slowly. Example 2: Consider spectral suppot&Y, (), andF )
V. COMPARISONS FO =10, 7)
The goal of this section is to compare uniform and nonuni- F® =10, 3)U[5, 6) U[12, 13) U [14, 16)
form sampling below the Nyquist rate for packable and non- 5
packable support&. Some of the comparisons are numerical F® =o,3)ul6, 8) U[13, 16).

examples. We will examine the following two quest|0n§: i) Fo or L — 16 and base sampling rate’T” — 16, they all have
packable spectra, both uniform and nonuniform sampling at t R D
= 1. The corresponding index sets = {0 —

same average rate is possible. How does the reconstruction erfor g
@ = 40 — 2,5, 11,12, 14, 15} and KPP = {0 —

compare between the two options? ii) What is the penalty by K .
nonpackability: GivenF(1) packable andF® nonpackable, 2, 6, 7, 13 — 15}. The spectral supports have the same mea-

such that\(F1) = A(F@), which are sampled at the same{'e: and théC sets havey = 8 elements each. Althoughi‘V)

2 3) inimizi
rate (uniformly and nonuniformly, respectively), how do thénd’C( ) are packaple’,d ) is not. Upon m|n|m|2|ng.the quan-
error bounds compare? tity ..(C, K@) fori = 1, 2, 3 andw = n, 2, oo using a for-

ward selection greedy algorithm, we obtain the following op-
A. Uniform Sampling Versus Nonuniform Sampling for timal sampling patterné(”) with p = 8 (half the Nyquist rate)

PackableF and objective function&ii). défz/;*w (Cii). A K& H.

Recall that a signat(t) € B(F) is packable at raté/T" < « Fori = 1, 2, we obtainC®y) = C*g) =c¥ = {1, 3, 5,
M[F)if Fn(Fen/T) = 0 foral n # 0. Dodson and 7,9, 11, 13, 15} with the corresponding objective func-
Silva [26] proved the following sampling theorem for packable  tions beingy? = 1.0, wi%} = 1.4142, ands{), = 2.0.
signals. Note that these values agree with the results of Theorem

Theorem 4: SupposeF is packable at raté/7” for some 2.

T’ > 0; then,z(t) € B(F) has the sampling representation . Fori = 3, we obtainc!y = ¢® = {2 4,5,6,9,

12, 14, 15} andC®), = {1, 4, 5, 6, 9, 12, 13, 14}. The
objective functions take the valuesy) = 1.9291, wi’; =
3.3598, andy"). = 4.8284 at optimality.

Hence, the price to pay to sample a signal with a nonpack-
ble spectrum at the Landau rate manifests itself in the output
oise and aliasing error bounds. They are larger for nonpackable

spectra.

Remark 2: Example 2 also illustrates the point made in the
last subsection that uniform sampling is, in general, better suited
for packable signals than nonuniform patterns. The fact that the
le(t)] < 2 / X ()| df 37) sampling patterns for the packable spedﬁ%ﬁ andcii.) turn out

T IR\ ' to be uniform clearly supports the claim.

x(t) = Z x(mT)p(t — mT'; F) (36)
mCZ

with the sum converging uniformly and absolutely for R.

The following theorem due to Beaty and Higgins [27] is
bound on the peak value of the aliasing error for signals wi
finite energy and packablg.

Theorem 5: Suppose that(t) € L2(R)NC(R) with X (f) €
L' (R) is sampled at the rate/7” that satisfiesF N ((n/T") @
F) =0,V n # 0. Then, the aliasing erref(¢t) satisfies

Incidentally, this equation is identical to the bound for the
aliasing error in classical Shannon sampling of lowpass signals.
Although valid for allz(¢) € F, (37) will only be used forthe  We presented solutions to the problems of optimal sub-
class signals(t) € B([F]) in order to compare with the boundNyquist sampling and reconstruction. We showed how to
(10) that applies to signals i&([F]). It turns out that uniform determine optimal matrices to obtain the best performance

VI. CONCLUSION
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in terms of the aliasing error bounds or the noise sensitiviB. Proof of Lemma 2
(our.measure.s.of performance) that were derived in [14]. WeThe proof of Lemma 2 relies on the following result.
provided explicit solutions for most of these problems. )
. Lemma 3: Let A and B have the same number of rows that
The error bounds reveal a dependence on the sampling pa

i * * nePEfr _oAat — T
ternC. We examined the problem of designing sampling pai _at’usfyAA +BB" = I, and defineP =1 — A4 1

* —14* -i = i f =
terns that optimize any of our performance measures. We uASf1 A)7 A" Then, the pseudo-inverse &f = PBis M
22;;?::3?:: dsyeglrggri?rzﬁrilrgh;(;?hg??oe;(iilin S;Jetirir;(ljsz\;?;\nlr?; Proof: It suffices to check that the asserted pseudo-inverse
¥ icfi ¥ _ (-
patterns for a few design examples. An exhaustive search oyer satisfies QM'M = Prat) and )MM' = Pro),

| . . . where Pry den he orthogonal projection operator on
all sampling patternsis computa‘uonallyveryexpensweforev?ﬁ ere P’y denotes the orthogonal projection operator onto
t

moderately largé., whereas a greedy search is not guaranteed oe range space of any matdk. Note thatP, being the or-
produce the best pattern. Nevertheless, the greedy algorithmfdé(()jg‘wﬂaI projection matrix onto the null space 4f, satis-

S ies the following properties, which are easy to verify directly:
roduce very good results. The problem of designing sampling. ' ¥
P 'y gooc res P gning samplip8- _ p2 _ pt — ppA = 0andA*P =0 = A'P = 0. We
patterns efficiently is stillan open problem. We also showed how : . s . .
to choose the optimal base samoling frequency that minimizusée these properties without explicitly stating. To verify a), let
pur pling Trequency that min = M'M = B*PPB = B*PB. A standard way to check

the average sampling rate for a given sampling pefiothis is . oo . .

. : : that @ is an orthonormal projection operator is to verify that
an important issue because sampling at a base frequency e

to the Nyquist rate may be severely suboptimal for certain spet- - Q and@” = Q. It.|s evident fro.m 'FS definition tha? is
ermitian. Next, examine the quanti€y’:
tral supports.

We made comparisons to determine whether nonuniform ., B*PBY? — B*PBB*PB — B"P(I — AA*\PB
sampling is appropriate for packable signals. Our findings Q" =( )= - I~ )
are that a) for packable spectral supports, a uniform sampling = p*pPB = Q@
pattern yields a better performance than a general nonuniform

sampling pattern, and b) for nonpackable signals, where Ujpich follows fromAA* + BB* — I and the properties aP.
form sampling is not applicable, there is a penalty associatgfe equationQ) = B*PB = M'B yields R(Q) c R(MT).
with nonuniform sampling. The error bounds are larger foonverser,QB*P — B'PBB'P = B*P = M’ implies
this case relative to uniform sampling of a packable Sig”fHatR(MT) C R(Q). This proves thaf(Q) = R(M") and,
of the same occupancy. We find that the sensitivity pe”alti’?ﬁerefore, completes the verification of a). We may check b)
(error gain constants) for sub-Nyquist sampling of signals Wi@imilarly. LetQ = MM' = PBB*P = P. Then,Q is clearly

nonpackable spectra can be controlled by optimal design aé‘ﬂrojection operator. As before, we haRéM) C R(P) since
by backing off slightly from the minimum rate. The resultingy, _ pp whereasi(P) C R(M) sinceMM' = P. This
low error sensitivities, and the significant reduction in thEroves b) :';md hence. the lemma. 0

sampling rate over the Nyquist rate of our numerical examples, proof: Any matrix C that satisfies?A = 0 can be ex-

suggest that these techniques have considerable practbcr@gsed a€ — YP for a suitable matrixy” of the same size

potential. Most of the results presented for 1-D signals should Conversely, the matri¥’ P is a valid “C matrix” since

be extensible to two and higher dimensions with little difficultyy-p 4 — o The upshot is that we can repla@avith Y P in the

In contrast, determining the optimal base sampling lattice {finimization, thereby eliminating the constrai@i = 0 alto-

higher dimensions would be a harder problem. gether. By a similar argument, we can repladeby A" + X P.
The sizes ofX andY areg x (L — ¢) and(L — q) x (L — q),
respectively. Therefore, (15) transforms to

A'B X
PB
(%))
LetY = X + RQ'. Rewriting in terms oft” followed by
squaring, the objective function gives us an equivalent probléi¥e can now apply Lemma 1 to the above problem to obtain the
miny ||[R+ (Y — RQ")Q||3 = miny ||RPg + YQ||3, where minimizing solution
Pé = I — Q'Q is the orthogonal projection operator onto

APPENDIX

min
XYy

A. Proof of Lemma 1 1)?7111/1 YPB-1

<(AT + XP)B) H2 _

2

R(Q)*. Hence, using”bQ = 0 transforms the problem to <X*> - _ <ATB) (PB) (B.1)
Y. —I ’ '
: 1 1 *
M A ((RPQ +YQ)(BPG +YQ) ) Next, observe thatA B) is aq x L submatrix of theL x L

DFT matrix with possible rearrangements of columns. There-
fore, its rows are orthonormal, and it satisfiéd™ + BB* = I.
Combining Lemma 3 with (B.1) yields the minimizing solu-
The choiceY = 0 (or X = —RQ") is clearly optimal since tion X, = A'BB*P andY, = —B*P. Again, usingAA* +

Y QQ*Y* is a positive semidefinite perturbation. In fact, all sinBB* = I and the properties d?, we find thatX, = A"BB*P
gular values of R + X @) are simultaneously minimized. simplifies to zero. Hence, the choicé” = A" andC, =

= Irgn Amax (RPQo- 1 R* +YQQ'Y™).
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B*P? = B*P minimizes||S||.. Note that this solution also si- contradiction. In particular, we prove tha ¢, whereg andg

multaneously minimizes all the singular valuesSoénd, there-
fore, its Frobenius norm as well. We now compute the minimum

norm of S at optimality, namely|| S|z, where

s _ (P _ A'B
*T\F.) \B'PB-I)

From the proof of Lemma 3, we know th@t= B* PBis a pro-

(B.2)

jection operator. Therefore;F', = I —Q is also an orthogonal
projection operator. The cage= L is trivial, and it is easy to
check thatS, = 0 for this case. MoreovekF’, is nonzero if and

only if p < L. We assume that < L (and hencd’, # 0) in

the rest of the proof. The spectral norm$f can be bounded

from above as follows:
HS*H% = )‘maX(DiD* + FiF*)
S )‘max(DiD*) + )\11133{(FiF*)
=1+ )\max(DiD*)- (83)

Now, observe that F*D* = D — B*PBB*(A")* = D" —
B*P(A"* = D:. Therefore,R(D:) C R(F?), or equiva-

lently, R(D.D,) C R(F.F,). Let¢ be an eigenvector cor-

responding to the largest eigenvaluel®fD.,, i.e.,DiD.£ =

Amax(DED)E. Then, FXF,.£ = £ becausé€ € R(FIF,).

Therefore (DD, + F,F, )= (1 + Aax(D;D,))€, and we
have||S.||2 > 1 + Amax(DED,). Combining this with (B.3),
we obtain

15,112 = 1 + Amax(DD,). (B.4)

Finally, a simple calculation reveals that

D,.D: = A'BB*(A")* = AT(I-AA")(AT)" = AT(AT)" — 1
= (A*A)_IA*A(A*A)_1 —I= (A*A)_1 —I. (B.5)

are defined as

L-1
qd:ef max v(f +roy)
fCl0,a,) =0
and
e L-1
7= max v(if +r(a,—6 C.2
7 fe[oja*_é); (f+r(a—8)  (C2)

for an appropriately chosei and this implies thafe, — 6)7 <
a.q. Hence, the optimality ofy, is contradicted. We start by
choosings:

0< < % min{|b; — a; — ka,]:i < j, 0< k< L}. (C.3)
Since§ < L7Yb, — a1 — La,|, we see thatr ™o, — 6§ >
(b, —a1)/L = oy is feasible to (C.1). Lef € [0, o, — &) be
fixed. If there does not exist& such thaty; € (f + (o, —
8), f +ray] foranyr € £ ={0, ..., L — 1}, then it follows
thatv(f + r(a. — 6)) < v(f + ra,) holds for everyr € L,
and henceg < ¢ follows from (C.2). Otherwise, lety be the

largest integer irC such that
fHroloe—06) <bj, < f+roas (C.49)

for someb,;,. We now claim that there does not exist anc
{0, ..., ro — 1} anda; such that
f+ra,—rs>a; > f 4 ra, —rgb. (C.5)

This is easily justified because subtracting (C.5) from (C.4)
gives

(ro —r)aw+ (r—mro)éd < bj, —a; < (1o — 7)oy + 708
= (r—r9)6 < bj, —a; — (ro — r)a,. <rod

= |bj, — a; — (1o — 7)av| < max(rg, ro — )6 < L

which contradicts the choice @fin (C.3). A consequence of

Therefore \pax(DiD,) = Apax(DiD,) = Apax((AA)™1) nic
this is that

— 1, and hence, (B.4) yield$S.|l2 = v/ Amax((A"A)~1) for

p < L. O

v(f+ra,—rd) < v(f+ra,—rod), 0<r<rg. (C.6)

C. Proof of Theorem 3
We can rewrite the optimization as

Next, forrg < » < L — 1, we know from the definition of
that there does not existtg € (f + r(a, — ), f +ra] D

(f +r(ay — 6), f + ra,. — rob]. Hence
L-1
min | @ max v(f +ra) (1) v(f+ra,—718) Sv(f+ra,—rod), ro<r<L-1
aZag f€[0,) =0 (C?)
Summing (C.6) and (C.7) over their respective ranges and
Whereu(f) = X(f S f), o = 1/LT, andag = 1/LT0. adding together yields

The setF = | J,[a;, b;) is assumed to satisty = a; < b; <

ay < ..., < 8, < b, = 1/Ty. The functionw(f) is right
continuous and has jump discontinuities-pf and —1 at a;
andb;, respectively. Hence, we obtain the following properties
of v(f): a) Aa; € (f1, f2] = v(f1) > v(f2),and b) Ab; € wheref’ = f—r¢6. The second inequality in (C.8) follows from
(f1, f2] = v(f1) < v(f2).We use these properties withouthe definition ofy. Of course, we need to verify th#t > 0. This
explicitly stating them. Now, suppose that the optimum value true because, otherwisefif= f—ry6 < 0, the choice: = 0,

v, does not satisfcr, = by — a; forany: < jandk > 0. We a; = a1 = 0 would serve as a counterexample to the claim.
will show that the choicer = «, — ¢ yields a smaller objective Since (C.8) holds for eacli € [0, «, — &), we obtaing < q.
function thana = «, for a sufficiently smallé, which is a This proves the original statement tHtLT, = (b; — a;)/k

L—1 L—1

Z v(f +ro, —r6) < Z v(f' +roy) <gq

r=0 r=0

(C.8)
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