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Optimal Sub-Nyquist Nonuniform Sampling and
Reconstruction for Multiband Signals

Raman Venkataramani and Yoram Bresler, Fellow, IEEE

Abstract—We study the problem of optimal sub-Nyquist sam-
pling for perfect reconstruction of multiband signals. The signals
are assumed to have a known spectral support that does not tile
under translation. Such signals admit perfect reconstruction from
periodic nonuniform sampling at rates approaching Landau’s
lower bound equal to the measure of . For signals with sparse

, this rate can be much smaller than the Nyquist rate. Unfortu-
nately, the reduced sampling rates afforded by this scheme can
be accompanied by increased error sensitivity. In a recent study,
we derived bounds on the error due to mismodeling and sample
additive noise. Adopting these bounds as performance measures,
we consider the problems of optimizing the reconstruction sections
of the system, choosing the optimalbase sampling rate, and de-
signing the nonuniform sampling pattern. We find that optimizing
these parameters can improve system performance significantly.
Furthermore, uniform sampling is optimal for signals with
that tiles under translation. For signals with nontiling , which
are not amenable to efficient uniform sampling, the results reveal
increased error sensitivities with sub-Nyquist sampling. However,
these can be controlled by optimal design, demonstrating the
potential for practical multifold reductions in sampling rate.

Index Terms—Error bounds, Landau–Nyquist rate, matrix
inequalities, multiband, nonuniform periodic sampling, optimal
sampling and reconstruction.

I. INTRODUCTION

T HERE has been a long history of research [1]–[4] devoted
to sampling theory, with perhaps the most fundamental and

importantpieceofworkinthisareabeingtheclassicalsamplingthe-
orem.AlsoknownastheWhittaker–Koteln´ikov–Shannon(WKS)
theorem, itstates thata lowpasssignalbandlimited to the frequen-
cies can be reconstructed perfectly from its samples
takenuniformlyatnolessthantheNyquistrateof[5].Another
importantresult insamplingtheoryduetoLandauisalowerbound
on thesamplingdensity required foranysamplingschemethatal-
lowsperfect reconstruction[6].Formultibandsignals, this funda-
mentallowerboundisgivenbythetotallength(measure)ofsupport
of the Fourier transform of the signal. Landau’s bound applies to
anarbitrarilysamplingscheme:uniformornot,and theminimum
rateisnotnecessarilyachievableexceptasymptotically.Landau’s
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bound is often much lower than the corresponding Nyquist rate.
This motivates the study ofsub-Nyquist samplingof multiband
signals and their perfect reconstruction, cf. [7]–[14]

From a practical viewpoint, sub-Nyquist sampling is very
important in several Fourier imaging applications such as sensor
array imaging, synthetic aperture radar (SAR), and magnetic
resonance imaging (MRI), where the physics of the problem
provides us samples of the unknown sparse object in its Fourier
domain [15]–[18].Ourobjective, then, is to reconstruct theobject
from the Fourier data. It is often expensive or physically impos-
sible tocollectmanysamples,and itbecomesnecessary tosample
minimally and exploit the sparsity (i.e., multiband structure)
in the object to form its image. These problems are, of course,
duals to the problem considered here since the sparsity is in the
spatial domain and sparse sampling in the frequency domain.

For a given signal , its spectral support is defined as
the set of frequencies where the Fourier transform does
not vanish, and thespectral span is defined as the smallest
interval containing . We consider here only spectral supports
that can be expressed as a finite union of finite intervals called
bands. The set of multiband signals bandlimited to is de-
noted by . Landau’s lower bound for these signals is ,
where is the Lebesgue measure. However, in general, the
Nyquist rate for sampling without aliasing
(overlap between translates ofby multiples of ) is equal
to the width of its spectral span . Hence, for multi-
band signals with sparse spectral supports, the Nyquist rate
can be much larger than the lower bound .

A favorable case is when the widths of the bands and the
gaps between them satisfy special relationships so that there is
no overlap between uniform translates ofby multiples of a
quantity . In these cases, when the spectral support
is packable, . The most favorable situa-
tion of these is when tiles the real line under uniform trans-
lations, i.e., is packable without gaps, or “is an explosion of
the interval” [4]. In this (very special) case, , i.e.,
Landau’s lower bound is achievable by uniform sampling.

Instead, the case of interest to us in this paper is the gen-
eral case, with . Without loss of gen-
erality, we focus on the extreme (worst) case ofnonpackable ,
such that .1 For such multiband signals, it has
been shown that perfect reconstruction is possible fromnonuni-
formly spaced samples taken at a sub-Nyquist average rate ap-

1Intermediate cases with�(F) < f < [F ] are reduced to this case by
first sampling the signal atf and then considering the problem of further
downsampling the discrete-time signal, which now has a nonpackable spectral
support.
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proaching the Landau lower bound [8]–[14].2 In fact, the work
in [19]–[22] typically addresses signals with lowpass spectral
supports, which, being packable, are best sampled uniformly,
as we show in this paper.

We note that the related problem of perfect reconstruction
in filter banks (cf. [23]) is fundamentally different from the
problem considered here. In the filterbank work, all samples at
the Nyquist rate are assumed available, and the analysis stage
can be designed together with the synthesis stage. In contrast, in
our problem, Nyquist-rate acquisition is too expensive or even
impossible, and only the minimum number of samples of the
continuous time signal is acquired. As shown later, the filterbank
interpretation for this is that the analysis filters are restricted to
the form of , where .

Given the obvious advantages of such reduced sampling rates
(by, e.g., a factor of 10 in one of the examples in this paper), one
would expect extensive use and applications of these methods.
However, a very high sensitivity to errors has been observed in
some cases [9], [12]. In fact, it turns out that unless the sam-
pling and reconstruction system is very carefully designed and
optimized, the sensitivity to small errors can be so great that al-
though perfect reconstruction is possible with perfect data, the
signal is corrupted beyond recognition in most practical situa-
tions.

The goal of this paper is to explore these limitations and
develop systematic design methods to minimize the sampling
rate and, at the same time, minimize the error sensitivity of the
system. This will provide the necessary tools for practical ap-
plications of minimum-rate sub-Nyquist sampling.

We consider the problem of periodic nonuniform sampling
and reconstruction of multiband signals. We focus primarily
on the results presented in [14], where we derived an explicit
reconstruction formula and a multirate realization for a sam-
pling scheme calledmulticoset samplingthat allows us to ap-
proach the Landau minimum rate arbitrarily closely. As an im-
portant tool for systematic feasibility evaluation and design of
the system, we derived estimates of the error resulting from
signal mismodeling. More precisely, we derived bounds on a)
the peak value and energy of the aliasing error resulting when
the input signal lies in , rather than , and b) the
output noise variance when the input samples contain additive
white noise of variance .

In this paper, we use these various bounds to optimize the
performance of the sub-Nyquist sampling and reconstruction
system by minimizing the sensitivity bounds. It turns out that
the reconstruction system that provides perfect reconstruction
of signals in the modeled class has free param-
eters, which can be chosen to optimize the sensitivity bounds.
We present closed-form or otherwise efficient approximation
numerical algorithms to solve these optimization problems.
Likewise, we use the bounds to determine the best sampling
pattern among all patterns that achieve a given sampling rate for
a given .

2This discussion and intentional use of nonuniform sampling are fundamen-
tally distinct from other extensive recent work on nonuniform sampling in which
it is usually regarded as a “necessary evil” imposed by sampling jitter or other
physical limitations [19]–[22].

In addition, we solve the problem of an optimal choice of the
base sampling frequency to minimize the average sampling rate
achievable by a design with a given sampling period. This al-
lows us to minimize the sampling rate for a given system com-
plexity, rather than asymptotically, with . This problem
is related to the problem of pairing band edges of[13]. We
provide a simple algorithm to solve the problem, whether or
not Landau’s lower bound is attainable for the particularand
choice of .

We derive additional relationships and bounds that allow us
to quantify the performance loss in terms of increased error sen-
sitivity due to nonpackability of the spectral support and com-
pare uniform and nonuniform sampling patterns for packable
spectra. Not surprisingly, perhaps, we find that uniform sam-
pling is more suitable for packable spectra. Most importantly,
however, we find that the sensitivity penalty for sub-Nyquist
sampling of signals with nonpackable spectra can be controlled
by optimal design and by backing off slightly from the minimum
rate. The resulting low error sensitivities with multifold reduc-
tions from the Nyquist rate in our numerical examples suggest
that these techniques have considerable practical potential.

II. M ULTICOSET SAMPLING

A. Signals and Data

Let the class of continuous complex-valued signals of finite
energy, bandlimited to a subsetof the real line (consisting of
a finite union of bounded intervals), be denoted by

where

and

(1)

Thespan of , which is denoted by , is the convex hull of
, i.e., the smallest interval containing.
Definition 1: The spectral support is said to be packable

at rate if , , where is the
translation operator defined by for
any real set and .

In other words, is packable at rate if signals with spectral
support can be sampled uniformly at ratewithout inducing
aliasing. Hence, is always packable at rate . We call
nonpackableif it is not packable at any rate smaller that .
We assume that is nonpackable and that and

. There is no loss of generality because any signal
spectrum whose span is known can be shifted to the origin
by multiplication of the signal in the time domain by a suitable
complex exponential. Since multiplication and sampling in the
time domain commute, we are justified in making the assump-
tion.

We now describe multicoset sampling. Given a bandlimited
signal , we obtain its samples taken on a periodic
nonuniform grid consisting of the sampling locations

for and , where is a set of
distinct integers in the set , and



VENKATARAMANI AND BRESLER: OPTIMAL SUB-NYQUIST NONUNIFORM SAMPLING AND RECONSTRUCTION 2303

Fig. 1. Model for multicoset sampling.

is the “base frequency,” which is at least equal to the Nyquist
rate for : . This is illustrated in Fig. 1. In
Section IV, we address the problems of selecting the optimal
base frequency and sampling pattern .

B. Definitions and Notation

This section is largely a collection of definitions and notations
needed to describe the various error bounds derived in [14]. For
any real set , denote its indicator function by

if

otherwise

and for the given spectral support , define a finite
set as

(2)

where is the floor function. Suppose we write
as a set of elements of

arranged in increasing order; then, as a consequence
of . Furthermore, defining , we see that

, and a collection
of intervals that partitions the set is
given by

The reason we partition in this manner, as discussed in
[14], is so that is constant (either 0 or 1) for

, and each pair of indices and . In other words,
each “subcell” of the form , for and

, is either disjoint from or fully contained in . Now,
definespectral index sets and their complements for

as follows:

The set contains the indices of subcells in the collection
that are contained in . The following

example illustrates the construction of these sets.
Example 1: Suppose we want to design sampling patterns for

a class of bandlimited signals with

which is nonpackable with and . Hence,
the Nyquist rate equals , and the Landau minimum
rate is . For the choice , we find that
and . Hence, the partitions of

and the spectral index sets are given by

if

and
if

.

Denote the number of elements of by . Then,
. Observe that

where

(3)

Next, define the following matrices for each:

of size:

of size: (4)

where is the unitary DFT matrix whose entry
is , and denotes
the submatrix of obtained by selecting its rows indexed by

and columns by . Observe that and satisfy

(5)

These matrices play in important role in the error bounds, as
we will see later. A necessary and sufficient condition for re-
construction of every signal is the existence of left
inverses for each such that . This, in turn,
requires that have full rank for each . This
motivates the definition of two notions of goodness that charac-
terize sampling patterns.

Definition 2: Given an index set with , we call
a -reconstructive sampling pattern if the matrix

has full row rank.
Definition 3: A pattern with is universal

if the matrix has full row rank for every index set
of elements, i.e., whenever . A -universal pattern
is simply calleduniversal.

The existence of a universal pattern is demonstrated by the
bunched sampling pattern . It is uni-
versal because the resulting matrix has a Vander-
monde structure for any . A universal pattern is

-reconstructive for every with so that the second
definition is stronger than the first for fixedand . Therefore,

has to be -reconstructive for each [14] for perfect re-
construction. However, for simplicity, we assume in the rest of
the paper that is universal with . This automat-
ically satisfies the reconstruction condition. In view of (3), this
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Fig. 2. Multicoset sampling and reconstruction. The block “I” is an ideal sinc interpolator.

condition reduces to . Hence, the average sam-
pling rate satisfies

(6)

The equality in (6) is achieved for universal sampling patterns
with . The condition guarantees

that has full column rank for each . Under this condition,
we obtain the following explicit reconstruction formula for
from its multicoset samples:

(7)

where the functions , are the (nonunique)
interpolation filters. These filters can be parameterized in terms
of matrices of size and of size ,
which are defined by

and (8)

It is clear that these matrices are nonunique if , and this
reflects the nonuniqueness of the interpolation filters. A mul-
tirate realization of the reconstruction scheme is illustrated in
Fig. 2. The analysis part, to the left of the broken line, is a model
for the multicoset sampling process of the continuous-time
signal (see Fig. 1). In other words, the simple structure of the
analysis part of the filterbank is dictated by the assumption that
only samples on the multicoset grid are available, whereas the
synthesis part has a fully general structure. The digital filters

, on the synthesis side are related to the
interpolation filters by

See [14] for the exact expressions for these interpolation filters
in terms of and .

We summarize the bounds below as they will be the basis for
all the results in this paper. All our error bounds are expressed
in terms of , , and defined as

(9)

C. Error Bounds

Assume that lies in rather than in the class of
signals for which it was designed, namely, . Thus,
has out-of-band frequency components. This causes the recon-
structed signal to be in error, which, for simplicity, we call
thealiasing error. The following are some error bounds derived
in [14]. The peak value of is bounded as

where

(10)

while the energy of and an upper bound on it are given by

(11)

(12)

where , which is defined for , are vectors con-
taining the out-of-band signal components

Suppose the input samples contain additive white noise
with variance representing, for instance, sensor noise

or quantization error associated with sampling. Then, the corre-
sponding output noise has average power equal to

(13)

The bounds (12) and (13) are tight because there exist nonzero
input signals that satisfy the bounds with equality; however, (10)
need not be tight. All three bounds depend only on a measure
of the out-of-band signal content, which is either the magnitute
of the spectrum or its square integrated over the out-
of-band region .
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III. OPTIMAL RECONSTRUCTION

The multiplying constants , in the bounds (10) and (12)
are nondecreasing functions of the 1- and 2-norms, respectively,
of the matrix for each . Hence, our problem is to make
have the smallest norm possible for each, and this is clearly a
collection of mutually independent problems. Therefore, for the
sake of readability, we drop the indexeverywhere from now
on with the understanding that the solution needs to be applied
to each . Given sampling pattern and a spectral index set

, our objective is to pick appropriate matrices and that
satisfy and [viz. (8)] and minimize the norm
of

(14)

where “norm” means either (spectral norm) or (max-
imum-column-sum norm). The other possibility is to minimize
the output noise power in (13). A close look at this expression
reveals that we need to minimize (for each fixed) the quantity

over all valid matrices and .
Note that if , the matrix is square, and hence, the left-

inverse is unique. In addition, the only matrix that would
satisfy is trivial in this case, namely, . In other
words, there are no free parameters when . Therefore, the
reconstruction system only needs to be optimized when .
We assume that in the rest of the section. The other point
to note is that the optimization needs to be carried out for each
value of the index , the subscript of which we have chosen to
omit. We will see in a moment that the selection of the best
and to minimize a) the spectral norm of and b) the output
noise power in (13) can be solved analytically. Minimizing the
quantity is a little harder, however, requiring the use of
numerical methods.

A. Minimizing the Aliasing Error Energy

The following lemmas (whose proofs can be found in the Ap-
pendix) address the problem of minimizing the bounding con-
stant for the aliasing error energy (12).

Lemma 1: The solution to the problem
, for given and with compatible dimensions, is

, where is the pseudo-inverse of . Further-
more, simultaneously minimizesall singular values of

.
Lemma 2: Let be a submatrix of the

DFT matrix whose entries are ,
with possible rearrangements of the columns. Supposewith

columns has full rank. Then, the minimization of the
largest singular value of

(15)

performed over all matrices and that satisfy
and has the solution

and (16)

and the corresponding minimum value of the objective function
is

if

if .
(17)

Furthermore, the solution (16) simultaneously minimizes all
singular values of and, therefore, its Frobenius norm as well.

Next, we address the problem of optimizing the actual recon-
struction in terms of the aliasing error energy.

Theorem 1: The choice of optimal matrices and in
Lemma 2 minimizes theactual aliasing error energyfor each

as well as the aliasing error bound (12).
Proof: Equation (16) clearly minimizes the constant

in the bound (12), or equivalently the bound itself. Moreover,
Lemma 2 says that (16) minimizes all the eigenvalues of.
Hence, is non-negative definite for any feasible.
Examining the expression for the actual aliasing error energy
[see (11)], we see that (16) is indeed the best solution.

Remark 1: Suppose that , and we let and
. Then, (14) yields , whose spectral norm can

be shown to be

using (5). Thus, the pair produces precisely
the optimal constant multiplier in the bound (12) but does
not minimize the actual aliasing error energy. In other words,
these matrices produce the same worst case but not the same
case-by-case performance as the optimal matrices in (16).

B. Minimizing the Output Noise Power

We seek the optimal matrices and that satisfy
and and minimize in (13), or

equivalently, . This is a fairly easy problem
because and are independent of each other, and the
objective function is separable. Therefore, we need to minimize

and individually. For the second
term, is clearly the unique solution, whereas for the
first term, we use the representation , where

is the projection operator onto the null space of, namely,
. This representation is

justified in the proof of Lemma 2 in the Appendix. This yields
the following minimization:

Applying Lemma 1, we obtain the minimizing solution
. Therefore, . Finally

tr tr (18)
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C. Minimizing the Peak Aliasing Error

The relevant quantity to minimize in order to obtain the
tightest bound in (10) is the 1-norm of the matrixdefined in
(14):

subject to (19)

The problem of choosing and to minimize , unlike
the spectral or Frobenius norms of, cannot be solved analyti-
cally. We resort to numerical methods instead. As shown in the
proof of Lemma 2, we can represent and as follows:

and (20)

where is a matrix, and a matrix. We
can now rewrite (19) in an unconstrained form as

(21)

where , , and . This problem
may be solved approximately using a linear program. We first
rewrite (21) as follows:

sub. to

Each constraint can be approximated by the set of
linear inequalities:

This region is clearly a subset of , but it can be verified
easily that it is a superset of the region .
Hence, the approximate LP produces an answer that is accurate
to within a factor of of the correct answer. Hence, the
normalized error is bounded by ,
and the approximation is quite good for moderately large.
This is essentially like approximating circles by-sided poly-
gons. The optimization (21) can also be solved using semi-infi-
nite programming [24].

D. Lower Bounds on , and

The choice of sampling patternthat minimizes the optimal
constants , , and can be a difficult problem. It is there-
fore useful to know, even before attempting such a design, how
small these constants can be made. In this section, we present
lower bounds on these “error gain constants” , , and

. These are the relevant quantities that affect the bounds
(10) and (12) and the noise power (13). All bounds presented
here are independent of the sampling pattern and only depend
on , , and .

Suppose we denote the (real positive) eigenvalues of the
matrix by in decreasing order. Then, we
have from (17) that

(22)

where is optimized to obtain the lowest aliasing error energy.
Of course, since is assumed to have full rank. Notice
that we can use the fact that to bound the average
eigenvalue tr :

(23)

This result along with (22) and yields

(24)

Our next bound on provides an estimate for the
worst-case output noise power. Equation (18) implies that

tr

where is the harmonic mean of the eigenvalues. Using the
standard inequality and (23), we immediately ob-
tain

tr (25)

See [25] for some stronger bounds on the eigenvalues of
these matrices, but they hold only for special sampling patterns
and bandpass spectral supports. Our next theorem concerns the
tightness of the bounds (24) and (25).

Theorem 2: The bounds (24) and (25) are tight in that they
hold when is a uniform sampling pattern and is packable
corresponding to .

Proof: Assume that , i.e.,
, where is an integer. This corresponds

to subsampling by a factor of . Let and denote
the spectral subcells and index sets corresponding to. Let
be a fixed index, and let . We see
that packablility of implies that cannot be a multiple
of for for otherwise, the subcells and

will overlap in the spectrum of when
subsampled by . Therefore, the entry of is

where is such that .
Evidently, are distinct because is packable. We see that

is a submatrix of the DFT matrix consisting of
all its rows and of its columns. It immediately follows that

and tr
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. Hence, the optimal matrices satisfy
and .

Finally, we provide a lower bound on just as we did in
the case of the spectral norm. From the definition of the 1-norm,
we have

where the last step follows from the positivity of terms in the
sum. Therefore

(26)

Observe that

which follows from the fact that the solution (16) minimizes the
Frobenius norm of . Therefore

tr tr

tr tr

The expressions in the last step were obtained using the facts
that and that is a projection
operator. These are justified in the proof of Lemma 2. Therefore,
using and tr tr

tr , we conclude that

tr tr

tr

Combining the last inequality with (26) and (25), we finally
obtain

(27)

We can obtain a stronger bound (27) when . In this case,
we see that the matrices and are unique. Therefore

(28)

This bound, although applicable only for , is indeed
stronger than (27), whose right-hand side evaluates tofor

.

E. Which Criterion to Optimize?

As seen in Sections III-A–C, each of the three criteria leads to
a different optimal choice for and . Furthermore, the com-
putation of those matrices is more difficult in one of the cases
(minimizing the peak error). Therefore, the following question
arises: Suppose that and are chosen to optimize one of the
criteria. Then, how far from the optimum would the other cri-
teria be for this choice? First of all, it is not fair to compare the
optimum matrices corresponding to the criteriaand be-
cause the two problems have different underlying settings: The
error energy is due to input signal mismodeling, whereas the
output noise power is due to additive sample noise. Yet we have
seen that the “least-squares” solution is the optimal choice
for for both criteria, although the optimal choices forare
different. However, it is more meaningful to compare the op-
timal matrices for the criteria and because the two prob-
lems are similar: The imperfections in the input signal in both
cases are due to mismodeling. It is therefore reasonable to ex-
pect the optimal matrices that minimize the 1-norm ofto be
close to those that minimize its 2-norm for which, of course, we
have the analytical least-squares solution (16). A question that
springs into mind is whether or not the least-squares solution is a
good enough approximation to the exact solution for the 1-norm
problem. The answer partially lies in the following result, which
is a bound on the improvement factor that the solution to (21)
can offer over the least-squares solution (16). Observe that (21)
can be rewritten in a slightly different constrained form as

subject to such that

where (29)

since the difference can be expressed as for a
suitable . Recall that and for
suitable and . Note that is the optimal matrix for the
2-norm minimization. Therefore, (29) yields

(30)

where denotes the null space. In the proof of Lemma 2, we

show that , where is an or-
thonormal projector. Furthermore, is easy to check.
Hence, for ease of computation, we can weaken the bound (30)
by maximizing over the set consisting of the columns of

, rather than the subspace . Thus, letting
denote the columns of , we obtain

(31)

In other words, using the least-squares solution (16) instead of
the solution to (21) cannot amplify by a factor of more
than .
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We can apply these results to the norms of and for
each to obtain lower bounds on a) the constants present in (10)
and (12) and b) the average output noise power in (13). Without
explicitly deriving them, we summarize the bounds below in
terms of , , , and :

where

(32)

(33)

(34)

In each of the first two equations, we have a lower bound and
an upper bound, which cannot be combined. However, note that
the bounds for or are tight. Hence, the lower
bounds on and tell us how large the aliasing error can be
in the worst cases for the corresponding bounds. However, they
do not tell how large or small the errors are in other cases. In
addition, note that the constants, decrease as
expected when is increased for a fixed . If we increase

, , and in such a way that and remain constant
(as would happen if one attempts to approach the Landau rate
by increasing ), we find that none of the bounds above get
worse. These bounds represent errors inherent to any sampling
procedure, whether they are uniform or not, for any multiband
signals, whether they are packable or not. In Section V, we study
the increase in error sensitivity incurred for nonpackable signals
that are sampled at a sub-Nyquist rate.

IV. OPTIMAL SAMPLING

In this section, we discuss two important issues pertaining to
optimal sampling, namely, determining the optimal base sam-
pling frequency and sampling pattern design. The first one is
concerned with choosing the periodthat produces the lowest
average sampling rate for a givenand . The second issue is
concerned with finding good sampling patternsthat optimize
the aliasing error bounds or sensitivity to noise. Our study of
this latter problem is somewhat numerical in nature.

A. Optimizing the Choice of

In all our previous analysis, we set the base sampling fre-
quency for convenience. This corresponds to sam-
pling the original signal uniformly at the Nyquist rate before
some samples are dropped. Clearly, we could have chosen a
slightly larger rate than the Nyquist rate and still obtained sim-
ilar results. In this section, we examine the problem of choosing,
for given and , the optimal value for that minimizes

the average sampling rate. We also provide a polynomial-time
algorithm to find , which may be larger than , and we
show this by example. This problem is related to that of pairing
band edges [13] that Herley and Wong suggested. They provide
a necessary and sufficient condition on the band edge frequen-
cies and of the spectral support for achieving the min-
imum rate. They also show that for sufficiently large, with
fixed, the minimum rate can be approached arbitrarily closely.
In our case, however, we fix and the corresponding optimal
base sampling frequency because determines the com-
plexity of the reconstruction.

All the results derived for the specific case (the
Nyquist rate) extend to the general case , provided
we replace the spectral span everywhere by . We
already know that for given and , the smallest average sam-
pling rate [equal to ] is given by the right-hand
side of (6):

Therefore, we seek the solution to

where (35)

for a fixed . For spectral supports expressible as
, we have seen that the construction of the sets

and can be done in polynomial time. Therefore,
the computation of requires polynomial time as
well. The minimization (35), however, is over a continuous
parameter . The following theorem allows us to transform the
minimization problem to an exhaustive search over a finite set
of values for .

Theorem 3: The optimum value for in (35) for a spectral
support of the form must satisfy

for some integers, , and such that and
.

The proof can be found in the Appendix. Theorem 3 enables
us to generate no more than possible candi-
dates for , which may then be used to minimize the average
sampling rate. It turns out that is optimal for the spec-
tral support of [14, Ex. 1]. However, as the following example
shows, spectral supports exist for which is highly sub-
optimal.

Example 2: For a given , consider the spectral support

where is a small positive number. For the choice
, we have and

if

if

if .

Since pieces of the spectrum overlap, we require ,
and this makes the average sampling rate equal to
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TABLE I
DESIGN CRITERIA EVALUATED AT THE CANDIDATE OPTIMAL SAMPLING

PATTERNS: C = f0; 1; 2; 13; 16g, C = f0; 4; 7; 14; 15g AND

C = f0; 1; 2; 8; 17g. THE BOXED ENTRIES ARE OPTIMAL IN

THEIR RESPECTIVEROWS

. Next, for the optimal choice , we
have

if

if

Therefore, is required, and the average sampling rate
. Hence, the choice can improve the

sampling rate over the choice by a factor of ,
which is nearly as large as it can get because this factor never
exceeds

since and

Although Example 2 is an extreme situation, it shows that
optimizing may be of significance, with the largest gains oc-
curring typically for signals with sparse spectral supports.

B. Sampling Pattern Design

We now examine the problem of designing good sampling
patterns. We propose to use the following minimizations as em-
pirical design criteria:

for

where for are ,
, and , respectively, and

the subscript “” denotes optimality of with respect to
the matrices and , which is discussed in the previous
section. The functions are invariant under cyclic
shifts of in , and this follows easily from
the definitions of these functions.

Example 1 (Continued):For the chosen spectral support and
, we have for all . Hence, is neces-

sary and sufficient for perfect reconstruction from the multicoset
samples. For example, for , an exhaustive search over all
sampling patterns yields

at

at

at

where was computed using the approxi-
mate LP method with and, hence, cannot be claimed
to be truly optimal. In this example, the three design criteria
produce different optimal sampling patterns. Table I shows the

Fig. 3. Normalized error gain constants� and� shown as functions of the
number of multicoset samplesp in each period.

three objective functions evaluated for each of these three can-
didate optimal patterns. It is evident that none of the three can-
didate sampling patterns is simultaneously optimal for all three
design criteria. However, all three candidate solutions are close
to optimal for each of the criteria, and we lose little in terms of
optimality by restricting our attention to any one of the criteria.
For example, we can pick , which is the easiest to compute.

Let and
denote the optimal constants for a given.

Define the following quantities:

which are obtained by normalizing the quantities and
and by their lower bounds (32)–(34). Fig. 3 illustrates (for

) the behavior of and . These were computed
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TABLE II
NORMALIZED ERRORGAIN CONSTANT � FOR2 � p � 5

by first computing and by exhaustively searching over
all sampling patterns of size, followed by normalization. Due
to its higher computational complexity, we computed only
for , which is summarized in Table II. The two plots
in Fig. 3 show that the optimal error gain constantsand
approach their lower bounds rather quickly whenis increased.
This behavior suggests the following design recommendation.
For given with occupancy and given , choose
or . This results in sampling rate slightly larger
than but provides significant reduction in error sensitivities.
Table II shows that also approaches its lower bound, only
more slowly.

V. COMPARISONS

The goal of this section is to compare uniform and nonuni-
form sampling below the Nyquist rate for packable and non-
packable supports . Some of the comparisons are numerical
examples. We will examine the following two questions: i) For
packable spectra, both uniform and nonuniform sampling at the
same average rate is possible. How does the reconstruction error
compare between the two options? ii) What is the penalty for
nonpackability: Given packable and nonpackable,
such that , which are sampled at the same
rate (uniformly and nonuniformly, respectively), how do the
error bounds compare?

A. Uniform Sampling Versus Nonuniform Sampling for
Packable

Recall that a signal is packable at rate
if for all . Dodson and

Silva [26] proved the following sampling theorem for packable
signals.

Theorem 4: Suppose is packable at rate for some
; then, has the sampling representation

(36)

with the sum converging uniformly and absolutely for .
The following theorem due to Beaty and Higgins [27] is a

bound on the peak value of the aliasing error for signals with
finite energy and packable.

Theorem 5: Suppose that with
is sampled at the rate that satisfies
, . Then, the aliasing error satisfies

(37)

Incidentally, this equation is identical to the bound for the
aliasing error in classical Shannon sampling of lowpass signals.
Although valid for all , (37) will only be used for the
class signals in order to compare with the bound
(10) that applies to signals in . It turns out that uniform

patterns are indeed the best patterns suited for packable spectra
because the aliasing error bounds in (10) and (37) have identical
forms, with the only difference being the premultiplying con-
stants. The constant is 2 in (37), but in (10). Since
the lower bound (28) implies that for

, we see that for packable signals, uniform sam-
pling is most appropriate. Theorem 2 verifies this claim for the
other two performance criteria because the constantsand
attain their respective lower bounds for uniform sampling. In
summary, for packable signals, uniform sampling is the best.

B. Penalty for Nonpackability

What is the penalty in error sensitivity for nonpackability?
Unfortunately, the answer to this question is not easy to deduce
analytically. From various numerical computations, it seems
that there is a price to pay for nonpackability of. We provide
an example here to support the conjecture.

Example 2: Consider spectral supports , , and

For and base sampling rate , they all have
. The corresponding index sets are

, and
. The spectral supports have the same mea-

sure, and the sets have elements each. Although
and are packable, is not. Upon minimizing the quan-
tity for and using a for-
ward selection greedy algorithm, we obtain the following op-
timal sampling patterns with (half the Nyquist rate)
and objective functions .

• For , we obtain
with the corresponding objective func-

tions being , , and .
Note that these values agree with the results of Theorem
2.

• For , we obtain
and . The

objective functions take the values ,
, and at optimality.

Hence, the price to pay to sample a signal with a nonpack-
able spectrum at the Landau rate manifests itself in the output
noise and aliasing error bounds. They are larger for nonpackable
spectra.

Remark 2: Example 2 also illustrates the point made in the
last subsection that uniform sampling is, in general, better suited
for packable signals than nonuniform patterns. The fact that the
sampling patterns for the packable spectra and turn out
to be uniform clearly supports the claim.

VI. CONCLUSION

We presented solutions to the problems of optimal sub-
Nyquist sampling and reconstruction. We showed how to
determine optimal matrices to obtain the best performance
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in terms of the aliasing error bounds or the noise sensitivity
(our measures of performance) that were derived in [14]. We
provided explicit solutions for most of these problems.

The error bounds reveal a dependence on the sampling pat-
tern . We examined the problem of designing sampling pat-
terns that optimize any of our performance measures. We used
an exhaustive search algorithm in one example and a forward
selection greedy algorithm in another to pick optimal sampling
patterns for a few design examples. An exhaustive search over
all sampling patterns is computationally very expensive for even
moderately large , whereas a greedy search is not guaranteed to
produce the best pattern. Nevertheless, the greedy algorithm did
produce very good results. The problem of designing sampling
patterns efficiently is still an open problem. We also showed how
to choose the optimal base sampling frequency that minimizes
the average sampling rate for a given sampling period. This is
an important issue because sampling at a base frequency equal
to the Nyquist rate may be severely suboptimal for certain spec-
tral supports.

We made comparisons to determine whether nonuniform
sampling is appropriate for packable signals. Our findings
are that a) for packable spectral supports, a uniform sampling
pattern yields a better performance than a general nonuniform
sampling pattern, and b) for nonpackable signals, where uni-
form sampling is not applicable, there is a penalty associated
with nonuniform sampling. The error bounds are larger for
this case relative to uniform sampling of a packable signal
of the same occupancy. We find that the sensitivity penalties
(error gain constants) for sub-Nyquist sampling of signals with
nonpackable spectra can be controlled by optimal design and
by backing off slightly from the minimum rate. The resulting
low error sensitivities, and the significant reduction in the
sampling rate over the Nyquist rate of our numerical examples,
suggest that these techniques have considerable practical
potential. Most of the results presented for 1-D signals should
be extensible to two and higher dimensions with little difficulty.
In contrast, determining the optimal base sampling lattice in
higher dimensions would be a harder problem.

APPENDIX

A. Proof of Lemma 1

Let . Rewriting in terms of followed by
squaring, the objective function gives us an equivalent problem

, where
is the orthogonal projection operator onto

. Hence, using transforms the problem to

The choice (or ) is clearly optimal since
is a positive semidefinite perturbation. In fact, all sin-

gular values of are simultaneously minimized.

B. Proof of Lemma 2

The proof of Lemma 2 relies on the following result.
Lemma 3: Let and have the same number of rows that

satisfy , and define
. Then, the pseudo-inverse of is

.
Proof: It suffices to check that the asserted pseudo-inverse
satisfies a) and b) ,

where denotes the orthogonal projection operator onto
the range space of any matrix. Note that , being the or-
thogonal projection matrix onto the null space of , satis-
fies the following properties, which are easy to verify directly:

and . We
use these properties without explicitly stating. To verify a), let

. A standard way to check
that is an orthonormal projection operator is to verify that

and . It is evident from its definition that is
Hermitian. Next, examine the quantity :

which follows from and the properties of .
The equation yields .
Conversely, implies
that . This proves that and,
therefore, completes the verification of a). We may check b)
similarly. Let . Then, is clearly
a projection operator. As before, we have since

, whereas since . This
proves b) and, hence, the lemma.

Proof: Any matrix that satisfies can be ex-
pressed as for a suitable matrix of the same size
as . Conversely, the matrix is a valid “ matrix” since

. The upshot is that we can replacewith in the
minimization, thereby eliminating the constraint alto-
gether. By a similar argument, we can replaceby .
The sizes of and are and ,
respectively. Therefore, (15) transforms to

We can now apply Lemma 1 to the above problem to obtain the
minimizing solution

(B.1)

Next, observe that is a submatrix of the
DFT matrix with possible rearrangements of columns. There-
fore, its rows are orthonormal, and it satisfies .
Combining Lemma 3 with (B.1) yields the minimizing solu-
tion and . Again, using

and the properties of , we find that
simplifies to zero. Hence, the choice and
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minimizes . Note that this solution also si-
multaneously minimizes all the singular values ofand, there-
fore, its Frobenius norm as well. We now compute the minimum
norm of at optimality, namely, , where

(B.2)

From the proof of Lemma 3, we know that is a pro-
jection operator. Therefore, is also an orthogonal
projection operator. The case is trivial, and it is easy to
check that for this case. Moreover, is nonzero if and
only if . We assume that (and hence ) in
the rest of the proof. The spectral norm of can be bounded
from above as follows:

(B.3)

Now, observe that
. Therefore, , or equiva-

lently, . Let be an eigenvector cor-
responding to the largest eigenvalue of , i.e.,

. Then, because .
Therefore, , and we
have . Combining this with (B.3),
we obtain

(B.4)

Finally, a simple calculation reveals that

(B.5)

Therefore,
, and hence, (B.4) yields for

.

C. Proof of Theorem 3

We can rewrite the optimization as

(C.1)

where , , and .
The set is assumed to satisfy

. The function is right
continuous and has jump discontinuities of and at
and , respectively. Hence, we obtain the following properties
of : a) , and b)

.We use these properties without
explicitly stating them. Now, suppose that the optimum value

does not satisfy for any and . We
will show that the choice yields a smaller objective
function than for a sufficiently small , which is a

contradiction. In particular, we prove that , where and
are defined as

and

(C.2)

for an appropriately chosen, and this implies that
. Hence, the optimality of is contradicted. We start by

choosing :

(C.3)

Since , we see that
is feasible to (C.1). Let be

fixed. If there does not exist a such that
for any , then it follows

that holds for every ,
and hence, follows from (C.2). Otherwise, let be the
largest integer in such that

(C.4)

for some . We now claim that there does not exist an
and such that

(C.5)

This is easily justified because subtracting (C.5) from (C.4)
gives

which contradicts the choice of in (C.3). A consequence of
this is that

(C.6)

Next, for , we know from the definition of
that there does not exist a ,

, . Hence

(C.7)
Summing (C.6) and (C.7) over their respective ranges and
adding together yields

(C.8)

where . The second inequality in (C.8) follows from
the definition of . Of course, we need to verify that . This
is true because, otherwise, if , the choice ,

would serve as a counterexample to the claim.
Since (C.8) holds for each , we obtain .
This proves the original statement that
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for some and . Furthermore, the
condition restricts to for
given indices and .
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