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Multiple Description Coding With Many Channels
Raman Venkataramani, Member, IEEE, Gerhard Kramer, Member, IEEE, and Vivek K Goyal, Senior Member, IEEE

Abstract—An achievable region for the -channel multiple de-
scription coding problem is presented. This region generalizes two-
channel results of El Gamal and Cover and of Zhang and Berger. It
further generalizes three-channel results of Gray and Wyner and
of Zhang and Berger. A source that is successively refinable on
chains is shown to be successively refinable on trees. A new outer
bound on the rate-distortion (RD) region for memoryless Gaussian
sources with mean squared error distortion is also derived. The
achievable region meets this outer bound for certain symmetric
cases.

Index Terms—Multiple descriptions, rate-distortion (RD)
theory, source coding.

I. INTRODUCTION

M ULTIPLE description (MD) coding arose in connection
with communicating speech over the telephone network.

The idea was to split the information from a call into two parts
that are sent on two separate links or paths. Normally both parts
are received and are combined to achieve the usual voice quality.
However, an outage of one link or the other can now be ac-
commodated by reducing the voice quality. This idea ofchannel
splitting inspired the following question: Given an information
source and a number of channels that can fail, what are the con-
current limitations on the data rates and transmission qualities?

This question was formalized by A. D. Wyner in 1979 and
became known as themultiple description problem. The two-
channel problem is as follows. An encoder is given a sequence

and maps it into two descrip-
tions and having and bits, respectively. and

are sent over the respective first and second channel, and
each description either arrives error free at the receiver or is
lost. The receiver uses one of three decoders. Thecentral de-
coderis used if both and are received and it produces an
estimate of . One of twoside decodersis used if one
of or is received and it produces the estimate or .
The rates of the descriptions are denoted bits per
source symbol, and the distortions attained by these
reproductions are denoted , . Of course, if neither
description is received the receiver can only guess at what the
source sequence is.
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A. Two Examples

The two most commonly studied MD problems are the bi-
nary-symmetric source (BSS) with Hamming distortion and the
Gaussian source with squared-error distortion. Consider first the
BSS, for which the are independent and identically dis-
tributed (i.i.d.) binary random variables taking on the values
and with probability . The average Hamming distortion
between a source sequence and its reproduction is

where if and if .
Suppose that we require

as

i.e., the central decoder should reproduce with vanishingly
small error probability for large . The channel splitting ap-
proach is to transmit the even-numbered bits across the first
channel and the odd-numbered bits across the second channel.
Thus, the rates are bits per symbol and the av-
erage distortions are , ,
and . The last two distortions
are achieved by simply guessing at those bits which one does not
know. However, one can do better than channel splitting—more
sophisticated codes can achieve

Next, the Gaussian source has the as i.i.d. Gaussian
random variables with zero mean and unit variance. The mean
squared error distortion between and is

For example, to attain a central distortion of , ,
one can encode at a rate as close as desired to Shannon’s
rate-distortion (RD) function bits per
symbol [1, Sec. 28], [2] for sufficiently large . However, if
small side distortions and are desired then

might be required.

B. Historical Summary

Perhaps the earliest information-theoretic treatment of an MD
problem can be found in [3], [4]. The first general result was
El Gamal and Cover’s achievable region for two channels [5].
Ozarow proved this region to be optimal for the Gaussian source
and mean squared error distortion [6]. This result was extended
to create high-rate bounds for other memoryless sources in [7]
and for stationary Gaussian processes in [8]. Various bounds for

0018-9448/03$17.00 © 2003 IEEE



VENKATARAMANI et al.: MULTIPLE DESCRIPTION CODING WITH MANY CHANNELS 2107

Fig. 1. TheL-channel MD model.

the BSS with Hamming distortion were developed in [9]–[11].
An achievable region for the BSS with many channels was de-
rived in [12]. Some specialized but final results for the BSS can
be found in [13]–[15]. The important two-channel problem with
“no excess rate” was solved in [16]. Our main results first ap-
peared in [17].

A special case of the MD problem is where one considers
only the distortions and ; this is known as thesuccessive-
refinementproblem. This problem was solved for two channels
by Gray [3]. Further results can be found in [18]–[25]. Another
special case of the MD problem is thesymmetriccase where
all the rates are equal and the distortion depends on the number
of descriptions received but not on which particular descriptions
are received. An achievable rate region for this problem has been
recently determined by Pradhan, Puri, and Ramchandran [26],
[27].

Motivated largely by the analogy between uses of a channel
and sending a packet on a data network that loses packets but
makes no errors within received packets, the construction of
practical MD codes has been an active research area. Wide-
spread interest followed the publication of [28], though tech-
niques had been developed at Bell Labs in the late 1970s and
early 1980s. For more on the history of MD coding and a survey
of practical techniques and applications, see [29].

This paper is organized as follows. Section II presents
our main results, which are an achievable rate region for the

-channel MD problem (Theorem 1) and an outer bound
for the Gaussian source with mean squared error distortion
(Theorem 2). Several prior results are shown to be subsumed
by our results in Section III. In Section IV, we introduce and
solve a successive-refinement problem for tree structures. In
Section V, we show that the inner bound given by Theorem 1
meets the outer bound given by Theorem 2 for a restricted class
of MD problems. Finally, Section VI concludes the paper.

II. PROBLEM AND MAIN RESULTS

The -channel MD problem is depicted in Fig. 1. A source
emits a sequence of i.i.d.
random variables taking on values in the finite alphabet.
Let . There are encoding functions ,

, that map to thedescriptions , where
is a sequence having bits or nats. The rate of

description is thus nats per symbol.
Description is transmitted over channeland is either re-

ceived error-free or lost completely. The receiver thus encoun-
ters one of configurations depending on which are re-
ceived. Excepting the trivial case, we can represent the receiver
as a collection of decoding functions , ,

. The decoder whose inputs are reproduces
as

The letters , take on values in the finite
reproduction alphabet .

The receiver usually cannot reconstruct perfectly. We
consider the case where its distortion is measured in aper letter
fashion via

(1)

where is a letter distortion function mapping pairs
into the nonnegative reals, and where

denotes expectation. Observe that can depend on
. We assume that is upper-bounded by for

our proofs. However, when considering the Gaussian source
with mean squared error distortion we make the usual step of
dropping the restrictions that is bounded and that the
alphabets are finite (see, e.g., [5]).

We say that the rates and distortions
are achievableif there are encoding functions

having rates , , and decoding functions giving
distortions , , . Our problem is to find the clo-
sure of the region of achievable rates and distortions for all,
called theRD region. This region has dimensions.

A. An Achievable Region for Discrete Sources

Our first result is an inner bound to the RD region. Let
be the power set of , i.e., the collection of all subsets of.
The set difference between collections of setsand is de-
noted as . We write as a
shorthand for and for . We inter-
pret as a constant and as the cardinality
of . Finally, for random variables , , and we use the
common notation , , , and
for entropies and mutual informations [30, Ch. 2].

Theorem 1: Let be any set of random variables
jointly distributed with , where takes on values in some
finite alphabet and each takes on values in the reproduc-
tion alphabet , . Then the RD region contains the rates
and distortions satisfying

(2)

(3)

for every .
Proof: See Appendix A.

Remark 1: The usual time-sharing arguments can be applied
to Theorem 1, e.g., the convex hull of the region defined by (2)
and (3) is also in the RD region.

Remark 2: One can generalize Theorem 1 by replacing the
in (3) with artificial reproduction random variables that
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take on values in some finite alphabets. The in (2) are
recovered by using for some functions .
Theorem 1 is, thus, the special case of this result if one chooses
the to be identity mappings. However, we do not know if
this generalization improves Theorem 1.

Remark 3: For , Theorem 1 with a constant gives
the set of corresponding to Shannon’s RD function.

Remark 4: For , Theorem 1 generalizes a result of El
Gamal and Cover [5, Theorem 1] and of Zhang and Berger [15,
Theorem 1]. We prove these claims in Section III-A.

Remark 5: For , Theorem 1 generalizes a result of
Zhang and Berger [15, Theorem 1] and of Gray and Wyner
[4, direct half of Theorem 8]. We prove these claims in Sec-
tion III-B.

Remark 6: Theorem 1 holds more generally for well-be-
haved continuous sources and distortion functions if the
entropies are replaced by differential entropies . We
will simply assume that Theorem 1 is valid and apply it to the
Gaussian source with mean squared error distortion. A formal
proof justifying this step might proceed along the lines of [31]
that generalizes the results of [32] from discrete to nondiscrete
sources. We expect that such a proof will lean heavily on the
proof in Appendix A, just as the proof in [31] is based on the
proof in [32].

B. An Achievable Region for the Gaussian Source

Consider the Gaussian source with mean squared error
distortion. We apply Theorem 1 and Remark 6 with the fol-
lowing choice of (see also [5, Sec. IV] and [6,
Sec. III]). Let be zero-mean, Gaussian random
variables independent of and having covariance matrix,
i.e., the entry of is . Let and

. We use results from least squares estimation
[33, p. 237] to obtain

(4)

where is the column vector of the , , denotes
transposition, is an all-ones column vector, is an all-ones
matrix, and is the covariance matrix for the , . We
also set .

Suppose we insert (4) into (3). We then run into the difficulty
that is a function of the , , so that

for

One can remedy this by canceling such entropies on the
right-hand side of (3) before evaluating them. The result is that
(3) becomes

(5)

Evaluating both (2) and (5) using (4), we have

(6)

(7)

where denotes the determinant of. We use these bounds
in Section V to determine certain boundary points of the RD
region. Of course, distributions other than (4) might yield larger
achievable regions than (6) and (7).

Finally, we give an alternate bound on the rates achieved by
the above distribution by using (6) in (7)

(8)

Observe that Shannon’s RD theorem would permit
. Thus, the fraction to the right of in (8)

(which is no larger than unity by Hadamard’s inequality [34,
Theorem 7.8.1]) limits how close one gets to Shannon’s RD
function by using Theorem 1 with (4).

C. An Outer Bound for the Gaussian Source

We give an outer bound on the RD region for the Gaussian
source that generalizes a result of Ozarow [6]. We call a collec-
tion of disjoint sets apartition of
the set if .

Theorem 2: The achievable rates , , and distortions
, , satisfy

(9)

where the minimization is over all partitions of.
Proof: See Appendix B, where we derive a somewhat

stronger bound than (9).

Remark 7: For , Theorem 2 gives Shannon’s RD
bound.

Remark 8: For , Theorem 2 gives a result of Ozarow
[6]. To see this, insert [6, eqn. (11)] into [6, eq. (7)] to obtain

(10)

where

and

We can rewrite (10) as

(11)

which is the same as (9) with , , and
.

Remark 9: For , Theorem 2 is used in Section V to
determine certain boundary points of the RD region.
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III. EXISTING RESULTS ASSPECIAL CASES

A. Existing Two-Channel Regions

Consider Theorem 1 with and a constant. The
result is the region of El Gamal and Cover [5, Theorem 1]

(12)

(13)

(14)

Thus, is included in Theorem 1. As we have done in (14),
we will often simplify notation by dropping the braces when no
confusion arises, e.g., we write and for the respective

and .

Remark 10: is the RD region for the Gaussian source
and mean squared error distortion [6].

Remark 11: is the RD region for any source and dis-
tortion measure if there is no excess sum-rate, i.e.,

where is Shannon’s RD function [16].

Consider next Zhang and Berger’s [15, Theorem 1]. This the-
orem states that an inner bound to the RD region is the set
of satisfying

(15)

(16)

(17)

where , , and
. The functions , , and are

mappings to the respective reproduction alphabets, , and
. We can bound the informations in (16) as

(18)

where the equality follows because is a function of and
. Similarly, we bound the right-hand side of (17) as

(19)

In other words, one cannot shrink by replacing the with
and adding to the last term in (17). But the resulting

region is just Theorem 1 with and . Thus, the
region obtained with Theorem 1 contains all points in .

Remark 12: is larger than for the BSS and Ham-
ming distortion [15, Sec. 3]. However, we do not know if The-
orem 1 improves on .

B. Existing Three-Channel Regions

Zhang and Berger’s region is based on a re-
gion for [15, Theorem 1]. This region
is concerned only with the distortions , , , ,

Fig. 2. Gray and Wyner’s three-channel problem.

and states that an inner bound to the RD region is the set of
satisfying

(20)

(21)

(22)

(23)

where takes on values in , ,
, and . The func-

tions are again mappings to the reproduction alphabets
. We can perform steps similar to (18) and (19) by replacing

the with , and adding to (23). The resulting region
is at least as large as and is achievable with Theorem 1 by
using and . Thus, the region
obtained with Theorem 1 contains all points in .

We next consider perhaps the earliest information-theoretic
treatment of an MD problem. Gray and Wyner in [4] studied
an channel problem where the source puts out pairs

and where only the distortions and are of in-
terest. Distortion is independent of and distortion is
independent of , as depicted in Fig. 2. We apply Theorem 1
with , with arbitrary, and

Furthermore, we choose to factor as
. The resulting bounds are

(24)

(25)

(26)

(27)

(28)

We can satisfy (25)–(28) by choosing the rates as

(29)

(30)

(31)

A final simplification arises because the distortion functions
have the special form

and

This allows one to replace and
by conditional RD functions, as was done in [4, p. 1702]. In
summary, the region of Theorem 1 contains all points in Gray
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and Wyner’s achievable region. This region is, in fact, optimal
for their problem [4, Theorem 8].

C. Successive Refinement

Suppose the alphabets are the same for all , and that
the functions are the same for all . Consider a source
sequence encoded at rate to produce a distortion of per
symbol, and such that an additional bits of rate produces
a lower distortion . If and

are simultaneously achievable, where is the distor-
tion-rate function, the source is said to besuccessively refinable
[21]–[23]. In general, we say that a source issuccessively refin-
able on a chainor in stagesif the RD region is given by

(32)

The -stage successive refinement problem is a spe-
cial case of the MD problem where only the distortions

are considered. Suppose we choose all
to be constant except for . Applying

Theorem 1, we have

(33)

(34)

where . In fact, the bounds (33) and (34) de-
fine the RD region. One can show this by invoking the same ar-
guments used to prove the converse of Shannon’s RD theorem.
We have thus recovered a general result of Rimoldi [23, The-
orem 3].

It is known [21] that the source is successively refinable
on a chain if and only if there exists a Markov chain

such that . One can show that the
Gaussian source is successively refinable on a chain and its RD
region is given by (32) where .

IV. SUCCESSIVEREFINEMENT ON TREES

We now discuss a generalization of the successive refinement
problem that we callsuccessive refinement on trees. We begin
with a definition.

Definition 1: A finite collection of sets of positive integers
is said to be atree structureif a) for any nonempty ,
there is a unique called theparent nodeof , such
that and , and b) for distinct

, where .

Clearly, for any tree structure. For instance, Fig. 3
depicts the tree structure

(35)

The quantity is labeled on the branch
from to . Without loss of generality, we assume that

. We will say that a source is
successively refinable on treesif for any tree structure , the
RD region is given by

(36)

Fig. 3. Example of a tree structure.

where is the distortion-rate function. We prove the fol-
lowing result.

Theorem 3: is a successively refinable on a chain if and
only if it is successively refinable on trees.

Proof: Clearly, is successively refinable on a chain if
it is successively refinable on trees. We prove the converse by
transforming the refinement problem on a tree into one on a
chain by appropriately decomposing the descriptions and their
rates. Observe that (36) is an outer bound on the RD region by
Shannon’s RD theorem. It thus suffices to show that, for given

, we can achieve distortions . Without loss of gener-
ality, we assume that each is nonzero.

We write (or precedes ) if . Let
be an ordering of the elements of.

Clearly, . Since is successively refinable on a chain
and is a nondecreasing sequence,
there exists a Markov chain

such that and

(37)

Consider an encoding scheme that successively refines the
source sequence in stages. The incremental descrip-
tions are denoted , and their rates are

, i.e., . Let
be the output of the decoder whose inputs are . We
define

(38)

(39)

where and are unique indexes such that
and . We have

(40)

(41)

Using (41), we see that is a function of
. Thus, we have constructed an encoding

scheme producing with rate such that

(42)
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V. BOUNDARY POINTS FOR A SYMMETRIC GAUSSIAN

MD PROBLEM

Consider again the Gaussian source and mean squared error
distortion. Suppose that we have symmetric rates and distortions
in the sense that for all and for all
This means that we have only three parameters to consider:,

, and . We determine the best central distortion given
and .

Theorem 4: Consider the MD problem with a Gaussian
source, mean squared error distortion, for all ,

for all , , and for all
with . The best central distortion for this problem
is

(43)

Proof: Suppose first that , which means that
there is no side distortion constraint and we can achieve

. This is obviously the best distortion, and
(43) gives the same result with . So suppose from here
on that . Theorem 2 implies that the right-hand side of
(43) is a lower bound on . We prove achievability using the
distribution used in Section II-B with

...
...

...
. . .

...

(44)

where we require to satisfy to ensure
that is positive semidefinite. We will, in fact, need to consider
only nonpositive . One can show that

(45)

(46)

Inserting these identities into (6) and (7), we obtain the achiev-
able region

(47)

(48)

Consider first the bounds (47). We choose
so that . Then (47) holds with equality for
each with . For with , the bounds
are automatically satisfied because the right-hand side of (47)
is at most . For , we make (47) an equality to obtain
the smallest given . We also introduce the variable

which means that

(49)

We insert (49) into (47) with and choose the smallest
to obtain

(50)

Fig. 4. Best central distortion for a symmetric MD problem with three
channels.

(51)

Consider next the bounds (48). For we get Shannon’s
RD bound. For with one can check that (48)
gets progressively more restrictive with if is nonpositive.
We thus consider only the bound and insert (49)–(51)
into (48) to obtain

(52)

which has the same form as (9) with the partition
for .

Note that we can choose (which gives
) because satisfies Shannon’s

RD bound. As we increase, we find that both and the
right-hand side of (52) decrease. We must, therefore, stop
increasing when either (52) holds with equality or when

. However, the latter condition implies
which means that we can achieve equality in (52). The result
is the same as (9) with . Finally, we rewrite (9) to
obtain (43).

As an example, consider . Fig. 4 shows how the best
central distortion behaves with for various . For instance,
for , the best central distortion is simply the RD func-
tion . Consider next for which
we require . Now the best is
larger than . In fact, as we decrease , the best

moves further away from the curve.

Remark 13: Theorem 4 includes both thehigh-distortionand
low-distortioncases [6].

Remark 14: When the single-description distortion is mini-
mized , the best central distortion is

This is calculated from Theorem 4 by first noting that the
supremum in (43) is obtained by taking and then
evaluating this limit with L’Hôpital’s rule. With the technique
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in [26], one designs for a minimum number of received
descriptions satisfying , and achieves distortions

(53)

Nothing is guaranteed for if . Hence, we have
shown the tightness of the main theorem of [26] for the case of

. Whether (53) with gives points on the boundary
of the achievable region remains an open question.

VI. CONCLUDING REMARKS

We have presented a general achievable region (inner bound)
for the -channel multiple description problem. This region
generalizes a result of El Gamal and Cover for the two-descrip-
tion problem and results of Zhang and Berger. We have
given an outer bound to the RD region for the Gaussian source
with mean squared error distortion. We showed that the outer
bound meets our achievable region when only the central de-
coder and the single-description decoders (with equal distor-
tions) are of interest. However, the RD region for the Gaussian
case with all decoders present is still unknown.

APPENDIX A
PROOF OFTHEOREM 1

Consider first the case ; we will later consider general
. Suppose we are given distortions for which there exists

a so that (2) is satisfied for all . Let
be the number of occurrences of the letter in .

Let denote the set of-typical sequences with respect to
, i.e., is the set of for which

(54)

for all . We encode and decode as follows.
1. Codebook: Let , denote indexes between
and . The codebooks are formed by assigning a code-

word to each and . The compo-

nents , of the codewords are chosen
independently at random via the distribution

(55)

Note that to generate the codebook, we first need the
codebooks for all .

2. Encoding: Given the source sequence , the encoder
tries to find a for which is jointly -typical with the
codewords corresponding to , i.e., must satisfy

(56)

If such a does not exist, we set for .
The are transmitted over the channels.

3. Decoding: Decoder takes as its input and pro-
duces the output .

As usual, it suffices to consider only . Suppose
further that there are so that (56) is satisfied. One can check
that

(57)

Thus, we have

(58)

for all , where the first inequality follows by (54), (56),
and (57). We can, therefore, bound the average distortion over
the ensemble of all codes as

(59)

where is the probability that (56) does not occur for any
and a fixed .

We proceed to find rates for which approaches zero
as increases. Let denote the event that gives a
good choice of codewords, i.e.,

(60)

We can write , where denotes the
complement of the set in the sample space. Alternatively, we
can write in terms of the random variables

if occurs

else.
(61)

We have where . Since
implies , we can bound

(62)

where is the variance of and where the last step fol-
lows by the Chebyshev inequality [35, p. 13]. We use the usual
typicality arguments (see, e.g., [36, Ch. 12]) to bound as

(63)

where is a positive integer independent ofand

(64)

We have chosen the natural logarithm to compute the entropies.
Consider next . We have

(65)
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The probability in (65) depends on whether for some ,
so define as the set of subscriptsfor which . This, of
course, means that . Also, because
of the conditional independence in (55), all the other choices of
codewords in and will be independent
given . Again, using typicality arguments, we can
upper-bound the probability in (65) by

(66)

where we have chosen thein (63) to be large enough so
that (66) is valid. For , however, we replace (66) with

. Next, the number of ways in which
and can be chosen so that they overlap inis

(67)

Inserting the bounds of (66) and (67) into (65), and using (63),
we have

(68)
Inserting (68) into (62), we obtain

(69)

Recall that we can chooseto be any positive number. Thus, as
long as for all nonempty , there is a code that
satisfies the distortion requirements with probability as close to
one as desired. This proves Theorem 1 with .

We use an approach similar to [15] to include . Sup-
pose we add to each description extra nats that repre-
sent a sequence . Equivalently, we have an -channel
problem for which the th channel carries the information
representing . We use the achievable region derived above
and set for . After simplifying, we have the
following rate bounds:

(70)

(71)

where is any subset of (note that in (71)).
However, by including in channels we are ac-
tually transmitting at rates . The bounds (71)
can thus be rewritten as

(72)

We now choose to be as small as possible, i.e.,
for small positive . We further replace

by and by to obtain the bounds (3). This proves
Theorem 1.

APPENDIX B
PROOF OFTHEOREM 2

Our approach follows closely that of [6, Sec. 2]. We have

(73)
where follows by Shannon’s RD theorem, because
is a function of , and because is a function of .
We define

(74)

Note that has at most nats of information so we
can bound

(75)

The bounds (73) and (75) give

(76)

which is the analog of [6, eq. (7)].
We continue to follow [6] and define where

the , are zero mean, i.i.d., Gaussian random
variables with variance. Let be a partition of and
consider the quantity

(77)

We have because .
We next expand

(78)

Subtracting from the right-hand side of (78), we have

(79)

Note that this bound is useless if . Thus, one should
consider only nontrivial partitions. For thosehaving only one
element one can simply use the bound .

Consider now the terms in (79). Observe that
if one can get distortion for using then one
can also get distortion for . Thus, we can use
Shannon’s RD therem to bound

(80)
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This is basically the same as [6, eq. (9)]. Similarly, we use the
same steps as in [6] to arrive at

(81)

This is the analog of [6, eq. (10)].
We next define and combine (79)–

(81) to obtain

Solving for we get the analog of [6, eq. (11)] as

(82)
We can choose to maximize the right-hand side of (82). The

can be computed by recursively applying (82) starting with
for . Substituting (82) into (76) we have

(83)

This bound strengthens (9) because . However, we use
only the weakened form (9) for our computations.
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