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Multiple Description Coding With Many Channels
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Abstract—An achievable region for the L-channel multiple de- A. Two Examples

scription coding problem is presented. This region generalizes two- . .
channel results of EIl Gamal and Cover and of Zhang and Berger. It The two most commonly studied MD problems are the bi-

further generalizes three-channel results of Gray and Wyner and nary-symmetric source (BSS) with Hamming distortion and the
of Zhang and Berger. A source that is successively refinable on Gaussian source with squared-error distortion. Consider first the
chains is shown to be successively refinable on trees. A new outerBSS, for which theX (™ are independent and identically dis-
bound on the rate-distortion (RD) region for memoryless Gaussian iy ted (j.i.d.) binary random variables taking on the valoes

sources with mean squared error distortion is also derived. The . . . . .
achievable region meets this outer bound for certain symmetric and1 with probability 1/2. The average Hamming distortion

cases. between a source sequenc® and its reproduction? is
Index Terms—Multiple descriptions, rate-distortion (RD) ) ) ) 1 N
theory, source coding. dyy (N, 2l) = ~ Z dy (:L-<”>,g;§”))
=1

I. INTRODUCTION wheredg (z, z;) = 0if x = x; anddg (z, 2;) = 1 if z # z;.

ULTIPLE description (MD) coding arose in connectionSUppose that we require

with communicating speech over the telephone network. Do = E[d¥ (XN, x)] — o0, asN — oo

The idea was to split the information from a call into two parts ,
that are sent on two separate links or paths. Normally both pdrgs, the central decoder should reprodicg with vanishingly
are received and are combined to achieve the usual voice quafityall error probability for largeV. The channel splitting ap-
However, an outage of one link or the other can now be aroach is to transmit the even-numbered bits across the first
commodated by reducing the voice quality. This ideelwinnel channel and the odd-numbered bits across the second channel.
splitting inspired the following question: Given an informationl' hus, the rates arB; = R, = 0.5 bits per symbol and the av-
source and a number of channels that can fail, what are the cefage distortions arBy = 0, Dy = E[d (X", X{V)] = 0.25,
current limitations on the data rates and transmission qualitied®™ D2 = E[d} (XY, XJ')] = 0.25. The last two distortions

This question was formalized by A. D. Wyner in 1979 an@re achieved by simply guessing at those bits which one does not
became known as thaultiple description problemiThe two- know. However, one can do better than channel splitting—more
channel problem is as follows. An encoder is given a sequerf@phisticated codes can achieve
XNV = X0 x® . XW) and maps it into two descrip-
tions .J; and.J> having B; and B, bits, respectively.J; and Dy =Dy = (V2-1)/2% 0207
Jo are sent over the respective first and second channel, anf{ext, the Gaussian source has tKé™ as i.i.d. Gaussian
each description either arrives error free at the receiver orrfndom variables with zero mean and unit variance. The mean
lost. The receiver uses one of three decoders.CEmeral de- squared error distortion betweefY andz! is
coderis used if bothJ; and.J; are received and it produces an
estimateX of XV. One of twoside decoderss used if one N/ N N 1 ) ()2
of .J; or J, is received and it produces the estimatg or X V. dg; (%, 27") = N > (“’7 — ) :
The rates of the descriptions are denofed= B;/N bits per n=l
source symboli = 1,2, and the distortions attained by thesé-or example, to attain a central distortion/of, 0 < Do < 1,
reproductions are denotdd;, i = 0, 1, 2. Of course, if neither one can encod& ™ at a rate as close as desired to Shannon’s
description is received the receiver can only guess at what fiaée-distortion (RD) functiom?(Dy) = —logy(Dy)/2 bits per
source sequence is. symbol [1, Sec. 28], [2] for sufficiently larg&/. However, if

small side distortion®); and D, are desired the®; + Ry >
R(Dy) might be required.
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Pa) S K # (. The decoder whose inputs &é,: k € K} reproduces
XV | Source | T2 S| Xy XY as
' N (1) (V)
JL (T ke )= XY =X/, ..., X,
, The lettersX ™, n = 1 N, take on values in the finite
Fig. 1. TheL-channel MD model. K vt AV

reproduction alphabet.
The receiver usually cannot reconstrdct¥ perfectly. We

the BSS with Hamming distortion were developed in [9]-[11konsider the case where its distortion is measuredpier detter
An achievable region for the BSS with many channels was dgshion via

rived in [12]. Some specialized but final results for the BSS can N
be found in [13]-[15]. The important two-channel problem with 1 Z . (XW X(")) (1)
“no excess rate” was solved in [16]. Our main results first ap- N K PR
peared in [17]. n=t
A special case of the MD problem is where one considevéere di (-, -) is a letter distortion function mapping pairs
only the distortiong), and D ; this is known as theuccessive- (7, rx) € X x X into the nonnegative reals, and whéip |
refinemenproblem. This problem was solved for two channelgenotes expectation. Observe that(-, -) can depend on
by Gray [3]. Further results can be found in [18]-[25]. Anothek. We assume thatlx (-, -) is upper-bounded byl,,., for
special case of the MD problem is tsgmmetriccase where our proofs. However, when considering the Gaussian source
all the rates are equal and the distortion depends on the numtyih mean squared error distortion we make the usual step of
of descriptions received but not on which particular descriptiofopping the restrictions thalc (-, -) is bounded and that the
are received. An achievable rate region for this problem has besphabetst are finite (see, e.g., [5]).
recently determined by Pradhan, Puri, and Ramchandran [26]We say that the rateg?;: [ € £} and distortion{ Dic: K C L,
[27]. K # ()} areachievableif there are encoding functionf(-)
Motivated largely by the analogy between uses of a chanf@ving ratesi?;, [ € £, and decoding functiong(-) giving
and sending a packet on a data network that loses packetsdigfortionsDic, K C £, K # (). Our problemis to find the clo-
makes no errors within received packets, the construction e of the region of achievable rates and distortions faNall
practical MD codes has been an active research area. Wigaled theRD region This region hagl.+ (2" — 1)] dimensions.
spread interest followed the publication of [28], though tech-
nigues had been developed at Bell Labs in the late 1970s dh
early 1980s. For more on the history of MD coding and a survey Our first result is an inner bound to the RD region. Rét
of practical techniques and applications, see [29]. be the power set of, i.e., the collection of all subsets df.
This paper is organized as follows. Section Il presenfhe set difference between collections of sétandD is de-
our main results, which are an achievable rate region for theted asl — D = {M € C: M ¢ D}. We write R¢ as a
L-channel MD problem (Theorem 1) and an outer bourghorthand fod~, ., Rx andX c) for {X: N € C}. We inter-
for the Gaussian source with mean squared error distortipret X (s, _(p}) = X(p) as a constant anjé’| as the cardinality
(Theorem 2). Several prior results are shown to be subsun@dC. Finally, for random variables(, Y, and Z we use the
by our results in Section Ill. In Section IV, we introduce andommon notationd (X ), H(X|Y), I(X; Y), andI(X; Y|Z)
solve a successive-refinement problem for tree structures.fém entropies and mutual informations [30, Ch. 2].

Section V, we show that the inner bound given by Theorem lTheorem 1:Let Xy, be any set oR” random variables

meets the outer bound given by Theorem 2 for a restricted class o . .
of MD problems. Finall? Sectié/n VI concludes the paper. jointly distributed with X', where Xy takes on values in some

finite alphabett); and eachX . takes on values in the reproduc-
tion alphabett, K # (. Then the RD region contains the rates
and distortions satisfying

Dk =E

¢An Achievable Region for Discrete Sources

Il. PROBLEM AND MAIN RESULTS

Dy > E[dx (X, Xk)] 2
The L-channel MD problem is depicted in Fig. 1. A source R > (|K| = 1)I(X; Xg) — H (X(ox)| X)
emits a sequenc&™ = XO x®@  xO) of jid.
- . ’ ) T H (X [ Xom_ 3
random variables taking on values in the finite alphaliet + MXC:K ( M | (@M {M})) 3)

Let £ = {1, ..., L}. There areL encoding functionsf;(-),
I € £, that mapX™ to thedescriptions/; = f;(X”), where for everyk e 2% — {0}.
Jy is a sequence having; bits orlog,(2) B; nats. The rate of Proof: See Appendix A. O

descriptionJ; is thusR; = 1 2) B;/N nats per symbol. . . .
P ! = log, (2) B/ Per sy Remark 1: The usual time-sharing arguments can be applied

!I)escrlptlonJl Is transmitted over channébn.d Is either re- to Theorem 1, e.g., the convex hull of the region defined by (2)
ceived error-free or lost completely. The receiver thus encoun-

ters one of2” configurations depending on which are re- and (3) is also in the RD region.
ceived. Excepting the trivial case, we can represent the receiveRemark 2: One can generalize Theorem 1 by replacing the
as a collection o2” — 1 decoding functiong(-), K C £, Xx in(3) with artificial reproduction random variablé& that
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take on values in some finite glphabétﬁ. The X in (2) are 1 det Q-

recovered by using(x = 1« (Xx) for some functions)y (-). Rx > —-log | = (1)
. . : X 2 II (1 +EWZ])

Theorem 1 is, thus, the special case of this result if one chooses e

the(-) to be identity mappings. However, we do not know if _
this generalization improves Theorem 1. wheredet @ denotes the determinant@f We use these bounds

in Section V to determine certain boundary points of the RD

Remark 3: For L = 1, Theorem 1 withX) a constant gives region. Of course, distributions other than (4) might yield larger
the set of( R1, D) corresponding to Shannon’s RD function. 5chievable regions than (6) and (7).

Remark 4: For L. = 2, Theorem 1 generalizes a result of EI Finally, we give an alternate bound on the rates achieved by
Gamal and Cover [5, Theorem 1] and of Zhang and Berger [1§€ above distribution by using (6) in (7)
Theorem 1]. We prove these claims in Section IlI-A.

1 det(J + Q)
Remark 5: For L = 3, Theorem 1 generalizes a result of Ry 2 — log (D;c I—I(TE[V[I;QD - (8)
Zhang and Berger [15, Theoreni]land of Gray and Wyner kek k

[4, direct half of Theorem 8]. We prove these claims in Se?jbserve that Shannon’s RD theorem would perijf >

tion 11I-B. —log(Dx)/2. Thus, the fraction to the right oDy in (8)
Remark 6: Theorem 1 holds more generally for well-be{which is no larger than unity by Hadamard'’s inequality [34,
haved continuous sources and distortion functions if thheorem 7.8.1]) limits how close one gets to Shannon’s RD

entropiesH (-) are replaced by differential entropiésg-). We function by using Theorem 1 with (4).
will simply assume that Theorem 1 is valid and apply it to the
Gaussian source with mean squared error distortion. A fornfal An Outer Bound for the Gaussian Source

proof justifying this step might proceed along the lines of [31] e give an outer bound on the RD region for the Gaussian

that generalizes the results of [32] from discrete to nondiscrefgurce that generalizes a result of Ozarow [6]. We call a collec-

sources. We expect that such a proof will lean heavily on thign of disjoint set K, }M_, = {K4, ..., Ku} apartition of

proof in Appendix A, just as the proof in [31] is based on thghe setkC if Ui‘rle K, = K.

proof in [32]. ) ) )
Theorem 2: The achievable rateR;, [ € £, and distortions

B. An Achievable Region for the Gaussian Source Dk, K € 2¢, satisfy

Consider the Gaussian source with mean squared error M D \
distortion. We apply Theorem 1 and Remark 6 with the fol- . o ml,ll( Ko+ A)
lowing choice of P(z, z(,c)) (see also [5, Sec. I\/] and [6, ¢ < {K?}}l%_ll{gfo Dy (Dxc + V(1 + NV ©)
Sec. lll]). LetW7y, ..., W be zero-mean, Gaussian random N
variables independent of and having covariance matriQ, S »
i.e., thei, j entry of Q is E[W;W,]. LetU; = X + W, and where the minimization is over all partitions &f
X = E[X|U)]. We use results from least squares estimation Proof: See Appendix B, where we derive a somewhat
[33, p. 237] to obtain stronger bound than (9). O

T r1-1 Remark 7:For L = 1, Theorem 2 gives Shannon’'s RD
Xx =E[XU{|-E[UUK] Ux bound.

T -1
=e (J+Qx)" Ux “) Remark 8: For L = 2, Theorem 2 gives a result of Ozarow

whereU  is the column vector of th&,, k € K, 7' denotes [6]. To see this, insert [6, egn. (11)] into [6, eq. (7)] to obtain
transpositiong is an all-ones column vectad, is an all-ones Ry A1+ A)
matrix, and@ is the covariance matrix for thé’,, k € . We Dy 2y 2 ig% e NrAl+A_TM 1A
also setXy = 0. =

Suppose we insert (4) into (3). We then run into the difficultyhere
that X is a function of theXy, k € K, so that

(10)

A =Dy Dz — 72 F)
h(X;dX(zic_{K})) = —00, for |}C| > 1. and
One can remedy this by canceling such entropies on the II= (1 _D{l})(1 _D{2})-

right-hand side of (3) before evaluating them. The result is th@fe can rewrite (10) as
(3) becomes

Dy + M) (Dy2y + A
6_2(R1+R2) < inf <D{1’2} ( {1} + )( {2} + )) (11)

R 2 =h (X0 X) + D h(Xy). (5) Tz (D2 + N1+
ek which is the same as (9) witk = {1, 2}, K; = {1}, and
Evaluating both (2) and (5) using (4), we have Ky = {2}.

) det Q- 6 Remark 9: For L > 3, Theorem 2 is used in Section V to
K= det(J+Qy) ©) " determine certain boundary points of the RD region.
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I1l. EXISTING RESULTS ASSPECIAL CASES S
P(z,y) xVN

A. Existing Two-Channel Regions Source
Encoder

Consider Theorem 1 witl. = 2 and Xy a constant. The v
resultis the regioR g of El Gamal and Cover [5, Theorem 1]

Xy
Dy, = EldY (X", X1y)]

Decoder 1

X3
Dy = E[dY (YN, X))

Decoder 2

R > I(X; X)), K e {{1}, {2}} (13)
Ry + Ry > 1(X; X1 X2X12) + 1(X1; X2). (14) and states that an inner bound to the RD region is the set of
D3, D13, Dos3, D Ry, Ro, R3) satisfyin
Thus,Rgqc is included in Theorem 1. As we have done in (14)(, 3 D13, Dag, Dios, B, Ba, Ry) satisfying

we will often simplify notation by dropping the braces whenno Dk 2> E[dic (X, Xk )], K€ {3, 13,23, 123} (20)
confusion arises, e.g., we wrif€; and.X,, for the respective R3 > 1(X; X3) (21)

X1y and Xy, 2. Re>1(X; X |X3), Ke{l,2) (22)

Fig. 2. Gray and Wyner’s three-channel problem.

Remark 10: Rgqc is the RD region for the Gaussian source N A / N
and mean squared error distortion [6]. Rit+ Ry 21 (Xl? XZ‘ X3) +1 (X5 XlX?‘ X3) (23)

Remark 11: Rgqc is the RD region for any source and diswhereX; takes on values i, X13 = ¢13(X3, X13), Xo3 =
tortion measure if there is no excess sum-rate, Re+ Ro =  ¢a3(X3, Xa3), and X123 = ¢123(X35, X13, X23). The func-
R(Di2) whereR(-) is Shannon’s RD function [16]. tions ¢« (+) are again mappings to the reproduction alphabets

X . We can perform steps similar to (18) and (19) by replacing

Consider next Zhang and Berger’s [15, Theorem 1]. This thﬁfeXK with X, and adding¥ s to (23). The resulting region

orem states that an inner bouRg g to the RD region is the set . " . . .
of (D1, D, Dis, R, Ry) satisfying is at least as large &85 and is achievable with Theorem 1 by

usingL = 3 andXy = X; = X3 = X3, = 0. Thus, the region
Dx >E[dx(X, Xx)], K e {{1}, {2}, {1,2}} (15) oObtainedwith Theorem 1 contains all pointsRy.
N We next consider perhaps the earliest information-theoretic
R 21 (X? XoX’C) » Ke {1}y {2 (16)  treatment of an MD problem. Gray and Wyner in [4] studied
> v |y an L = 3 channel problem where the source puts out pairs
Bat By 220 (X’ XO) u (Xl’ X2 ’XO) (X, Y) and where only the distortion8;, and D3 are of in-
), (X; X, ‘Xo) (17) terest. DistortiorD;, is independent of and distortionD 5 is
independent ofX, as depicted in Fig. 2. We apply Theorem 1
where X; = ?1(Xo7 X1), Xo = ¢2(Xp, Xo), and Xy, = With L =3, X, = W with &> arbitrary, and
$12(Xo, X1, X2). The functionsp; (-), ¢2(-), and¢ya(-) are Xp=X1 = X3 =X13 = X123 = 0.
mappings to the respective reproduction alphaB&gtsY,, and

Xi». We can bound the informations in (16) as Furthermore, we choos®(z, y, w, 12, 713) to factor as

P(z, y, w)P(z12|z, w)P(z13]y, w). The resulting bounds are

I (X; Xofﬁc) =1 (X; XochX;c) > 1 (X; XoX/c) (18) Dx >E[dc((X, V), X¢)], K € {13, 23} (24)
A~ > .

vyhere the equality follows becauséc is a function ofX, and By 2 I(XY; W) (25)
X. Similarly, we bound the right-hand side of (17) as By + Ry > I(XY; W) + I(X; X1|W) (26)
N NP N Ro+ R3 2 1(XY; W)+ I(Y; Xo3|W) (27)

21(X; Xo)+1( %15 X ’X0)+I(X; XlXZ‘XO) Byt Rot Ry > (XY W) 4 I(X: XpaIW)
> 2I(X; X0)+I(X1; X2’X0)+I(X; X1X2X12‘f(0>. +I(Y; Xaa|W).  (28)

(19) We can satisfy (25)—(28) by choosing the rates as

In other words, one cannot shrifi& by replacing theX s with By 2 1(X; X12|W) (29)
Xx and addingX to the last term in (17). But the resulting Ry > I(XY; W) (30)
region is just Theorem 1 with = 2 and Xy = X,. Thus, the R3 > I(Y; Xo3|W). (31)

region obtained with Theorem 1 contains all pointsigs. A final simplification arises because the distortion functions

Remark 12: Rzg is larger tharR g ¢ for the BSS and Ham- have the special form
ming dls_tortlon [15, Sec. 3]. However, we do not know if The- dia((X, Y), X12) = din(X, X1o)
orem 1 improves ok zp.
and
B. Existing Three-Channel Regions dos((X, Y), Xo3) = d55(Y, Xo3).

Zhang and Berger'd. = 2 regionRzg is based on a re- This allows one to replacé(X; Xio|W) and I(Y; Xo3|W)
gion Ry for L = 3 [15, Theorem 1]. This L = 3 region by conditional RD functions, as was done in [4, p. 1702]. In
is concerned only with the distortion83, D13, D23, D123, summary, the region of Theorem 1 contains all points in Gray
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and Wyner's achievable region. This region is, in fact, optimal 3, {1,3}
for their problem [4, Theorem 8].

C. Successive Refinement

Suppose the alphabets: are the same for allC, and that {2}
the functionsiy (-, -) are the same for all. Consider a source x
sequence encoded at rdte to produce a distortion ab, per 12,5}
symbol, and such that an addition&} bits of rate produces
a lower distortionD15. If D1 = D(Ry) andDs = D(R; +
R,) are simultaneously achievable, whdig-) is the distor-
tion-rate function, the source is said tosaeecessively refinable Where D(.) is the distortion-rate function. We prove the fol-
[21]-[23]. In general, we say that a sourcsigcessively refin- lowing result.

able on a chairorin L stagesf the RD region is given by Theorem 3: X is a successively refinable on a chain if and
Dyy..x > D(Ry + -+ Rg) K=1,2,-.-,L (32) onlyifitissuccessively refinable on trees.

The I-st : . ¢ bl . Proof: Clearly, X is successively refinable on a chain if
_'he lL-slage successive refinement problem 1S a SPipsq successively refinable on trees. We prove the converse by
cial case of the MD problem where only the distortion

} ansforming the refinement problem on a tree into one on a
Dy, Drs, ..., Dis.., are considered. Suppose we choose glf, iy by appropriately decomposing the descriptions and their
X to be constant except fof1, Xiz, ..., Xi2.... APPYING 05 Opserve that (36) is an outer bound on the RD region by
Theorem 1, we have Shannon’s RD theorem. It thus suffices to show that, for given

Fig. 3. Example of a tree structure.

?

Dis..ix 2 E[d12.. .k (X, X12..K)] (33) Ry, we can achieve distortion8( Ry ). Without loss of gener-
K ality, we assume that eaddy is nonzero.
ZRk >I(X; X1 X2 X129 K) (34) We write X < K’ (or K precedes’) if R < Ry:. Let
k=1 Ko < K1 < --- <X Ky be an ordering of the elements 6f
whereK =1, 2, ..., L. In fact, the bounds (33) and (34) deClearly, Ky, = 0. SinceX is successively refinable on a chain
fine the RD region. One can show this by invoking the same @®nd {Rx,.: m = 1,..., M} is a nondecreasing sequence,

guments used to prove the converse of Shannon’s RD theor&here exists a Markov chain
We have thus recovered a general result of Rimoldi [23, The-
orem 3].

Itis known [21] that the sourcé is successively refinable sych thatf(X; Xis...,) = Rk, and
on a chain if and only if there exists a Markov chain

Xi—=Xp— =X - X Digom = E [d (X7 Xl?---m):| =D(Rg,)- (37)

such that/ (X; X1s..c) = R(D12...x). One can show that the Consider an encoding scheme that successively refines the
Gaussian source is successively refinable on a chain and its &birce sequenc& ™ in M stages. The incremental descrip-
region is given by (32) wher®(R) = ¢~ 2E, tions are denoted,,,, m = 1, 2, ..., M, and their rates are
R,, = Rx, — R, _, >0,ie,H(J,)=NR,,. LetX)
IV. SUCCESSIVEREFINEMENT ON TREES be the output of the decoder whose inputs.re. . ., J,,. We
Wi . N . ) de{ine
'e now discuss a generalization of the successive refinemen
problem that we calsuccessive refinement on tre¥ge begin Ji = {jm; m=mi+1,..., mg} (38)

with a definition. R, =Ry — Ryx (39)

Xv1—>X12—>---—>X12.“A[—>X

mo my

Definition 1: A finite collectionC of sets of positive integers . .
is said to be dree structureif a) for any nonemptyc € €, Wherems andm, are unique indexes such thatk,,.,) = {l}

there is a uniqug(K) € C called theparent nodeof K, such  @NdKm, = p(Km,). We have

thatp(K) c K and|p(K)| = |K|—1, and b) for distinct,, ms :
Ko e C\{0}, V(K1) #V(K2) whereV(K) =K — p(K). H(J))= Y NR,
. . m=mi+1
Clearly,) € C for any tree structure. For instance, Fig. 3 _ ) _
depicts the tree structure =N ER’&W ~Rx,,)=NR (40
C = {0, {1}, {2}, {1, 3}, {1, 4}, {2,5}}.  (39) (Lokekn} = {hak=1.2.m}. (@)
The quantityV(K) = K —pK)is Iabe_led on the branch Using (41), we see thaXchm = X{Vm is a function of
from p(K) to K. Without loss of. generality, we assume tha{j,: £ € K,.}. Thus, we have constructed an encoding
Ukee € = {1,..., L}. We will say that a sourceX is scheme producind ; with rate R; such that
successively refinable on tredsfor any tree structure®, the .
RD region is given by Dy, = Di2..n = D (Rg,,) (42)

Di > D(Rg), KeC (36) O

?
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V. BOUNDARY POINTS FOR A SYMMETRIC GAUSSIAN
MD PROBLEM 0.9}

Consider again the Gaussian source and mean squared err  08f
distortion. Suppose that we have symmetric rates and distortion.
inthe sense that; = R, foralll andDyx = D forall C, K# L.

This means that we have only three parameters to condider: b

I.L

Dy, andD .. We determine the best central distortion given 0.5
andD;. 04
Theorem 4:Consider the MD problem with a Gaussian 03
source, mean squared error distortidty, = R; for all [, otk
D; = D, foralll, Ry > —log(D;)/2, andDx > D, for all K ‘
with 1 < |K| < L. The best central distortion for this problem 01
is 0
72LR1)\ 1 )\ L71 ‘ A na §-§ mbo.
Dy = sup ¢ (L+4) . (43) R, [nats/symbol]
A>0 \ (D1 + AL —e 2B (1 4 \)L—1L
. . Fig. 4. Best central distortion f tric MD probl ith th
Proof. Suppose first thatD; = 1, which means that C;%nnds, est central distortion Tor & symmetric problem wi ree
there is no side distortion constraint and we can achieve
D, = exp(—2LR;). This is obviously the best distortion, and (Dy 4 p)(1 4 p)
(43) gives the same result with— co. So suppose from here = Detp= (D1 + ) + L(1 = Dy)’ (51)

on thatD; < 1. Theorem 2 implies that the right-hand side of
(43) is a lower bound o . We prove achievability using the
distribution used in Section II-B with

Consider next the bounds (48). F#il| = 1 we get Shannon’s
RD bound. ForlC with 1 < |K| < L one can check that (48)
gets progressively more restrictive witk| if p is nonpositive.

! T P r We thus consider only th&€ = £ bound and insert (49)—(51)
2 P f P into (48) to obtain
Q=o0"-|P P p (44) .
Co : ¢—2LR1 < (D1 + p) 5>
popop -1

. . which has the same form as (9) with the partitiop, = {m}
where we requirg to satisfy—1/(L — 1) < p < 1 to ensure form=1,2 ... L

that@ is positive semidefinite. We will, in fact, need to consider Note that we can choosgr = 0 (which gives

only nonpositive. One can show that D, = 1/[LD;" — (L — 1)]) becauseR; satisfies Shannon’s
det Q. =o2Xl(1 = p)IFI=11 4+ (K] = 1)p]  (45) RD bound. As we increasg, we find that bothD, and the
det(J + Q) =[02(1 — p))*I-1 right-hand side of (52) decrease. We must, therefore, stop
increasingu, when either (52) holds with equality or when

- 2 —
(Il + o[+ (K] = 1)pl} - (46) p = —1/(L—1). However, the latter condition implid3; = 0
Inserting these identities into (6) and (7), we obtain the achiewhich means that we can achieve equality in (52). The result
able region is the same as (9) witR, = LR;. Finally, we rewrite (9) to
2 _ obtain (43). O
D> C [12+(IIC| 1)p] a7) _ |
IK| + o?[1 + (IK] = 1)p] As an example, considdr = 3. Fig. 4 shows how the best

. o2 1x K1 central distortion behaves withy for variousD, . For instance,
e < L n 02} (1-p) [1+ (|K] = 1)p]. (48) for D, = 1, the best central distortion is simply the RD func-
tion D, = exp(—2LR;). Consider nextD; = 0.5 for which
Consider first the bounds (47). We choeSe= D1/(1-D1) e requireR; > — log(0.5)/2 ~ 0.347. Now the bestD is
so thatD; = ¢%/(1 + o). Then (47) holds with equality for |arger tharexp(—2LR; ). In fact, as we decreas®,, the best

eachkC with [K] = 1. For £ with 1 < |K| < L, the bounds 1 . moves further away from thexp(—2LR; ) curve.
are automatically satisfied because the right-hand side of (47)

is at mostD; . Fork = £, we make (47) an equality to obtain Reémark 13: Theorem 4 includes both tiegh-distortionand

the smallesD, given p. We also introduce the variabje := ow-distortioncases [6].
—D1p/[1 — D1(1 — p)] which means that Remark 14: When the single-description distortion is mini-
—u(1 = Dy) mized(D; = e~2F1), the best central distortion is
P= " T (49)
(L4 p)Dy D — 1
We insert (49) into (47) withC = £ and choose the smallest £ 7 Le2Ri — (L-1)
D to obtain This is calculated from Theorem 4 by first noting that the

_ (D14 p) — pL(1 - Dy)
De = (D1 + p) + L(1 — Dy) o

supremum in (43) is obtained by taking — 0T and then
evaluating this limit with L'Hépital’s rule. With the technique




2112 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

in [26], one designs for a minimum number of received@hus, we have

descriptions: satisfyingl < n < L, and achieves distortions N (n)
n Z dic(a"), ai”)

Dy = , < |IK| < L. 53

e iy Ssh 69 N

Nothing is guaranteed foby if |K| < n. Hence, we have _ Z Nan gy (4, v) de(u, v)
shown the tightness of the main theorem of [26] for the case of N ’

n = 1. Whether (53) withn, > 1 gives points on the boundary et et
of the achievable region remains an open question. < Z [PXX,C (u, v) + X; dx(u, v)
ueX,veXx | | |XK|
S DIC + € dmax (58)

VI. CONCLUDING REMARKS

_ o c o .
We have presented a general achievable region (inner boumgjal(g’% _W£e ' g’;rr‘]ertié?:fg::t g‘:ﬁ#ﬂﬁ’efgug‘:‘:ggy dStAfo)r'ti(oSr?)o’ver

for the L-channel multiple description problem. This regi0|"fm ble of all cod
generalizes a result of EIl Gamal and Cover for the two—descrﬁIS'—e ensemble ot all codes as
tion problem(L = 2) and results of Zhang and Berger. We have ~ | [ (2 x ™

. . . K(x y AR )
given an outer bound to the RD region for the Gaussian sourc
with mean squared error distortion. We showed that the outef,—;
bound meets our achievable region when only the central dseep is the probability that (56) does not occur for any)
coder and thd. single-description decoders (with equal dlstorénd afixedeV € T.(X).
tions) are of interest. However, _the RD region for the Gaussian, proceed to find rate’
case with all decoders present is still unknown.

N < [DK + € dmax] + Pedmax (59)

(c) for which P, approaches zero
asN increases. Lel'(j ) denote the event thaf,, gives a

good choice of codewords, i.e.,
APPENDIX A

PROOF OF THEOREM 1 F (je)) = {(xN7 X3e) (j(g))) eT. (X, X<2£))} . (60)
Consider first the cas&, = 0; we will later consider general

Xy. Suppose we are given distortioPs: for which there exists We can writeF, = Pr[nj(CF]F (J(e))l, whereA® deno.tes the
a P(z5¢)|7) s that (2) is satisfied for alt € 22 _ {(}. Let complement of the sed in the sample space. Alternatively, we

n.~ (u) be the number of occurrences of the lette X' in z™. can writeF, in terms of the random variables
Let T.(X) denote the set aftypical sequences with respect to )
Px,i.e.,T.(X) is the set oft"¥ for which X (Jee)) =

[ngn (u)/N = Px(u)] < /||

1, if F(jc)) occurs

61
0, else. (61)

G4 we haveP. = Pr[K = 0] whereK = Zj(c x(J(cy)- Since

for alluw € X. We encode and decode as follows. K = 0implies|K — E[K]| > E[K]/2, we can bound
1. CodebookLetj;,1 =1, ..., L, denote indexes between 4 Var[K]
1 ande™N 1. The codebooks are formed by assigning a code- P, < Pr[|K — E[K]| > E[K]/2] < EE])? (62)

word z¥ (j(c)) to eachkC € 2 — {(#} andj(x). The compo-
nenth,@(j(,C)), n = 1, ... N, of the codewords are choserwhereVar[K] is the variance o and where the last step fol-
independently at random via the distribution lows by the Chebyshev inequality [35, p. 13]. We use the usual

n ] typicality arguments (see, e.g., [36, Ch. 12]) to bolj&] as
PX}C|X(2)<,7“C}) ( ‘xEQI)&_{k})(J(K))) . (55)
E[K]| = E|x(y = Pr |F(y
Note that to generate the} codebook, we first need the), K] 32: [xCice))] Z r[F i)l
codebooks for aliM € 28 — {K}. «© NGt “
2. Encoding Given the source sequenaé’, the encoder 2 Ze 7 '
tries to find ajy for which z™ is jointly e-typical with the Jce)
codewords corresponding @, i.e., j ) must satisfy — ¢VRz ,—N[v(£)+ce] (63)
(;I:N7 xé\;ﬁ)(j(ﬁ))) eT. (X, X(ar)) - (56) wherec is a positive integer independentofnd

If such aj.) does not exist, we sgt = 1forl =1, ..., L. 7(g):_jtj()((2£)|)()_|_ Z H(XM |X(2M—{M}))- (64)
The 5, are transmitted over the channels. MCL

3. Decoding DecoderDy takesjx) as its input and pro-
duces the outputy (jx))-

As usual, it suffices to consider only¥ € T.(X). Suppose

We have chosen the natural logarithm to compute the entropies.
Consider nexVar[K| = E[K?] — (E[K])?. We have

further that there arg ) so that (56) is satisfied. One can check E[K? = Z Z E [X (j(g)) X (k<£))]
that .
Jce)y ke
@V, yN) € TU(X,Y) = oV e T(X), y~ e T(Y). =S Y Pr[F (jiy) NF (ke)].  (65)

(57) Jcc) ko)
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The probability in (65) depends on whethjere= &; for somel, APPENDIX B

so defineQ as the set of subscriptgor which 5, = &;. This, of PROOF OFTHEOREM 2
course, means thaf ;o) (j(o)) = X(22)(k(g))- Also, because

of the conditional independence in (55), all the other choices of
codewords inX(5c(j(z)) andX o2y (k(c)) will be independent N
given X 50)(j(o))- Again, using typicality arguments, we can D)

Our approach follows closely that of [6, Sec. 2]. We have

log(Dx) € 1 (XY ) Qi (x) < H (Je)

upper-bound the probability in (65) by (73)
where(a) follows by Shannon’s RD theorerh) becauseX ¥
e~ N(Q)—ce] [e—N[v(ﬁ)—v(Q)—cs]] 2 (66) is a function ofX ™, and(c) becauseX Y is a function of.Jx).
We define
where we have chosen thein (63) to be large enough so
that (66) is valid. For@ = ), however, we replace (66) with I (J(IC)) = Z H(Jy)| —H (J(K)) : (74)
Pr[F(jz))]| Pr[F (k)] Next, the number of ways in which kex
Jc) andk(zy can be chosen so that they overlans Note thatH (.J) has at mosiV Ry, nats of information so we
] ] ] can bound
H eNRl H e]\R[ (e]\Rl _ 1) S eNRﬁe]V(Rﬁ_RQ). (67)
leQ 12 H (Ju)) < | D NRi| =1 (Jiy) - (75)
Inserting the bounds of (66) and (67) into (65), and using (63), kek
we have The bounds (73) and (75) give
2 —2N[v(L)—R.]+N[v(Q)—Rg]+3Nce 2
VarK < Y em2VB(O)-ReHNB(Q)-Ral+aNec, Dy > =2Fx exp<ﬁ I (J(K))> (76)
Qe2£—{0}
(68)

which is the analog of [6, eq. (7)].
We continue to follow [6] and definE Y = X~ + 7" where
P < Z 4 eNH(Q)—Ra+5ee] (69) theZ("),n =1, ..., N,are zero mean, i.i.d., Gaussian random
T variables with varianca. Let{,, }»._, be a partition okC and
consider the quantity
Recall that we can choosédo be any positive number. Thus, as o
Iong QSRQ >_7(Q_) for all ponemptyQ_, there is a code that I = [Z H (J(/C )| YN)
satisfies the distortion requirements with probability as close to "
one as desired. This proves Theorem 1 with= 0.
We use an approach similar to [15] to inclullg # 0. Sup- e havel’ > 0 because (A|C) + H(B|C) > H(AB|C).

pose we add to each descriptidiR, extra nats that repre- We next expand

Inserting (68) into (62), we obtain
Qe2f {0}

—H (Jio)|YY).  (@@7)

m=1

sent a sequenck;’ . Equivalently, we have aff. + 1)-channel M

problem for which thé .+ 1)th channel carries the information (Juoy) = [Z Z H(Jy) | —H (Jix))

representingXéV. We use the achievable region derived above m=1kex,,

and setXx = 0for L 4+ 1 ¢ K. After simplifying, we have the M

following 2% rate bounds: = [Z I(Jge,))+H (J(,cm))] —H (Jioy) - (78)
m=1

RL+1 > I(X, XL-H) (70)
R+ Rpy1 > —H (X(2e) X141 |X) + H(X141) M

+ D H (Xl XpXemomp) T 1 () > lz I (Joey) +1 (Joe, s YY)

Subtractingl’ from the right-hand side of (78), we have

MCL m=1

. vN
wherek is any subset o2“ — {§)} (note thatXy = 0 in (71)). =1 (Juoy: YY) . (79)

However, by .in_C|UdingRL+1, in channelsl, ..., I we are ac- Npote that this bound is uselessM = 1. Thus, one should
tually transmitting at rate&; = 1 + Rr11. The bounds (71) consider only nontrivial partitions. For thokehaving only one
can thus be rewritten as element one can simply use the boufid()) > 0.

Consider now the termgJ x,.); Y ™) in (79). Observe that
/ m)?
Ric > (K| = DRy = H(X o) Xpa| X) + H(Xp41) if one can get distortiorDy.,, for X~ using.Jx,.) then one

+ Y H(Xm|Xpg1Xem_pmy))- (72) can also get distortioic, + A for Y. Thus, we can use

MCL Shannon’s RD therem to bound
We now choose?, .1 to be as small as possible, i.&; 1 = I(Jge,y: YN) > N log ( Var[Y] )
I(X; X141) + 6 for small positives. We further replace&(; ,, 0 -2 Dg,, +A
by Xy and Rj- by Ry to obtain the bounds (3). This proves _ N1 ‘ 14+ A 80
Theorem 1. T D, +X)° (80)
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This is basically the same as [6, eq. (9)]. Similarly, we use the[9] H. S. Witsenhausen, “On source networks with minimal breakdown
same steps as in [6] to arrive at

N 1+
. vN o .
I (J(K)a Y ) < 2 log <e—2RKeZI(J(IC))/N T )\> . (81)

This is the analog of [6, eq. (10)].

We next definelx
(81) to obtain

exp[2I(J(xy)/N] and combine (79)-

M (1 +A)1‘J (e—zRKtK +A)
e S R T
m=1 [T (Dk,, +X)
m=1

Solving fortx we get the analog of [6, eq. (11)] as

M
AL+ 0)M=E T i,
m=1
K= T M :
[ 11 (Dc, + A)} (1 NMtem2Re [T g,
m=1 m=1

(82)

We can choose to maximize the right-hand side of (82). The
tx.. can be computed by recursively applying (82) starting with

m

tgy =1forl =1, ..., L. Substituting (82) into (76) we have
M
II (Dk,, +2)
e~ < Dy m=1 — (83)
(D +A) (L +0)M=1 T t,,
m=1

This bound strengthens (9) becawge > 1. However, we use
only the weakened form (9) for our computations.
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