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Abstract—We consider the problem of timing recovery in
magnetic recording channels based on MAP estimation of the
timing information. The read and write clocks are modeled
as random walk processes that allow for slowly varying phase
and frequency offsets of the clocks. We propose a new timing
error detector (TED) that provides sufficient statistics about the
instantaneous timing error. Using the clock models and the new
TED, the MAP estimates of the sampling times are derived.
This method is shown to be more robust than the conventional
algorithm based on the Mueller and Müller TED and easily
implementable for a small additional complexity.

I. I NTRODUCTION

Timing recovery, also known asclock synchronization, is
an important front-end operation in many communication
systems. Magnetic recording is one such system where we
identify the write-head as the transmitter and the read-head as
the receiver. The desire to push recording densities higherhas
caused today’s recording devices to operate at high recording
densities and low signal-to-noise ratio (SNR) making the
problem of timing recovery more challenging.

Traditional timing recovery architectures consist of a timing
error detector (TED) whose function is to process the received
samples to produce a quantity that is a measure of the timing
phase error. This is further passed through a loop filter to
produce the correction to the timing phase, which in turn drives
the sampler through a voltage controlled oscillator (VCO).The
system is decision-directed, i.e., the detected bits are used by
the timing recovery algorithm with the assumption that they
are error free. The conventional timing recovery system is
illustrated in Fig. 1. A commonly used TED is the Mueller and
Müller (MM) TED [1] which is based on heuristic arguments.
The MM method performs quite well at high SNRs where the
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Fig. 1. Conventional timing recovery.

cycle slip rates [2] are generally very low. The resulting bit

error rates are nearly equal to that of the perfect timing case.
However, at lower SNRs, the system is plagued by cycle slips
and the bit error rate rises. A thorough discussion of various
timing recovery algorithms can be found in [3].

The purpose of this work is to revisit the problem of timing
recovery with an attempt to improve the system performance.
Our approach is to combine all the functional blocks of the
timing recovery system, viz. the TED and the loop filter into
one block and optimize it in a unified way. We derive the
TED that provides sufficient statistics on the instantaneous
timing error. Combining this with random walk models for the
read and write clocks we derive the maximuma posteriori
(MAP) and minimum-mean square error (MMSE) estimates
of the timing information, akin to Kalman filtering. Using
simulations, we show that the new method is robust and tracks
changes in the clock phase and frequency extremely well.

II. SIGNAL AND CHANNEL MODELS

We model the readback waveform from a magnetic record-
ing medium as follows

r(τ) =
∑

m

bmhT (f(τ) − mT ) + z(τ) (1)

where bm = (am − am−1)/2 is the transition sequence
corresponding to the written bit sequence{am = ±1} which
represents the magnetization of the medium,T is the bit-width,
hT (t) is the transition responseof the system defined as the
response to a transition of the magnetization from−1 → +1,
z(t) is the additive Gaussian electronic noise with power
spectral density of heightN0/2, and f(τ) is a continuous,
monotonically increasing function that maps the timeτ on
the read-clock to the timeτ ′ = f(τ) on the write-clock. Clock
imperfections causef(τ) to be different from its ideal form:
f(τ) = τ . We assume that the input bits are independent and
identically distributed (IID). For example, for perpendicular
recording, the transition response is

hT (t) = erf
(2t

√
ln 2

W

)

(2)

whereerf(x) = 2√
π

∫ x

0
e−t

2

dt is the error function andW is
the pulse width defined by the limitst = ±W/2 where the
derivative of the transition response is one half of its peak
value. The model (1) includes the effects of imperfections in



the read and write clocks. The fundamental problem oftiming
recoveryis to use the readback waveform to estimate the write-
clock, i.e., to determine where to sample the waveform.

At moderate normalized densities (as in today’s recording
systems) the channel responsehT (t) is bandlimited to the
frequencies±1/2T for practical purposes. Furthermore, since
the slope off(τ) is close to unity, we may approximate
hT (f(t)) as being bandlimited to±1/2T . Thus, passing the
readback signalr(τ) through an analog low-pass filter with
cutoff frequencies at±1/2T approximately produces

s(τ) =
∑

m

bmhT (f(τ) − mT ) + w(τ). (3)

The termw(τ) is the additive Gaussian noise bandlimited to
[−1/2T, 1/2T ] with a flat spectrum ofN0/2T . From (3) it is
clear that the ideal (desired) sampling locations with respect to
the read-clock areτm := f−1(mT ). We adopt a discrete-time
second order random walk model forτm:

λn = Aλn−1 + vn (4)

λn =

(

τn

µn

)

, vn =

(

ξn

ζn

)

, A =

(

1 T
0 1

)

.

Hereµn ≃ 1 represents the local frequency of the write-clock
relative to the read-clock, whileξn and ζn are IID Gaussian
random walk steps withE[vnvT

m] = Kv(T )δmn. Denote the
covariance of(λn−Anλ0) by Kv(nT ). Then, forconsistency
we must satisfy

Kv(nT ) = AKv(nT − T )AT + Kv(T ) (5)

because the two sides of (5) are simply two different ways of
expressing the covariance of

λn − Anλ0 = vn + Aλn−1 − Anλ0

= vn + A(λn−1 − An−1λ0).

It is an easy exercise to prove thatKv(τ), extended toτ ∈
R, must be of the form

Kv(τ) =

(

σ2
R
τ + σ2

S
τ3/3 σ2

S
τ2/2

σ2
S
τ2/2 σ2

S
τ

)

(6)

where the off-diagonal terms above are specifically chosen to
satisfy theconsistency condition(5) for any indexτ = nT .
We could also have derived (6) directly from a second order
continuous random walk model forτ(t) = f−1(t).

We denoteKv(T ) simply by Kv. The parametersσR and
σS control the rates of clock phase and frequency drift. We
point out that the second order random walk itself is not new
in the literature [4], [5]. However,Kv was always chosen to
be diagonal, ignoring the consistency condition.

III. D ERIVATION OF OPTIMAL SYNCHRONIZER

Fig. 2 shows the proposed timing recovery architecture with
a single block labeled “Timing Estimator” replacing the TED,
loop filter and the voltage controlled oscillator (VCO). We use
a decision-directed approach assuming thatan = ân most of
the time. A preamble field is used at the start of each sector
to ensure proper acquisition of the timing information. Note

that it is better to process the actual samplesyn rather than
of the equalized sequencezn (as in Fig. 1) owing to the data
processing theorem [6]. In this section, we derive the optimal
TED and the MAP based timing estimator.
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Fig. 2. Proposed timing recovery architecture.

A. Proposed Timing Error Detector

We first derive a timing error detector that is optimal
in the sense that it providessufficient statisticsabout the
instantaneous timing error. Lets◦(t) denote the ideal noise-
free readback waveform:

s◦(t) =
∑

m

bmhT (t − mT ) =
∑

m

amhD(t − mT ) (7)

wherehD(t) = (hT (t) − hT (t − T ))/2 is thedibit response.
Denote its samples att = nT by

y◦
n = s◦(n) =

∑

m

an−mhD(mT ). (8)

The superscript “◦” indicates that the readback signal is ideal
and devoid of imperfections due to clock jitter or noise.

Suppose that we have an estimateτ̂n of the sampling timeτn

which is obtained from an earlier step of the timing recovery
algorithm. The corresponding sample of the filtered readback
waveform can be written in terms of the ideal readback
waveform using (3) asyn = s◦(f(τ̂n)) + w(τ̂n). Using the
Taylor series expansion and the fact that the slope off(·) is
close to unity, we can approximateyn as follows:

yn = y◦
n + (τ̂n − τn)

[ds◦(t)

dt

]

nT

+ w(τ̂n) (9)

= y◦
n + γn(τn − τ̂n) + wn (10)

where

γn := −
[ds◦(t)

dt

]

nT

= −
∑

m

an−m

[dhD(t)

dt

]

mT

(11)

and wn = w(τ̂n) is approximately IID with varianceσ2
W

=
N0/2T . Since τ̂n is a known quantity from a previous esti-
mation step we can calculate the following quantity

θn := (yn − y◦
n) + γnτ̂n = γnτn + wn (12)

which we term as theobservationof τn at time n. Clearly
θn contains the same information asyn and can be used as
a sufficient statistic in our estimation. This is unlike the MM
TED which is based on a heuristics argument. Note that we
have assumed knowledge of the data bits{an} to calculatey◦

n

and γn. In practice they can be estimated using the detected
bits with a small delay. This issue is discussed in Section IV.
For now let us assume thatγn andy◦

n are known.



B. MAP Timing Estimation

We showed in (12) that the observation at timen is
expressible asθn = Bnλn + wn, where

Bn = (γn, 0) (13)

andwn is an IID Gaussian noise with varianceσ2
W

andλn is
described by the random walk model (4):λn = Aλn−1 + vn.
The timing estimator computes the optimal estimate ofτn+1

from the statistically sufficient observations{θk : k ≤ n}.
Let the estimates and error covariances ofλm, m ≥ n given
θn
0 := {θk : k ≤ n} be denoted by

λ̂(n)
m = E[λm|θn

0 ], m ≥ n (14)

K(n)
m = cov(λm − λ̂(n)

m ). (15)

Strictly speaking this is the MMSE estimate of the timing
error. However, in this case the above estimates coincide with
the MAP estimates because our measurements and noise are
jointly Gaussian. The above problem can be solved using tools
from Kalman filtering theory, the details of which are omitted
here. The final result can be stated succinctly as a set of
recursive update equations:

λ̂(n)
n = (DT

n C−1
n Dn)−1DT

n C−1
n

(

θn

λ̂
(n−1)
n−1

)

(16)

K(n)
n = (DT

n C−1
n Dn)−1 (17)

where

Cn =

(

σ2
W

0
0 Kn−1 + A−1Kv(A−1)T

)

Dn =

(

Bn

A−1

)

.

Eq. (4) and the fact that{vk : k > n} is zero-mean
and independent ofθn

0 imply that λ̂
(n)
m = Am−nλ̂

(n)
n . Thus,

estimates of allλm for m ≥ n are easily calculated fromλ(n)
n .

The above estimation is similar in flavor to Kalman filtering
based algorithms [4], [5], [7]. These algorithms assume the
availability of measurements of the formθn = τn+wn without
providing a specific structure for the TED itself. In contrast
our TED (12), which provides sufficient statistics of the timing
information, assumes the formθn = γnτn + wn where γn

is a (computable) data dependent gain. The derivation of the
optimal TED is the novel aspect of our work.

IV. D ECISION-DIRECTED IMPLEMENTATION

Recall thatγn andy◦
n need to be estimated from the decision

bits. However they depend on future input bits. A workaround
is to truncate the tail parts of the summations (8) and (11) and
replace the actual bits by (delayed) detected bits, i.e.,

y◦
n ≃

J0
∑

m=−J

ân−mhD(mT ) (18)

γn ≃ −
J0
∑

m=−J

ân−m

[dhD(t)

dt

]

t=mT

(19)

where J0 and J are sufficiently large integers. In general,
larger values ofJ0 and J yield better approximations. How-
ever, the above expression depends onân+J which implies an
unavoidable delay ofJ bits between the detector and the tim-
ing estimator. AlthoughJ0 does not affect the loop delay, we
can also choose a small value forJ0 for reduced complexity.
If the equalizer hasK non-causal taps, this introduces a delay
of K samples in the forward link. Additionally, the detector
introduces a certain delay. For instance the Viterbi detector,
although a sequence detector, can be made to produce sub-
optimal decisions after decoding through a depth ofD bits in
the trellis. This causes a delay ofD bits. Thus the total delay
in the timing loop isL = J + K + D and the implemented
algorithm calculatesλ(n)

n+L+1 = AL+1λ
(n)
n . Finally, we point

out that the transition responsehT (t) used to computey◦
n and

γn can be estimated from a large training sequence.
Apart from its optimality, the MAP/MMSE estimation

method is easier to design than the conventional MM method.
For example, we need to specify only the initial covariance
matrix K

(0)
0 , while the MM method requires tuning of the

loop gain parameters by trial and error. In typical systems,the
initial phase offset is generally within one-half of a cycleand
the frequency offset is less than 1%. Thus, we can initialize
the recursion with

K
(0)
0 =

(

T 2/4 0
0 10−4

)

. (20)

A. Complexity Analysis

The quantities (18) and (19) are both convolutions of two
sequences where one of them is binary and the other is
constant. Thus, rather than using arithmetic operations, we
can implement these convolutions with a look-up table with
2m entries wherem is the number of terms in the summation.
Likewise, the convolution of the target filter with the data bits
in the conventional algorithm can be implemented with a look-
up table. Assume that the convolutions are implemented with
look-up tables due to their negligible associated cost compared
to arithmetic operations. For brevity we omit the details of
how to optimally pipeline the computations and look-ups. Our
complexity analysis reveals that the MM algorithm requires
4 multiplications and 4 additions per clock cycle (excluding
equalization, detection and table look-ups). Whereas, our
proposed algorithm including the Kalman filter requires 11
multiplications, 14 additions and 1 division per clock cycle,
making it roughly four times computationally more complex
than the conventional algorithm.

V. PERFORMANCERESULTS

In this section, we evaluate the performance of the proposed
timing recovery algorithm (Fig. 2) for an uncoded perpen-
dicular magnetic recording channel at normalized recording
density of W/T = 2 by computer simulation and compare
the results with those of a conventional method (Fig. 1) using
the MM timing error detector based on the equalized sequence
zn. The MM loop filter parameters are chosen to minimize the
convergence time for a constant frequency offset. This is done



by placing the closed loop poles of the linearized feedback
system (in theZ-domain) as close to the origin as possible.
We process sectors of 4096 information bits and an additional
100 bits for the preamble. We use an origin-centered equalizer
of length2K+1 = 11 designed for a monic generalized partial
response (GPR) target [9] of length 3, and a Viterbi detector
with detection depth ofD = 4 bits. In the implementations
of (8) and (11) we keep onlyJ = 4 non-causal terms and
J0 = 10 causal terms. Therefore, the net delay in the timing
recovery loop isL = K + D + J = 13 bits. We adopt the
signal-to-noise ratio (SNR) definitionSNR := Ei/N0 where
Ei is the energy in the derivative of the transition response
hT (t) scaled byW 2 to preserve the units of energy [8]

Ei = W 2

∫

R

|h′
T (t)|2dt.

The actual frequency offset encountered in a real system is the
range of 0.2% to 0.4% and the initial phase offset is about0.5
of a clock pulse. In all the simulations we choose an initial
phase offset ofτ0 = 0.5T and a frequency offset of 0.4%,
i.e., µ0 = 1.004. We also allow the local frequency to change
slowly according to the random walk model described by (4)
with σR = σS = 10−5.

We consider SNR values in the range 16dB to 25dB.
At 16dB the SNR is considered very low as it produces
raw bit error rates well in excess of10−2. We evaluate the
performance of the proposed and the conventional timing
recovery algorithms in terms of their cycle slip rate (CSR)
and timing error variance. Fig. 3 shows the normalized steady
state timing error variance which is defined as

E‖τn − τ̂n‖2/T 2

where E(·) denotes the expectation overn as well as the
ensemble. These values are obtained by processing sectors
that do not have cycle slips. Clearly, the MAP/MMSE method
yields a better estimate of the timing phase and hence a lower
error variance for each SNR. Fig. 4 shows that the cycle slip
rates are lower for MAP/MMSE timing recovery.

VI. CONCLUSION

We investigated the problem of timing recovery for mag-
netic recording at low signal to noise ratio. We proposed a new
decision directed TED that, unlike the TED of Mueller and
Müller, provides sufficient statistics about instantaneoustiming
error. Using random walk evolution models for the clock
phase and frequency offsets, we derive expressions for the
MAP/MMSE optimal timing information from the readback
samples. We showed that the estimates can be implemented
efficiently using a set of recursive update equations. Simu-
lation results show that this method performs better than a
conventional timing recovery scheme in terms of both steady
state timing error variance and cycle slip rates. Our analysis
shows that the proposed algorithm has about 4 times the
computational complexity of the conventional algorithm.
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Fig. 3. Comparison of timing error variance performance.
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