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Abstract—We consider the problem of timing recovery in error rates are nearly equal to that of the perfect timingcas
magnetic recording channels based on MAP estimation of the However, at lower SNRs, the system is plagued by cycle slips
timing information. The read and write clocks are modeled 5.4 the pit error rate rises. A thorough discussion of variou
as random walk processes that allow for slowly varying phase timi 1gorith be f din 3
and frequency offsets of the clocks. We propose a new timing Iming recovery agqu ms (_:an e _OL_m in [3]. o
error detector (TED) that provides sufficient statistics about he The purpose of this work is to revisit the problem of timing
instantaneous timing error. Using the clock models and the new recovery with an attempt to improve the system performance.
LE_D, thteh l\(/IjAP ehstlmaiesbof the Safgmltnt% t'mtis are de?_ved-l Our approach is to combine all the functional blocks of the

is method is shown to be more robust than the conventional ; : i
algorithm based on the Mueller and Miller TED and easily tlmlnglreioverdy Syfte.m’ V.![Z'. the TE]P glnd thevl\(/)op;fllt.er I?go
implementable for a small additional complexity. one Dlock an _op |m|zg ' n a u_nl_le way. _e erve the

TED that provides sufficient statistics on the instantaseou
[. INTRODUCTION timing error. Combining this with random walk models for the

T|m|ng recovery, also known aslock Synchronizatiqnis read and write clocks we derive the maximu.mposteriori
an important front-end operation in many communicatiofMAP) and minimum-mean square error (MMSE) estimates
systems. Magnetic recording is one such system where @fethe timing information, akin to Kalman filtering. Using
identify the write-head as the transmitter and the readtissa Simulations, we show that the new method is robust and tracks
the receiver. The desire to push recording densities highgr changes in the clock phase and frequency extremely well.
caused today’s recording devices to operate at high rewprdi

. . : . . Il. SIGNAL AND CHANNEL MODELS
densities and low signal-to-noise ratio (SNR) making the

problem of timing recovery more challenging. We model the readback waveform from a magnetic record-
Traditional timing recovery architectures consist of aitign N9 medium as follows

error detector (TED) whose function is to process the reckiv b h T

samples to produce a quantity that is a measure of the timing r(7) ; r(f(7) =mT) +2(7) @

phase error. This is further passed through a loop filter to , .
produce the correction to the timing phase, which in turnegri WNereé bm = (am — a;,—1)/2 is the transition sequence
the sampler through a voltage controlled oscillator (VCTyje  corresponding to the written bit sequenfe,, = =1} which
system is decision-directed, i.e., the detected bits agel by "€Presents the magnetization of the meditinis the bit-width,

the timing recovery algorithm with the assumption that the§r () iS thetransition responsef the system defined as the

are error free. The conventional timing recovery system fgsponse toa trg_nsition of the magnetiz_ation .fremﬁ +1,
illustrated in Fig. 1. A commonly used TED is the Mueller and(?) 1S the additive Gaussian electronic noise with power
Miller (MM) TED [1] which is based on heuristic argumentsSPectral density of heightVo/2, and f(r) is a continuous,

The MM method performs quite well at high SNRs where th@onotonically increasing function that maps the timeon
the read-clock to the time’ = f(7) on the write-clock. Clock

imperfections caus¢(7) to be different from its ideal form:
f(r) = 7. We assume that the input bits are independent and
identically distributed (IID). For example, for perpendliar
recording, the transition response is

Channel LPF t="n Equalizer Detector

{an}

2tv/In 2
hr(t) = erf( - ) @)
Loop Filter Timing Error w
Detector whereerf(z) = % [ e~dt is the error function andV’ is
Fig. 1. Conventional timing recovery. the pulse width defined by the limits= +W/2 where the

derivative of the transition response is one half of its peak
cycle slip rates [2] are generally very low. The resultingg bivalue. The model (1) includes the effects of imperfectiams i



the read and write clocks. The fundamental problertioing that it is better to process the actual sampjgsrather than

recoveryis to use the readback waveform to estimate the writef the equalized sequeneg (as in Fig. 1) owing to the data

clock, i.e., to determine where to sample the waveform. processing theorem [6]. In this section, we derive the ogltim
At moderate normalized densities (as in today’s recordifigeD and the MAP based timing estimator.

systems) the channel responke(t) is bandlimited to the

frequenciest-1/27 for practical purposes. Furthermore, since Channel LPF

the slope of f(7) is close to unity, we may approximate {a,} ﬂﬂmi+ {an}

hr(f(t)) as being bandlimited ta-1/2T. Thus, passing the ]

readback signal(r) through an analog low-pass filter with

cutoff frequencies afc1/2T approximately produces

Zb ho(f (1) —mT) 4+ w(r). 3

t=r, .
n Equalizer Detector

Iy

Timing
Estimator

) ] o Fig. 2. Proposed timing recovery architecture.
The termw(7) is the additive Gaussian noise bandlimited to

[—1/2T,1/2T) with a flat spectrum ofV,/2T. From (3) it is
clear that the ideal (desired) sampling locations with eesfo . ) o . )
the read-clock are,, := f~!(mT). We adopt a discrete-time We first derive a timing error detector that is optimal

A. Proposed Timing Error Detector

second order random walk model foy, : in the sense that it providesufficient statisticsabout the
' instantaneous timing error. Lef(¢) denote the ideal noise-
An = A1 + g (4)  free readback waveform:
=) = (&) 2= 1) ()= Y buha(t = mT) = 3 anhp(t = mT) (1)

Here i, ~ 1 represents the local frequency of the write-clocwherehp(t) = (hr(t) — hr(t — T))/2 is thedibit response
relative to the read-clock, whilg, and(,, are IID Gaussian Denote its samples at=nT by

random walk steps witlE[v,v1 ] = K,(T)6,,,. Denote the

covariance of \,, — A" \y) by K, (nT). Then, forconsistency Yo =5 Z tn—mhp(mT). (8)

we must satis . . i
bt The superscriptd” |nd|cates that the readback signal is ideal

K,(nT) = AK,(nT — T)AT + K, (T) (5) and devoid of imperfections due to clock jitter or noise.
because the two sides of (5) are simply two different ways ofhsuriD posekz)that v(\j/ef have an es?mﬁ;eof th? Sr? mpling time,
expressing the covariance of ich is obtained from an earlier step of the timing recovery

algorithm. The corresponding sample of the filtered reaklbac

Ap — A" Ao = vp + AXp1 — A" Ao waveform can be written in terms of the ideal readback

— o+ A1 — A1), waveform using (3) ag, = s°(f (7)) + w(7,). Using the
Taylor series expansion and the fact that the slopég (of is
It is an easy exercise to prove thal,(7), extended tor € close to unity, we can approximatg as follows:
R, must be of the form ds° ()

Ky (r) = o%T +03m3/3  0%7?)2 ©) Yn =Y + (Tn = Tn)[ dt ]nT +w(Fn) ©)
! GST2/2 O%T = y;)z + Vn(Tn - 7A-n) + wy, (10)

where the off-diagonal terms above are specifically chosenyyhere
satisfy theconsistency conditio5) for any indexr = nT. ds®( dhp(t
We could also have derived (6) directly from a second order 7n ‘= —[ L == Zan m [ LLT (11)
continuous random walk model for(t) = f~1(t).

We denotek, (T) simply by K,. The parameters and andw, = w(7,) is approximately IID with variance, =
os control the rates of clock phase and frequency drift. W&o /27". Since7, is a known quantity from a previous esti-
point out that the second order random walk itself is not nemation step we can calculate the following quantity
in the literature [4], [5]. However, was always chosen to 0
be diagonal, ignoring the consistency condition.

n = (yn - ny) + fYnf-n = YnTn + Wy (12)
which we term as the@bservationof r,, at time n. Clearly
lll. D ERIVATION OF OPTIMAL SYNCHRONIZER 6,, contains the same information gs and can be used as

Fig. 2 shows the proposed timing recovery architecture withsufficient statistic in our estimation. This is unlike thé&/iM
a single block labeled “Timing Estimator” replacing the TEDTED which is based on a heuristics argument. Note that we
loop filter and the voltage controlled oscillator (VCO). Weeu have assumed knowledge of the data pits} to calculatey;,
a decision-directed approach assuming that= a,, most of and~,. In practice they can be estimated using the detected
the time. A preamble field is used at the start of each sectats with a small delay. This issue is discussed in Section IV
to ensure proper acquisition of the timing information. &lotFor now let us assume that, andy; are known.



B. MAP Timing Estimation

We showed in (12) that the observation at timeis
expressible a8,, = B, \,, + w,, where

Bn = (77170)

andw,, is an [ID Gaussian noise with varianeg, and\,, is
described by the random walk model (4); = A\,_1 + v,,.
The timing estimator computes the optimal estimater,of;
from the statistically sufficient observatiod9, : £ < n}.
Let the estimates and error covariances\gf, m > n given
0y == {6k : k < n} be denoted by

AW = EDul63],
KM = cov(Am — A,

(13)

(14)
(15)

m>n

where Jy, and J are sufficiently large integers. In general,
larger values of/, andJ yield better approximations. How-
ever, the above expression dependsign; which implies an
unavoidable delay of bits between the detector and the tim-
ing estimator. Although/, does not affect the loop delay, we
can also choose a small value féy for reduced complexity.

If the equalizer hag< non-causal taps, this introduces a delay
of K samples in the forward link. Additionally, the detector
introduces a certain delay. For instance the Viterbi detect
although a sequence detector, can be made to produce sub-
optimal decisions after decoding through a depthDobits in
the trellis. This causes a delay 6f bits. Thus the total delay
in the timing loop isL = J + K + D and the implemented
algorithm calculates\™, . = AL+1A"™). Finally, we point

n+L+1
out that the transition response (¢) used to computg, and

Strictly speaking this is the MMSE estimate of the timing,, can be estimated from a large training sequence.

error. However, in this case the above estimates coincitle wi Apart from its optimality, the MAP/MMSE estimation
the MAP estimates because our measurements and noisenaééhod is easier to design than the conventional MM method.
jointly Gaussian. The above problem can be solved using to@lor example, we need to specify only the initial covariance
from Kalman filtering theory, the details of which are ontte matrix Kéo), while the MM method requires tuning of the

here. The final result can be stated succinctly as a set|@bp gain parameters by trial and error. In typical systetimes,

recursive update equations:
N Gn
)\’ELn) = (Dgcngn)ingcgl <5\(n1)> (16)
n—1
K = (D0, Dy) ™! (17)

where

- o, 0
" 0 Kn—l + AilKU(Ail)T

_ <f_"1).

Eg. (4) and the fact thafv, : k > n} is zero-mean
and independent of imply that AW = gm=n3™ Thus,
estimates of ali\,,, for m > n are easily calculated fromf,").

Dy,

initial phase offset is generally within one-half of a cyeled
the frequency offset is less than 1%. Thus, we can initialize
the recursion with

) _ T?/4 0
Ko _< 0 1074 )"

A. Complexity Analysis

The quantities (18) and (19) are both convolutions of two
sequences where one of them is binary and the other is
constant. Thus, rather than using arithmetic operatiores, w
can implement these convolutions with a look-up table with
2™ entries wheren is the number of terms in the summation.
Likewise, the convolution of the target filter with the dafésb
in the conventional algorithm can be implemented with a fook
up table. Assume that the convolutions are implemented with

(20)

The above estimation is similar in flavor to Kalman ﬁlteri”%ok-up tables due to their negligible associated cost et
based algorithms [4], [5], [7]. These algorithms assume the iihmetic operations. For brevity we omit the details of

availability of measurements of the forp = 7,, +w,, without

providing a specific structure for the TED itself. In contras,

our TED (12), which provides sufficient statistics of theitig
information, assumes the for#y, = ~, 7, + w, where-~,

is a (computable) data dependent gain. The derivation of

optimal TED is the novel aspect of our work.

IV. DECISION-DIRECTED IMPLEMENTATION

Recall thaty,, andy;, need to be estimated from the decisio
bits. However they depend on future input bits. A workaround

how to optimally pipeline the computations and look-upsr Ou
omplexity analysis reveals that the MM algorithm requires
4 multiplications and 4 additions per clock cycle (exclglin

tEg;alization, detection and table look-ups). Whereas, our

posed algorithm including the Kalman filter requires 11
multiplications, 14 additions and 1 division per clock @&ycl
making it roughly four times computationally more complex

rt]han the conventional algorithm.

V. PERFORMANCERESULTS

is to truncate the tail parts of the summations (8) and (1)) an |, s section, we evaluate the performance of the proposed

replace the actual bits by (delayed) detected bits, i.e.,

Jo
yp~ Y dn-mhp(mT) (18)
m=—J
S dhp(t)
Tn = m;.] tn—m |: dt :|t:TTLT (19)

timing recovery algorithm (Fig. 2) for an uncoded perpen-
dicular magnetic recording channel at normalized recagrdin
density of W/T = 2 by computer simulation and compare
the results with those of a conventional method (Fig. 1)@isin
the MM timing error detector based on the equalized sequence
zn. The MM loop filter parameters are chosen to minimize the
convergence time for a constant frequency offset. This redo



by placing the closed loop poles of the linearized feedbac ‘
system (in theZ-domain) as close to the origin as possible. ——MAM timing estimaton
We process sectors of 4096 information bits and an addition:
100 bits for the preamble. We use an origin-centered ecgraliz
of length2 K +1 = 11 designed for a monic generalized partial
response (GPR) target [9] of length 3, and a Viterbi detecto
with detection depth ofD = 4 bits. In the implementations
of (8) and (11) we keep only = 4 non-causal terms and
Jo = 10 causal terms. Therefore, the net delay in the timin
recovery loop isl. = K + D + J = 13 bits. We adopt the
signal-to-noise ratio (SNR) definitioBNR := E;/N, where
E; is the energy in the derivative of the transition respons¢
hr(t) scaled bylW? to preserve the units of energy [8]

H
O‘

@]

Normalized Timing Error Variance

,_.
O\

Ei = W2/ |h{1“(t)|2dt 10416 1‘7 1‘3 1‘9 2‘0 2‘1 2‘2 2‘3 2‘4 25
R SNR dB

The actual frequency offset encountered in a real systeheis t Fig. 3. Comparison of timing error variance performance.
range of 0.2% to 0.4% and the initial phase offset is alfidut
of a clock pulse. In all the simulations we choose an initial 1’ : ‘
phase offset offy = 0.57" and a frequency offset of 0.4%,
i.e., uo = 1.004. We also allow the local frequency to change
slowly according to the random walk model described by (4
with o = 05 = 107°.

We consider SNR values in the range 16dB to 25dB
At 16dB the SNR is considered very low as it produces$
raw bit error rates well in excess ab—2. We evaluate the
performance of the proposed and the conventional timin(g
recovery algorithms in terms of their cycle slip rate (CSR)
and timing error variance. Fig. 3 shows the normalized stead
state timing error variance which is defined as

—©— MAP timing estimation
—*— M&M timing estimation

e Slip R

Ell7n — 7ﬁn||2/T2
where E(-) denotes the expectation over as well as the e 165 17 R 1 185 1
ensemble. These values are obtained by processing sectors
that do not have cycle slips. Clearly, the MAP/MMSE method Fig. 4. Comparison of CSR performance.

yields a better estimate of the timing phase and hence a lower

error variance for each SNR. Fig. 4 shows that the cycle slip

rates are lower for MAP/MMSE timing recovery. REFERENCES
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