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Abstract—We consider the problem of channel shortening
equalization to perform reduced complexity detection for MIMO
channels with intersymbol interference and additive Gaussian
noise. the problem is to find a MIMO equalizer and a partial
response MIMO target filter such that the combination produces
the best detection performance. We show the existence of an
infinite family of optimal equalizers and targets that satisfy the
a posteriori equivalence condition. Furthermore, these solutions
are intimately related to MIMO decision feedback equalizers de-
signed with the “monic determinant” constraint on the feedback
filter. These results generalize some recent results on channel
shortening based on a posteriori equivalence to the MIMO setting.

I. INTRODUCTION

Multiple input multiple output (MIMO) communication sys-
tems have been an emerging field in recent years. For example,
in wireless communications, the use of multiple antennas for
transmission and reception is desirable because in a Rayleigh
flat fading environment the capacity grows linearly with the
minimum of the number of transmitter and receiver antennas
[1]. Another example is multi-head multi-track recording [2],
[3] where there is intertrack interference. These and many
other communications systems can be modeled as MIMO
intersymbol interference (ISI) channels.

Orthogonal frequency division multiplexing (OFDM) solves
the ISI problem for wireless channels. However it does no-
tapply to all channels like the magnetic recording channel for
which the channel input or magnetization is constrained to ±1.
In this paper, we are primarily concerned with optimal channel
shortening and reduced complexity detection for MIMO ISI
channels. In principle we can adapt the Viterbi algorithm to
perform maximum-likelihood (ML) or maximum a posteriori
(MAP) detection of the input sequence in the MIMO setting.
However, the complexity grows like 2N(I+1) for an N × N
MIMO system with channel memory I due to ISI. The purpose
of this work is to identify the set of MIMO equalizers and
targets that yield the best performance with respect to ML and
MAP-based detection for the equalized channel. Generalizing
the results in [4], [5] to the MIMO case, we show the
existence of a family of equalizers and targets satisfying the
a posteriori equivalence or “APP matching”. These solutions
are intimately related to the minimum mean-square (MMSE)
decision feedback equalizers (DFE) designed with a monic
determinant constraint on the feedback filter. These ideas

are adapted to to design optimal FIR targets and equalizers.
We review our notation and some basic results on matrix
spectral factorization before addressing the problem of channel
shortening equalization for MIMO systems.

A. Definitions and Notation

Henceforth, we refer to a sequence of matrices or vectors
simply as a sequence. Let a denote a discrete-time sequence
{a[n] : n ∈ Z}. The z-transform of a is defined as

A(z) =
∑

n

a[n]zn.

If a has finite energy then its discrete-time Fourier transform
F{a} is the restriction of the A(z) on the unit circle and
is denoted by A(ω) for convenience. The convolution of two
sequences a and b is denoted by c = a ? b where

c[n] =
∑
m

a[m]b[n−m].

Let δ denote the discrete delta function: δ[n] = 0N×N for
n 6= 0 and δ[0] = IN×N . Define the inner product between
two sequences a and b as

〈a, b〉 = tr
∑

n

a∗[n]b[n] =
1
2π

∫ π

−π

A∗(ω)B(ω)dω

where tr(·) is the trace and ∗ denotes the Hermitian (adjoint)
of a matrix. Thus, the norm of a is ‖a‖ = 〈a, a〉1/2. Given a
sequence a, let ä be obtained by time-reversal and conjugation
of a, i.e., ä[n] = a∗[−n]. The Fourier transform of ä is
A∗(ω). Thus, we readily obtain the following identity:

〈a ? b, c〉 = 〈b, ä ? c.〉 (1)

The cross-correlation function of a real or circularly symmetric
complex stationary random processes x and y is defined as
rxy[n] = ζ−1E(x[m + n]y∗[m]) where E(·) denotes expecta-
tion and ζ is the number of real dimensions per sample, i.e.,
ζ = 1 for real processes and ζ = 2 for complex ones. The
autocorrelation of x is obtained by setting y = x. The power
spectral density of x is Sx(ω) = F{rxx}. We write x ⊥ y
if rxy = 0. All complex-valued processes are assumed to be
circularly symmetric.



B. Spectral Factorization

We now review the notion of minimum-phase decomposi-
tion for matrix polynomials [6], [7].

Definition 1. Suppose that {a[m] : m ≥ 0} is a causal
sequence of N × N matrices satisfying the Paley-Wiener
condition:

∫ π

−π

log | detA(ω)|dω > −∞. (2)

Then A(z) is called minimum-phase if detA(z) is minimum-
phase and both A(z) and its inverse are analytic for |z| ≥
1. Additionally, we term A(z) as canonical if a[0] is lower-
triangular with nonnegative diagonal entries.

Informally, we say that A(ω) is minimum-phase or canoni-
cal if its analytic extension A(z) is minimum-phase or canon-
ical. The following result describes minimum-phase spectral
factorization for matrices [6].

Proposition 1. Let Q(ω) be an N ×N non-negative definite
Hermitian matrix satisfying the regularity condition (2). Then,
Q(ω) can be uniquely factorized as

Q(ω) = G∗
◦(ω)G◦(ω) (3)

where G◦(ω) is a canonical minimum-phase factor.

Without the lower-triangular restriction, G(ω) = UG◦(ω)
would be a valid minimum-phase spectral factor for any unitart
U . We are simply using the Cholesky factorization to generate
a unique spectral factor. The canonical decomposition (3)
is a generalization of the minimum-phase decomposition for
polynomials and the Cholesky factorization for matrices. We
could equally well have chosen an upper-triangular g◦[0], or
more generally forced Pg◦[0]P−1 to be a lower-triangular
for some permutation matrix P . There are several algorithms
to compute the matrix spectral factors including the Bauer
factorization algorithm [7].

II. CHANNEL MODEL

Consider a discrete-time real or complex-valued linear time
invariant system with N inputs and M ≥ N outputs

y = h ? x + w (4)

where h = {h[m] : m ∈ Z} is the channel response,
x = {x[m] : m ∈ Z} is the input, and w = {w[m] : m ∈ Z}
is additive white Gaussian noise with power spectral density
Sw(ω). The sizes of x[m], w[m] and h[m] are N × 1,
M × 1, and M × N respectively. Assume that h has finite
energy but is possibly non-causal and IIR. The channel model
(4) is a MIMO ISI channel and describes a variety of real
communication systems such as multiple antenna wireless
communications over ISI channels or multi-track magnetic
recording.

Let the input power spectral density be Sx(ω). As a
special case we also shall consider independent and identically

distributed (IID) inputs with Sx(ω) = I . An example for the
input symbol set is the Q-phase PSK constellation,

C = {
√

2ej2πq/Q : q = 0, . . . , Q− 1}

in the complex case or the BPSK (bipolar binary) constellation
C = {−1,+1} in the real case.

Suppose that the MIMO ISI channel (4) has a noise power
spectral density (PSD) of Sw(ω). The whitened matched filter
channel can be expressed as

ȳ = k ∗ y = h̄ ? x + w̄ (5)

where w̄ = k ? w and k is an N × M noise-whitening
filter for which Sw̄(ω) = K(ω)Sw(ω)K∗(ω) = I . It is
readily shown that H̄(ω) = K(ω)H(ω) and H̄

∗(ω)H̄(ω) =
H∗(ω)S−1

w (ω)H(ω). We may assume without loss of gener-
ality that h̄ is a canonical spectral factor. In this case we call
the resulting channel the canonical noise whitened channel.

III. OPTIMAL DETECTION

Consider the whitened noise channel (5). with h̄ = k ? h is
in its canonical form and w̄ = k ? w is white noise. This is
a convenient choice because it ensures that the ISI is causal.
In principle the channel response h and noise statistics rww

can be estimated through training as described below. Since
the channel is noise whitened, we have

P (ȳ|x) ∝ exp
(
− ‖ȳ − h̄ ? x‖2

2σ2
w̄

)
.

Using Bayes’ rule we express the a posteriori probability
(APP) as

P (x|y) = P (x|ȳ) = P (ȳ|x)P (x)/P (ȳ)

∝ P (x) exp
(
− ‖ȳ − h̄ ? x‖2

2σ2
w̄

)
(6)

where the proportionality constants above and henceforth are
always independent of x. The maximum a posteriori (MAP)
sequence detector computes

x̂ := arg max
x

P (x|ȳ) (7)

which reduces to the maximum-likelihood (ML) detector if all
input sequences are equally probable

x̂ := arg min
x
‖ȳ − h̄ ? x‖2. (8)

The detector computes x̂ using the Viterbi algorithm.
Likewise, the BCJR algorithm may be used to compute the
symbol-wise APPs. The complexity of these detectors grows
exponentially with the length of the whitened channel response
h̄[m].



IV. REDUCED COMPLEXITY DETECTION

A. Linear Equalization

We briefly review standard techniques for equalization and
target design for the MIMO ISI channel (4). Equalization is
done to shorten the channel response to match a pre-specified
target response reduce sequence detection complexity.

Let f and g denote the equalizer and target filters respec-
tively. The output of the equalized channel (Fig. 1) is

z = f ? y = l ? x + u (9)

where l = f ? h is the equalized channel and u = f ? w is the
equalized noise with Su(ω) = F (ω)Sw(ω)F ∗(ω). As in [4],
[5] let us define the hypothetical target channel with output
z̃, illustrated in Fig. 2, as

z̃ = g ? x + v (10)

where v is additive white Gaussian noise (AWGN) with
Sv(ω) = σ2

vI . The tilde is used to differentiate between
the output of (hypothetical) target channel from that of the
equalized sequence. Thus,

P̃ (z̃|x) ∝ exp
(
− ‖z̃ − g ? x‖2

2σ2
v

)

denotes the channel probability function by related to the target
channel. Traditionally, the equalizer and target are designed to
make equalized channel response l close to target g, while
keeping the noise white. The detector treats the equalized
channel and target channel as being equivalent. Thus, instead
of (8) the reduced complexity ML sequence detector computes

x̂ := arg min
x
‖z − g ? x‖2. (11)

More generally, MAP based detectors use

P̃ (x|z) ∝ P (x)P̃ (z|x) ∝ exp
(
− ‖z − g ? x‖2

2σ2
v

)
(12)

as the APP function. Note that the above quantity is the APP
of x for the target channel computed with z rather that z̃ even
though z may not be a typical output of the target channel. The
reduced complexity approach could be suboptimal compared
to the detectors (7) and (8) based on the actual channel
response.
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Fig. 1. Original channel and equalizer.
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Fig. 2. Target channel.

Zero Forcing Equalization: A zero forcing equalizer (ZFE)
f is such that the equalized channel response equals the target
response, i.e., l = g. Thus, in the frequency domain, the
equalizer is given by F (ω) = G(ω)H−1(ω). An undesir-
able problem with zero-forcing equalization is that when the
smallest singular value of channel response H(ω) has a null or
attains very small values, the equalized noise is highly colored
and has large variance. The ZFE is rarely used for this reason.

MMSE Equalization: A commonly used equalizer is the
minimum mean square error (MMSE) equalizer that minimizes
the variance of the equalization error e := g ? x− f ? y:

E := E‖e[n]‖2 =
1
2π

tr
∫ π

−π

Se(ω)dω. (13)

Using e ⊥ y, and Sx = I it is readily verified that

F (ω) = G(ω)H∗(ω)(H(ω)H∗(ω) + Sw(ω))−1 (14)

and the power spectral density of the estimation error is

Se(ω) = G(ω)Q−1(ω)G∗(ω) (15)

Q(ω) = I + H∗(ω)S−1
w (ω)H(ω). (16)

For scalar ISI channels, the MMSE decision feedback
equalizer (DFE) filters is derived by minimizing the equalizer
error variance subject to the monic constraint on the target
[8], [9] where the strictly causal part of the target functions as
the feedback filter. In the MIMO case, the standard approach
has been to minimize the trace of the MMSE equalization
error covariance subject to energy or identity tap constraints
[10], [11] or a monic lower-triangular constraint [12] on the
feedback filter. However we propose the “monic determinant”
constraint on the MIMO target filter which is a natural
generalization of the (scalar) monic constraint to the MIMO
setting, as shown later.

Proposition 2. The solution to the minimization of

E =
1
2π

tr
∫ π

−π

G(ω)Q−1(ω)G∗(ω)dω

over all causal targets such that det g[0] = 1 is the minimum-
phase spectral factor of G∗(ω)G(ω) = λQ(ω) where λ is
chosen to satisfy det g[0] = 1.

In particular the optimal target may be taken as the canon-
ical spectral factor. The proof of Proposition 2 is omitted for
brevity. Thus, the the MMSE DFE target designed with the
monic determinant constraint is the canonical spectral factor
of

G∗(ω)G(ω) = λ(I + H∗(ω)S−1
w (ω)H(ω)) (17)



and the resulting equalization error is white with Se(ω) = λI .
The strictly causal part of {g[k] : k > 0} constitutes

the feedback filter in the DFE structure. In this paper we
do not actually use decision feedback to perform detection,
because the method leads to error propagation and is generally
suboptimal. However, the IIR MMSE DFE filters derived
above can be used as our equalizer and target filters for reduced
complexity Viterbi detection. In the next section we shall see
that the above solution enjoys certain optimality properties in
the context of sequence detection.

B. A Posteriori Equivalence

In [4], [5] we introduced the notion of a posteriori equiv-
alence (APE) between the equalized and target channels and
showed that there exists a family of equalizers-target pairs
for which there is no loss in detection performance treating
the equalized and target channel as equivalent. The following
theorem is a generalization of those results to the MIMO
channel.

Theorem 1. Suppose that all the input sequences in the
message codebook have equal energy and the equalizer and
the target channel are chosen such that

F (ω) = G(ω)H∗(ω)(H(ω)H∗(ω) + βSw(ω))−1

G∗(ω)G(ω) = α(H∗(ω)S−1
w (ω)H(ω) + βI)

σ2
v = ασ2

w̄

for some α > 0 and β ∈ R that produces a valid G(ω), then
P (x|ȳ) = P̃ (x|z). Consequently, (12) produces the correct
APP of x. In particular,

x̂ = arg min
x
‖ȳ − h̄ ? x‖2 ≡ arg min

x
‖z − g ? x‖2 (18)

i.e., (11) produces the optimal ML estimate of the input
sequence.

Proof: It is easily verified that the hypotheses imply that

G∗(ω)G(ω) = α(H̄∗(ω)H̄(ω) + βI) (19)

where h̄ is the response of the canonical noise-whitened
channel (5) with the whitening filter k. Omitting a few steps,
we can show that

G∗(ω)F (ω) = αH∗(ω)S−1
w (ω) = αH̄

∗(ω)K(ω). (20)

In the time domain, these conditions imply that s := g̈ ? g −
α¨̄h ? h̄ = αβδ and g̈ ? f = α¨̄h. Using these conditions and
the identity (1), it is easily verified that

‖z − g ? x‖2 − ‖z‖2 = 〈x, s ? x〉+ α(‖ȳ − h̄ ? x‖2 − ‖ȳ‖)2
= αβ‖x‖2 + α(‖ȳ − h̄ ? x‖2 − ‖ȳ‖)2.

Since all input sequences have equal energy we readily obtain
(18) because z and ȳ are constants as far as the above
minimization is concerned. Furthermore, by comparing (6) and
(12) for the above choice of σ2

v we have P (x|ȳ) ∝ P̃ (x|z).
Obviously the constant of proportionality must be unity.

The optimal target in (19) can be computed using the
canonical spectral factorization of the right-hand side of (19).

The interpretation of Theorem 1 is that the equalized channel
and the hypothetical target channel are a posteriori equivalent
in the sense that they generate the same APP for the input
x. Furthermore, there is an infinite family of such solutions,
parameterized by β. Thus, we can design any MAP based
detector for the target channel, and it would be simultaneously
optimal for the equalized channel. This fact was previously
pointed out for scalar ISI channels in [4], [5]. We reiterate
that the two channels are not equivalent in any other sense.
For example they could have different forward channel laws:
P (z|x) 6= P̃ (z|x). Similarly, the sequence z may not be a
typical output of the target channel: P (z) 6= P̃ (z).

Theorem 1 is applicable to input sequences that have equal
symbol energies, including symbols from the (complex) Q-
PSK or (real) BPSK constellations. The result can also be
adapted to apply to inputs with unequal symbol energies if we
carefully fake the input prior distribution of the target channel
as described in [4].

Relation to MMSE DFE Solution: The family of solutions
in Theorem 1 are in fact closely related to the MMSE DFE for
the MIMO ISI channel. The equalizer and target in Theorem
1 are precisely equal to the MMSE equalizer (14) and the
DFE prediction filter (17) if β = 1 and α = λ. Note that α
is a scaling factor but β is a free parameter that generates an
infinite family of optimal solutions. For an arbitrary β > 0
the above quantities would be the MMSE DFE designed for
an additive noise with power spectral density βSw(ω). This
result can be interpreted as the MIMO version of the main
result in [4], [5]. Thus, the monic determinant constraint
on the target filter is special because it guarantees APE or
“APP matching” for MIMO ISI channels. In general, other
target constraints including the identity tap, energy, or monic
lower-triangular constraints do not enjoy this property. If we
had imposed a constraint on g[0] such as the monic lower-
triangular constraint or g[0] = I , then Se(ω) would be
independent of ω but not necessarily a scaled identity matrix.
In this case APE is achievable if v in target channel is treated
as colored noise with covariance Se(ω). However, this would
complicate the Viterbi metric and the cleaner approach is to
use the det g[0] = I constraint which yields Se(ω) = λI .

C. FIR MIMO Equalizer and Target Design

The analytical expressions for the optimal MMSE equalizer
and target derived so far are IIR in general. We now consider
the design of generalized partial response (GPR) targets for
the MIMO channel where we seek the best target of a
certain length. Using the MMSE equalization error as our cost
function. Thus, we minimize the variance of (13) over all f
and causal g subject to the monic determinant constraint

det g[0] = 1 ⇐⇒ deg G(z) is monic. (21)

which is the natural constraint in the IIR case since it manifests
a posteriori equivalence of the equalized an target channel. For
simplicity, we do not consider the delay optimization problem
below [11].



Let the equalizer and target be FIR filters f = {f [k] :
−K ≤ k ≤ K} and g = {g[k] : 0 ≤ k ≤ L} respectively.
First consider the MMSE equalizer design for a fixed target.
We seek the equalizer f that minimizes (13). The solution is
obtained by solving E(e[n]y∗[n − l]) = 0 for −K ≤ l ≤ K
which yields γRxy = φRyy where

γ = (g[L], g[L− 1], . . . , g[0]) (22)
φ = (f [K],f [K − 1], . . . , f [−K]) (23)

and Rxy and Ryy are the related block Toeplitz matrices
formed using the blocks rxy[k] and ryy[k] respectively. Note
that the second order statistics can be estimated by temporal
averaging using a sufficiently long training data set because
x and y are ergodic random processes. The solution is
straightforward: φ = γRxyR−1

yy . The minimum value for the
equalization error variance is

E = tr(γ(Rxx −RxyR−1
yy Ryx)γ∗). (24)

We now consider the target design problem where we mini-
mize the above expression over all causal targets g with lower-
triangular g[0] satisfying det g[0] = 1. It is easily shown that
the solution is given by

g∗[0]γ/λ = (0, . . . , 0, I)(Rxx −RxyR−1
yy Ryx)−1. (25)

So far we have computed d[k] := g∗[0]g[k]/λ. We solve for g
from d as follows. Pick λ to make det(λd[0]) = 1. Factorize
λd[k] = g∗[0]g[0] so that g[0] is lower-triangular and solve
for the remaining terms: g[k] = λ(g∗[0])−1d[k].

V. APPLICATION TO MULTI-TRACK RECORDING

We illustrate a simple application of this work to a multi-
track recording system [2], [3] consisting of N = 2 adjacent
tracks and 2 read-heads that simultaneously read the data bits
from the tracks. The readback signals are affected by ISI
(within a track) and inter-track interference (ITI) and addi-
tive white Gaussian noise. After analog-filtering and Nyquist
sampling, the channel is modeled as a discrete-time 2 × 2
MIMO ISI channel (4) where w is white Gaussian noise with
Sw(ω) = σ2

wI and x ∈ {−1, +1}2. The channel response is

h[n] =
(

1 µ1

µ2 1

)
h0(t)

where µ1 and µ2 are the intensities of ITI from one track to
the other, h0(t) = hT (t)−hT (t−1) is the bit response in the
absence of ITI corresponding to the perpendicular recording
transition response hT (t) = erf(2n

√
ln 2/D) at normalized

recording density D. We adopt the signal-to-noise ratio (SNR)
definition in [13]: SNR = 2D

√
ln 4/π/σ2

w.
In Fig. 3, we compare the performance of different equal-

izer/target pairs designed using 3 constraints: identity tap con-
straint, orthonormality constraint [11], and monic determinant
constraint. The targets and equalizers are 2 × 2 MIMO FIR
filters with 3 taps (causal) and 15 taps (origin centered) respec-
tively. We assume µ1 = 0.2, µ2 = 0.3 and D = 2. Although
the performance of the identity-tap constraint matches that of
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Fig. 3. Performance of multi-track multi-head systems with 3 different
constraints for equalizer and target filters design

the monic determinant constraint, it incurs a slightly higher
decoding cost because the branch metric is adjusted for the
non-identity form of the equalization error covariance matrix.
The design based on the orthonormality constraint leaves the
estimation error colored and its performance is worse than that
of the other two constraints.

VI. SUMMARY

We considered the problem of reduced complexity detection
for MIMO ISI channels with additive colored noise. Using
the canonical noise whitened form of the channel, we first
presented expressions for the optimal MAP based sequence or
symbol detection. We then studied the use of channel short-
ening equalization for to reduce complexity of the detector. In
doing so, we generalized the notion of a posteriori equivalence
and derived the family of optimal MIMO equalizer and targets.
These solutions are shown to be releted to the MIMO DFE
designed with a monic determinant target constraint. These
results are applicable to a wide class of MIMO ISI channels
such as multi-track recording systems and MIMO wireless
channels.
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