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I. INTRODUCTION 

The sector failure rate (SFR) is extremely small at normal operating conditions of hard disc drives. In practice it 

cannot be obtained by counting as that would require numerous simulations. Therefore, appropriate statistical models 

are applied for the distribution of error symbols in a sector to estimate the SFR. In this paper we look at the 

underlying philosophy of existing estimation methods and classify them into macroscopic and microscopic types. We 

show how to estimate the model parameters optimally from a library of sample error indicator vectors. We observe 

that the microscopic models are well suited for certain iterative channels. 

 

II. MACROSCOPIC AND MICROSCOPIC MODELS 

Fundamentally, all models for error vectors may be classified as either microscopic or macroscopic models. A 

microscopic model captures the precise correlation between symbol errors locations while a macroscopic model 

captures the weight of the error indicator vectors alone ignoring the actual bit or symbol error locations. In general, 

precise microscopic models are difficult to find for iterative coded channels with interleavers due to the complex 

long range correlations present in the symbol errors.  In contrast, macroscopic models are also simpler to analyze 

and are generally universal in the sense that it can work well for a variety of codes but they require larger training 

data sets  

An example of the macroscopic model is the multinomial model in which (a) an error indicator vector consists of 

N independent error events, and (b) a single error event is of a string of up to L symbols in error. The resulting error 

vector weight has the multinomial distribution. This is evidently a macroscopic model. Sometimes, the symbol errors 

are modeled as a Markov random process. An example is the Gilbert model [1, 2] or the generalized Gilbert model 

[3]. These models are microscopic because they explicitly model the error locations, not the error weight. An 

example of a slightly richer model than the Gilbert model is shown in Figure 1. According to this model, the 

probability of seeing a symbol error is 
1mq + where m is the run-length of preceding symbol errors leading in that 

error event. For reduced model complexity we let 
m Mq q= for all m≥M where M is a fixed parameter. When the 

chain returns to the zero state from the nonzero state m, the generation of an error event E(m) is completed by 

attaching the final “0” to the run of m consecutive ones. This is a microscopic model because it characterizes the 

symbol error locations. 

Having chosen any model (microscopic or macroscopic) its parameters can be estimated from the library of 

actual error vectors as follows. Let the data set consists of K error indicator vectors. Let k̂r  and kr  denote the 

histogram of the error vector weights and the modeled weight distribution respectively. The optimal estimate of the 

model parameters is the so called minimum relative entropy (MRE) solution where we minimize the Kullback-Liebler 

distance between the two weight distributions [4].  

ˆ ˆ ˆmin ( || ( )) log( ( ) / )n n n

n

D r r p r r p r=∑  

III. MICROSCOPIC MODEL WITH TWO COMPONENT TYPES 

We shall now extend multinomial model to SFR estimation of iterative channels as well. Let E(m) denote an 

error event (EE) of length m: it consists of m≥1 ones followed by a zero, e.g., E(3)=1110. A sequence of n≥1 
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consecutive zeros I(n) is called an error-free run of length n. Thus, we can always parse an error indicator vector into 

a unique sequence of interlacing error events and error free runs as follows: 1 1 2 2( , , , , , , )L LE I E I E Iξ = L . 

Main Assumptions: The events are independent identically distributed random objects and the number of such 

error events in a sector is an independent random variable. Assume that Ei are described by the microscopic model 

described in Section III-B. Estimation of the parameters of the Markov model described above of can be done using 

the minimum relative entropy method described in Section III-C. We do not assume that PDFs of error events and 

error free runs are identical. 

The word failure rate is ( ) ( ) ( , )W W

k

T Q k T kρ ρ=∑  where ( )Q k  and ( , )W T kρ  are the distribution of 

number of error events per word and the conditional word failure rate given k error events in the word. The latter 

quantity is computed using the MRE method described in Section II. The PDF Q(k) is estimated from statistics 

obtained from real or simulated data however its tail is extrapolated using a pre-specified distribution. Numerically, 

iterative channels using TPC and LDPC codes have exponential tails ( ( ) k
Q k e

λ−= ) and iterative channels using 

SPC have tails with a Poisson distribution ( ( ) / !k
Q k e k

λλ −= ). The parameter λ is estimated to fit the observed 

tails.   

 

IV. SIMULATIONS 

In the following example we evaluate the performance of the descriptive and predictive capabilities of various 

SFR estimation methods for a TPC system operating at 24dB. Each sector consists of 500 symbols including the 

ECC parity symbols. The full data set contains 79111 sectors and the partial data set contains 4% of this data. Figure 

5 shows the SFR estimates sing several methods from the partial data and counted values from full data set. These 

methods appear to be consistent with each other and match the extrapolated counted values well. 

 

Figure 1: Model for error event 

 

Figure 2: SFR estimates for the TPC system 
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