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Macroscopic and Microscopic Approaches in Sector Failure Rate Estimation
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The sector failure rate (SFR) is extremely small at normal operating conditions of hard disk drives. In practice, it cannot be obtained
by counting as that would require prohibitively large simulation times. Therefore, appropriate statistical models characterizing the dis-
tribution of error symbols are used in order to estimate the SFR. In this paper, we look at the underlying philosophy of existing estimation
methods and classify them into macroscopic and microscopic types. We observe that the microscopic approach is well suited for certain
iterative channels.

Index Terms—Error correction coding, error modeling, failure rate estimation, minimum relative entropy.

I. INTRODUCTION

I N data storage systems such as magnetic and optical storage
devices, there is a need for extremely high reliability in terms

of recovering the stored data. This is achieved by using pow-
erful error correction codes (ECCs) for the recording channel.
The simplified block diagram of a typical magnetic recording
channel is shown in Fig. 1. The block labeled “channel” repre-
sents the combination of physical channel and the inner error
correcting codes designed for the particular physical channel.
An additional outer ECC is used to correct any residual bit errors
resulting from the inner decoder. The purpose of the outer code
is to guarantee extremely low error rates. Reed–Solomon (RS)
codes are used in today’s recording systems due to their high
code rates and their ability to correct burst errors efficiently.

In magnetic and optical recording systems, bits are read and
written in blocks or sectors, where a sector can either be a single
ECC codeword or contain a small number of such codewords
interleaved so that in an event of a burst error, the symbol er-
rors would be distributed evenly among the codewords. Thus, a
commonly used figure of merit for a storage device is its sector
failure rate (SFR), defined as the rate at which the ECC is unable
to decode any part of the sector. Sector failure rates are typically
extremely low (10 or smaller) and cannot be estimated by
simulation and counting. Thus, the estimation of sector failure
rates is done by first modeling the error statistics of the input to
the ECC decoder, and then using the model to estimate the SFR.
Because the model is analytically tractable, we can predict even
extremely small rates of sector failure.

In this paper, we examine a few existing flavors of SFR es-
timation based on modeling of error statistics. From a philo-
sophical standpoint, these approaches can be classified as micro-
scopic and macroscopic methods having their own advantages
and disadvantages. In Section III-A, we present a macroscopic
approach based on a multinomial model for error events. For this
model, we show how to estimate the model parameters from a
sample data set and estimate the SFR and confidence bounds.
In Section IV, we present a microscopic method which is appli-
cable to channels with iterative decoding. Finally, we present an
example of SFR estimation.
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Fig. 1. Block diagram of a channel with an outer error correcting code.

II. DEFINITIONS

We assume that the outer ECC code is a Reed–Solomon (RS)
code whose -bit symbols are elements of . The RS en-
coder can produce codewords of length symbols.
For sufficiently large , the entire sector can be a single code-
word of the RS code. Otherwise, multiple codewords are inter-
leaved in a sector. An RS code can correct as many as symbol
errors in the received codeword and encode message
symbols in a codeword of length .

Denote the written and decoded codewords respectively
by and , where

. The error indicator vector is a binary
sequence defined as if and otherwise.
Denote its weight distribution by

where denotes the probability and is the
Hamming weight. Thus, the word failure rate (WFR) is

(1)

where is the ECC capability. Assuming that codewords
are interleaved in sector, the sector failure rate (SFR)
is given by the union bound: . Usually

if the word failures are independent and the
WFR is small. The quantity (1) is difficult to compute because
the error weight distribution of the error vectors is analytically
intractable. Furthermore, the typical values for are so
small that it is infeasible to estimate them by simulation and
counting.

The traditional approach to estimate failure rates is to use a
model for error vector statistics and compute the failure rates an-
alytically. The model parameters are estimated using a sample
collection of actual error vectors for the given channel and its
inner code. This method requires far fewer number of error
vectors than to estimate the failure rates by directly counting
failures. In the following sections, we provide models for the
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Fig. 2. Simplified illustration of iterative decoding.

error statistics of the error vectors and show how to estimate the
word/sector failure rate.

III. MACROSCOPIC AND MICROSCOPIC APPROACHES

The errors at the output of a Viterbi detector are bursty and
localized because the ISI in the system is approximately time-
limited. For systems that use codes such as run-length limited
(RLL) codes and convolutional codes, we observe a similar phe-
nomenon that the errors tend to be bursty and localized. Since a
single bit error in a symbol produces a symbol error, we find that
a bursty sequence of bit errors usually causes a train of symbol
errors. However, for systems that employ iterative codes such as
low-density parity check (LDPC) codes or turbo codes, the erro-
neous bits can be scattered across the entire error sector instead
of being bursty. Fig. 2 is an illustration of iterative decoding.
Note that the code is applied to a set of input bits and being and
then passed through an interleaver . This creates a strong long-
range correlation of erroneous bits and symbols. The problem
is to determine good statistical models for both cases, i.e., for
more simple noniterative channels with bursty errors, and also
for more complex channels with iterative decoding.

Philosophically, all methods for estimation of the properties
of the error indicator vectors may be classified as either micro-
scopic or macroscopic. We say that a method is microscopic if
it attempts to capture the precise correlation among symbol er-
rors in terms of their locations. Likewise, the algorithm to es-
timate the model parameters uses the actual symbol error loca-
tions in the available training data set. In general, it is a diffi-
cult task to determine this precise microscopic model for itera-
tive coded channels because they are very complex due to the
long-range correlations present in the symbol errors. Further-
more, depending on the exact code and interleaver that is used,
each iteratively coded channel has its own characteristic micro-
scopic model. On the other hand, the macroscopic method at-
tempts to model only the weight of the error indicator vectors,
paying no attention to the actual locations of the bit or symbol
errors. The model estimation also relies only on the weights of
the error indicator vectors in the training data, rather than the
precise error locations.

The macroscopic method is generally simple to analyze: the
main problem is to model the weight distribution function and
estimate the model parameters from training data. From expe-
rience, the macroscopic approach also tends to work well for
simple noniterative codes. However, they tend to be inaccurate
for channels with iterative codes and long-range dependence be-
tween symbol errors prompting us to resort to a microscopic
model. Although a microscopic approach might yield more ac-
curate results, it is often difficult to find an accurate model as it

requires the knowledge of the exact code and interleaver used. In
the following sections, we consider two methods for SFR esti-
mation: a macroscopic approach based on the multinomial mod-
eling and a microscopic approach based on modeling the error
events with two types of components. These methods are dis-
cussed in detail below.

A. Multinomial Model

According to this model (a) an error indicator vector consists
of independent error events, and (b) an error event consists
of a collection of up to ones (representing symbols in error)
including the trivial error event with no symbols in error.

In practice, the nontrivial error events are so infrequent that
we assume that they do not overlap. Let the error events in an
error vector be denoted by , and their
weights by . Let for denote the proba-
bility of seeing an error event of weight symbols. This model
results in the multinomial distribution for the error vector weight

(2)

where is the number of events in the error indicator vector
with weight , and is the set of all combinations of indices

such that their sum is and the total weight
is

and

This is perhaps the most widely used model for modeling error
vector weights [1]–[7]. For example, Feng et al. [3] consider
byte size symbols and error events with a maximum length of

bytes. The model parameters are estimated using the
“common sense” approach based on the frequency of occur-
rence of each error event. Keirn et al. [2] examine both the multi-
nomial and block multinomial models.

The multinomial method is a macroscopic approach, because
we model the weight of error vectors rather than the individual
error symbol locations. The model parameters are

.

B. Markov Chain Models

Sometimes the symbol errors are modeled as Markov random
processes. An example is the Gilbert model [8], [9] or the gen-
eralized Gilbert model [10] which can be represented using a
state diagram. The model parameters are the unknown transi-
tion probabilities. These models are microscopic because they
explicitly model the error locations, not the error weight.

In this section, we give an example of a slightly richer model
than the Gilbert model. According to this model, given that
a symbol error has occurred the probability of seeing another
symbol error is , where is the run-length of symbol er-
rors leading up to that time. To reduce the model complexity,
we let for all . This yields the state diagram
shown in Fig. 3. When the chain returns to the zero state from
the nonzero state , the generation of an error event is
completed by attaching the final “0” to the run of consecu-
tive ones. The reduced complexity model is sufficient in many
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Fig. 3. Model for error event generation.

practical cases. In fact, a model with fewer parameters is prefer-
able because the model parameters can then be estimated more
accurately from limited data than a more complex model.

The probability of the th error event is

(3)

In the above definition, for all . For this
model, there is an additional step of finding the modeled weight
distribution which is done as follows.

Define the following matrix whose rows and columns indexes
are assumed to start from 0:

...
...

...
. . .

... (4)

The entries of are monomials in , and the coefficient of
is the probability of transition from state to state

whereas the presence of an in a term indicates that the tran-
sition induces a symbol error. Note that for a first-order model,
i.e., , (4) degenerates to the scalar .
Clearly, is the probability transition matrix for the state di-
agram in Fig. 3.

Define whose entries are polynomials in .
The powers of in enumerate the symbol errors in a code-
word of length . Thus, the entry is a polynomial in

in which the coefficient of is the probability of a run of
length starting at state and ending at state consisting of
a total of exactly symbol errors. Since we are primarily inter-
ested in the number of symbol errors and not the final state, we
have

(5)

where is a vector containing the initial probabilities of the
states, and is a row vector of length con-

sisting of ones. For simplicity, we assume that all error vectors
represent paths in the state diagram starting at the zeroth state. In
practice, this assumption has a very minimal effect on accuracy
of our estimates because the model order is much smaller
than the length of a codeword and the probabilities are
quite small. Thus, we take . Combining (1)

and (5), we obtain the following expression for the word failure
rate:

(6)

where is the coefficient of in the polynomial
. Note that the above expression is not computation-

ally very intensive. The quantity can be implemented
in roughly polynomial matrix multiplications. We can
also accumulate the coefficients of and higher powers of

after each multiplication.

C. Estimation of Model Parameters

Having chosen an appropriate model for the symbol errors, its
parameters are estimated from a library of actual error vectors
for the particular channel and codes used. Let the data set consist
of error indicator vectors .

First, consider the macroscopic approach. Let denote the
histogram of the error vector weights in the sample set of error
vectors: , where is the number of error in-
dicator vectors with weight and is the total
number of vectors in the data set . Let denote the
modeled weight distribution for the model with parameters

. Our aim is to determine the model parame-

ters for which the modeled weight distribution vector
matches the experimental weight distribution vector

. The optimal choice of the model parameters min-
imizes a cost function or a distance measure between the two
distributions.

Some researchers [11] have considered ad hoc cost functions
such as the mean squared error between the counted and mod-
eled weight distributions

(7)

or sometimes, the mean squared error between the counted and
modeled word failure rates (or equivalently, sector failure rates)

(8)

where and are the counted and modeled WFR
estimates for an error correcting capability of symbols.

Although the above cost functions are conceptually simple,
they are suboptimal. Indeed, the optimal model parameter is the
maximum-likelihood (ML) model estimate from the empirical
weight distribution. It is a fairly easy exercise to check that this
solution yields the so-called minimum relative entropy solution:

, where

(9)

is the familiar relative entropy function or the Kullback–Leibler
distance between the two weight distributions [12]. All of the
above optimizations can be done using a gradient descent algo-
rithm [13]. Compared to (9), the cost functions (7) and (8) tend
to place too much importance on matching the distributions for
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small values of index (usually large values of while ig-
noring the tails where is smaller. The result is that the tail
probabilities are estimated poorly.

We should note that our recommendation to use (9) does not
require a specific model. It could be a multinomial model, or any
other model with a known distribution . In other words, if
we have a model for the weight distribution , then the cor-
rect metric for “fitting” it to the experimental data is the min-
imal relative entropy (9), not (7) or (8) as used by some. Fitting
methods work well for noniterative channels, but again often
does not work for iterative channels.

For the microscopic approach, we solve the ML estimation
problem using the actual data set rather than the weight
distributions

(10)

where is the probability of observing the data set
assuming the model .

As an example, consider the estimation of model parameters
for the (microscopic) Markov model shown in Fig. 3. Let
be the total number of times that an error indicator vector from
the training set traverses the path from state to state
(for ) or looped-back to state (if ).
Similarly, let be the number of times that the path from state

to 0 is traversed. Evidently, is the number of times
that state is visited. Then, it is an easy exercise to show that
the optimal estimates for are given by

and is computed from using (3). Also, the modeled weight
distribution and WFR are found using the algorithm de-
scribed in Section III-B.

IV. MICROSCOPIC METHOD WITH TWO COMPONENT TYPES

We shall now extend multinomial model to SFR estimation
of iterative channels as well. Let denote an error event
(EE) of length in : it consists of ones followed by a
zero, e.g., . Note that we exclude the single-zero
event in the list of error events. A sequence of
consecutive zeros is called an error-free run of length .
Thus, we can always parse an error indicator vector into a unique
sequence of interlacing error events and error-free runs as
follows:

For example, is represented
as , where ,

, , , , , and
.

Main Assumptions: Rather than modeling the symbol errors
using a state model as in Fig. 3, we choose to model only the
isolated error events and the number of such error events. The
events are modeled as independent identically distributed
random objects. The number of such error events in a sector

Fig. 4. Model for isolated error event generation, where S and E denote the
start and end states.

is modeled as a random variable independent of the . Fur-
thermore, assume that each (but not the error-free runs )
is described by finite state model with start and end states
and , respectively, as shown in Fig. 4. In other words, condi-
tioned on the first symbol error, the remaining errors are given
precisely by the state model in Fig. 3 without the loop-back at
the “0” state, i.e., . The estimation of transition proba-
bilities in the trellis from experimental data can be derived in a
straightforward way using the ML estimation (10) described in
Section III-C, but it is not included in this paper for brevity.

Remark 1: We reiterate that the Markov model is used only
to model these nontrivial error events. The error-free runs are
not given by the Markov model, and we do not try to fit them
to the Markov model for its parameter estimation. Instead, the
number of error events in a codeword is modeled separately as
an independent entity. The PDF of the error-free runs is used in-
directly as described below. Thus, the algorithm is to parse the
experimentally observed error indicator vectors into nontrivial
error events (bursts of ones), and error-free runs , and ex-
tract the transition probabilities from the data
alone.

A. SFR Estimation Using Microscopic Method

By definition, is the word failure
rate, where is the maximum number of errors that the ECC
can correct. Given the number of error events in the sector,
we can also define the conditional word failure rate as

(11)
Here, we should note that if , then
according to our definition of an error event of length .

The probability that the error event has the Hamming
weight is calculated using (3) and estimated transition prob-
abilities of the Markov chain . In practice, given the transi-
tion probabilities of the Markov chain and the number of
error events , the conditional word failure rate can
be easily calculated recursively using a computer. As we already
mentioned before, the number of error events in a codeword is
a random variable. Therefore, its PDF must be estimated
from statistics obtained from real or simulated data. Given ,
the word failure rate is calculated as follows:

(12)
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Fig. 5. Empirical distribution Q(k) for an iterative SPC based channel.

Fig. 6. Empirical distribution Q(k) for an iterative TPC-based channel.

B. Estimation of

Collecting statistics for estimating probabilities and
requires long simulations or tests of real drives. But even after
lengthy testing, we rarely observe error events longer than some
small integer for moderate SNRs. Fig. 5 shows an example of
the simulation results for a perpendicular iterative channel using
a single parity check (SPC) code. In this case, the maximum
number of observed error events in a sector was (bottom
curve). Fig. 6 shows another example of the simulation results
in a perpendicular iterative channel using a turbo product code
(TPC) where the maximum number of observed error events in
a sector was .

Different experiments with SFR estimation show the
following.

1) We cannot apply (12) with for since this
leads to an abrupt change of the slope of SFR curves as a
function of at some and wrong SFR estimates
for . This is because the tail part of the sequence

is too small to be accurately estimated by counting,
yet crucial for estimation. Therefore, the distribution
must be extrapolated for .

2) The distribution can have different types of tails for
different detectors. For example, we found that iterative
channels using TPC and LDPC codes have exponential
tails

and iterative channels using SPC have tails with a Poisson
distribution

3) Having identified the tail type, we can use data fitting tech-
niques such as those described in the last section to choose
specific parameters of the distributions. Suboptimal met-
rics can also be used. For example, we can choose param-
eter that minimizes the following quantity:

where is an integer chosen in the range ,
and is some constant. A quadratic form is a
convenient choice.

4) Therefore, in (12), we use experimental values for
and modeled values for .

Remark 2: An experimental histogram for the number of non-
trivial error events per sector should be used as is. It could be
fancy for some iterative channels, so do not approximate it. The
tail of the histogram will be always missing due to limited sim-
ulation time. Do not use zeros for the tail. We can guess the
analytical shape of the tail (exponential, Poisson, or something
else). For different classes of iterative channels the guess could
be different. Choose the parameter(s) of the analytical expres-
sion for tail by matching with existing experimental part of tail
with analytical part. In our case, this last approach was working
well for all types of iterative channels.

C. Simulation Results

In the following example, we evaluate the performance of the
descriptive and predictive capabilities of various SFR estima-
tion methods. The descriptive capability refers to how well the
analytic SFR estimate from a data set matches the counted es-
timate from the same data set. The predictive capability refers
to how well the analytic SFR estimate from a data set matches
the counted SFR, which uses a much larger data set. Thus, to
evaluate the predictive capability of a method, we first estimate
the SFR analytically using a limited set of data. We then per-
form more simulations and use this data to get a more reliable
counted estimate, which usually yields more points on the SFR
plot. Finally, we compare the analytic estimate and the counted
estimates. Another way of viewing this is that we collect a lot
of data for the counting estimation but only a part of it is used
in the analytic estimation.

Consider a TPC system operating at 24 dB. Each sector con-
sists of symbols (including the ECC parity symbols)
which are 10 bits wide. The full data set contains 79711 sectors
and the partial data set contains 10% of this data. Suppose we
use an RS code with correction capability of symbol errors,
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Fig. 7. SFR estimate for the TPC system at 24 dB.

we require parity symbols. Thus, the code rate would be
. Fig. 7 shows the SFR estimates as a function

of using several methods from the partial data and counted
values from the full data set. These methods appear to be consis-
tent with each other and match the extrapolated counted values
well.

V. CONCLUSION

We examined several existing approaches to estimate SFR
for iterative and noniterative channels. Philosophically, they
may be classified as macroscopic and microscopic depending
on whether we model the error weights or the actual error
locations. For the macroscopic approach, we introduced the
well-known minimum relative entropy solution to estimate the
model parameters from a sample library of error vectors for any
chosen model. These can then be used to analytically compute
the word and sector failure rates. The macroscopic approach
tends to be easier to analyze and applicable to a wide range
of noniterative channels. However, it is inaccurate for iterative
channels where the underlying codes create long-range corre-
lations in symbol errors. For these channels, the microscopic

approach works better. We observe through simulations that the
microscopic models can be used for certain iterative channels
where the multinomial model fails.
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