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ABSTRACT

We address the problem of sampling of 2D signals with
sparse multi-band spectral structure. We show that the
signal can be sampled at a fraction of the its Nyquist
density determined by the occupancy of the signal in
its frequency domain, but without explicit knowledge
of its spectral structure. We �nd that such a signal
can almost surely be reconstructed from its multi-coset
samples provided that a universal pattern is used. Also,
the scheme can attain the Landau-Nyquist minimum
density asymptotically. The spectrum blind feature of
our reconstruction scheme has potential applications in
Fourier imaging. We apply the sampling scheme on a
test image to demonstrate its performance.

1. INTRODUCTION

It is known that the sampling rate of any sampling
scheme for a given class of multi-band signals is bounded
from below by its Landau-Nyquist minimum rate, equal
to the Lebesgue measure of the spectral suppose of the
signal. The Nyquist rate, which is the smallest rate
required to avoid aliasing when uniformly sampled, is
much larger than the Landau-Nyquist rate in many
cases. This is especially true for signals with poorly
packable spectral supports. An example of such a sig-
nal in 2D is one whose spectral support is a thin annular
region.

Our goal is to devise e�cient sampling and recon-
struction schemes for multi-band signals with their av-
erage sampling rates being as close to the theoreti-
cal minimum rates as possible. Furthermore, these
schemes will be both universal and spectrum blind, al-
lowing sampling and reconstruction of signals of a given
\spectral occupancy" without prior knowledge of their
spectral supports. The term spectral occupancy refers
to the ratio of the measure of the spectral support to
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the measure of its smallest bounding box. The univer-
sality and spectrum-blind features are critical for ap-
plications such as Fourier imaging, where the \spectral
support" corresponds to the support of an unknown
object that is being imaged, and the samples are taken
in the Fourier domain. In this paper we focus on the
problem of 2D sampling.

2. SAMPLING OF MULTI-BAND SIGNALS

Cheung and Marks [1] showed that multi-band signals
in 2D can be sampled and reconstructed at sub-Nyquist
rates. Their idea was to �rst sample the signal at the
Nyquist rate and then delete some samples periodically.
Their argument is that, using knowledge of the spectral
structure, the discarded samples can be recovered from
those retained. This method admits sampling at rates
that can be arbitrarily close to the minimum rate.

The simpler problem of 1D multi-band sampling has
been addressed in [2, 3, 4]. The ideas in [3] are gener-
alized to two and higher dimensions in [5]. Feng and
Bresler [3, 5] introduced the idea of universal spectrum
blind sampling. In this paper, we will provide an im-
provement over the the existing methods to achieve a
lower sampling rate and/or improved robustness (con-
ditioning) of the reconstruction, retaining universality
and spectrum blindness. We shall employ multi-coset
sampling for e�cient representation of 2D multi-band
signals and describe the algorithm for blind reconstruc-
tion.

Multi-coset Sampling

We will be concerned with the class of 2D continuous
functions x(t) of �nite energy and whose Fourier trans-
form has a known bounded support. Every such signal
x(t) can be perfectly reconstructed from its samples
x(n) at the Nyquist rate associated with the bounding
box on its spectral support. If x(n) can be perfectly re-
covered from its nonuniformly decimated version, then
by acquiring, in the �rst place, only the samples re-
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Figure 1: (a) Spectrum of a 2D multi-band signal. The
spectral support is shown in black and the active cells
in grey. (b) Multi-coset sampling consisting of 3 cosets
out of a possible set of 12.

tained in the decimation, the signal x(t) can be per-
fectly recovered from its nonuniformly sampled version.
Therefore, it is su�cient to focus our attention to dis-
crete index signals.

Let B(F) denote the class of 2D discrete index multi-
band signals x(n); n 2 Z

2 with �nite energy and spec-
tral support F , i.e. B(F) = fx(n) : X(f) = 0; f =2 Fg

where X(f) is the Fourier transform of x(n):

X(f) =
X
Z2

x(n) exp(�j2�fTn)

The spectral support F is assumed to be a �nite union
of connected regions in [0; 1]2. An example of a 2D
multi-band signal is shown in Figure 1a. We may de-
scribe multi-coset sampling in the following way. Given
two positive integers L1 and L2, we sample the x(n)
non-uniformly at the positions indicated by the follow-
ing set of vectors in Z2:

	 = fLm+ ci :m 2 Z
2; i = 1; : : : ; pg

where L = diag(L1; L2) and fcig are p � L1L2 distinct
vectors chosen from the set

N (L1; L2) = f0; : : : ; L1 � 1g � f0; : : : ; L2 � 1g

This is illustrated in Figure 1b. The set fcig consti-
tutes the \sampling pattern" and the average sampling
rate of the above scheme is p

L1L2

. For convenience we
de�ne the following decimated 2D sequences:

xi(m) = x(Lm+ ci); m 2 Z
2

These sequences contain the samples taken on the p

cosets that make up the set 	. The following section
describes how the reconstruction from samples is ac-
complished.

3. RECONSTRUCTION FOR KNOWN F

We shall partition the set [0; 1]2 (one period of the 2D
spectrum X(f)) into L1�L2 smaller cells of size

1

L1

�
1

L2

. Denote these \spectral cells" by Cli for each li 2
N (L1; L2); i = 1; : : : ; L1L2:

Cli = C0 +L�1li; C0 = [0; 1

L1

]� [0; 1

L2

]

In other words, Cli is obtained by translating C0 by
L�1li. The cell Cli is termed \active" if Cli \ F 6= ;.
Let the active cells be speci�ed by the following set of
vectors

K = fl 2 N (L1; L2) : Cl \ F 6= ;g

� fk1;k2; : : : ;kqg � N (L1; L2)

which we shall call the \spectral index set." The spec-
tral occupancy 
L = q

L1L2

of F at resolution (L1; L2)
is bounded from below by the Lebesgue measure of F .
De�ne vectors

z(f) =
�
X(f +L�1k1); : : : ; X(f +L�1kq)

�T
consisting of the pieces of the active spectrum of X(f),
and

y(f ) = L1L2
�
X1(Lf)e

j2�cT
1
f ; : : : ; Xp(Lf)e

j2�cTp f
�T

It can be shown [5] that the quantities z(f) and y(f )
are related by

y(f) = AKz(f); f 2 C0 (1)

where AK is the matrix whose entries are

AK(r; l) = exp(j2�cTr L
�1kl)

If the spectral support, F , of the input signal is known,
then so are the sets Ki. In this case, sampling patterns
exist for which AK has full column rank. Universal
patterns, for example, guarantee this condition. This
is discussed in detail in the next section. In particular,
a universal pattern corresponding to p = q will yield an
average sampling rate of q

L1L2

= 
L which, as can be
seen geometrically, can be made arbitrarily close to the
measure of the set F (i.e. the Landau-Nyquist rate) by
picking su�ciently large L1 and L2. We now present an
improvement of the scheme just described. The idea is
somewhat related to [4], but applies to 2D and has the
elements of universality and spectrum blindness which
[4] does not.

Let us further partition the cell C0 into M1 �M2

smaller \subcells." For the moment, we shall think
of M1 and M2 as being large integers. The basis for
choosing them will be explained later. Let the subcells
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be indexed as fs1; s2; : : : ; sM1M2
g in an arbitrary way,

e.g. lexicographically

sM1j+i+1 = s0 + ( i
M1L1

; j

L2M2

)

s0 = [0; 1

M1L1

]� [0; 1

M2L2

]

for 0 � i < M1 and 0 � j < M2, is an ordering of the
subcells. We de�ne the following spectral index sets:

Ki = fl 2 N (L1; L2) : (L
�1l+ si) \ F 6= ;g

� fki1;k
i
2; : : : ;k

i
qi
g � N (L1; L2)

where qi, the cardinality of Ki, represents the number
of \active subcells" that overlap at si when the input
signal is decimated by L. An active subcell s 2 [0; 1]2

is, of course, one that is not disjoint from F , i.e. s\K 6=
;. It can be veri�ed, on the i-th subcell, that

y(f) = AKi
zi(f); f 2 si (2)

where AKi
(size p � qi) and zi(f ) (size qi � 1) are

de�ned as

AKi
(r; l) = exp(j2�cTr L

�1kil) (3)

zi(f) =
�
X(f +L�1ki1); : : : ; X(f +L�1kiq)

�T
(4)

If we choose a universal sampling pattern correspond-
ing to p = q0(M1;M2)

:
= maxi qi, then each of the

above equations will be invertible, yielding a stable re-
construction procedure. Therefore

z(f ) = A
y
Ky(f )

This equation relates the pieces of the 2D spectrum
X(f) to the Fourier transforms of the multi-coset sam-
ples. The reconstruction of x(n) can now be accom-
plished using a 2D multi-rate digital �ltering system
[6]. The continuous function x(t) can be recovered from
x(n) using a 2D sinc interpolation.

The obvious advantage this scheme o�ers over the
previous one is the reduction in sampling rate. The av-
erage sampling rate for the scheme described is there-
fore equal to q0(M1;M2)=L1L2. Note that, for a given
spectral support F , we have q0(M1;M2) � q, since
the maximum number of subcells overlapping anywhere
(due to aliasing) cannot exceed the total number of ac-
tive cells. In fact, we expect the inequality to be rather
loose in many real cases. As an example consider the
following rather extreme situation:

F =

M1M2[
i=1

(L�1
li + si)

All cells are active (i.e. q = L1L2) at resolution (L1; L2).
Even so, the signal can be recovered from its samples

taken at the theoretical minimum rate of 1

L1L2

, since
the maximum number of overlaps at this resolution is
q0(M1;M2) = 1. The formulation of the problem in [5]
is a special case of the proposed scheme corresponding
to M1 = M2 = 1, while the one in [6] corresponds to
the case M1 = M2 =1. Increasing M1 and M2 gener-
ally causes q0(M1;M2) (and hence the average sampling
rate also) to decrease, though not necessarily monoton-
ically.

4. SPECTRUM BLIND

RECONSTRUCTION

Feng and Bresler [3, 5] demonstrate that multi-coset
sampling allows reconstruction of multi-band signals
without using explicit knowledge of the F , provided
that a bound on the quantity 
L at a particular res-
olution (L1; L2) is known. It turns out that the same
algorithm is applicable to spectrum blind reconstruc-
tion in our proposed scheme also. In the context of
blind reconstruction, the following de�nition is useful:

De�nition 1. A sampling pattern fcig is termed \uni-

versal" if the p� p matrix AK has full column rank for

every subset K � N (L1; L2) of no more than p ele-

ments, i.e. jKj � p.

We assume that the sampling pattern used is uni-
versal, as we shall see, since they allow spectrum blind
reconstruction. The following is an important conse-
quence of universality.

Theorem 1. Suppose p � q + 1 and fci; i = 1; : : : ; pg
be a universal pattern and K1;K2 � N (L1; L2) are such
that jK1j = jK2j = q. Then K1 = K2 if and only if

R(AK1
) = R(AK2

) where R(�) denotes the range space.

Proof. Suppose that R(AK1
) = R(AK2

). Furthermore,
if K1 6= K2 then let K = K1 [ fkg for some k 2

K2nK1. Then, clearly R(AK) = R(AK1
) and hence

rank(R(AK)) = q. This observation does not concur
with the universality of the sampling pattern, since
jKj = q + 1 � p. Hence K1 = K2. The converse result
needs no proof.

We shall attempt to solve (2) in two steps on each
subcell. The �rst step is to compute the spectral in-
dex set Ki and the second is to �nd zi(f ) by solv-
ing those equations. Observe that (2) implies that
Y (f) 2 R(AKi

), for f 2 si and each i. This imme-
diately suggests the following solution to step 1 of the
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problem

K̂i = arg min
jKj=q

Z
f 2si

kPKy(f )k
2df (5)

= arg min
jKj=q

trfPKRig (6)

where PK = I �AKA
y
K is the projection matrix onto

R(AK)
? and

Ri =

Z
f 2si

y(f )y�(f )df (7)

The quantity Ri can be computed using a 2D multi-
rate system related to the one used for reconstruction.
There, however, remains the question of whether or not
the minimizing solution is unique. Fortunately, we can
answer that question in the a�rmative:

Theorem 2. The minimization (6), almost surely has

a unique solution, provided that the functions zi(f) are
random variables chosen according to continuous prob-

ability distribution.

Proof. Suppose that Ka and Kb (of q elements each)
are distinct solutions to (6), then we have

y 2 R(AKb
) \ R(AKa

) (8)

Meanwhile, Theorem 1 says that the q-dimensional sub-
spaces R(AKa

) and R(AKb
) are di�erent since Ka 6=

Kb. Therefore the intersection of these subspaces is at
most (q � 1)-dimensional, and consequently has mea-
sure zero in its q-dimensional parent space. Therefore
the condition (8) is almost surely not satis�ed, since
zi(f ) are randomly chosen according to a continuous
probability distribution.

Of course, we can always construct pathological exam-
ples, where (6) has multiple solutions. Note that (6) is
essentially a best subset selection problem.

There is an issue concerning the choice of the sub-
cell size (or equivalently the integersM1 and M2). The
smaller the size of the subcell, the more sensitive (6) is
to the e�ects of input sample noise (in terms of SNR).
For larger subcells, the averaging operation in (6) im-
proves the SNR, however, this is accompanied by an
increase in the average sampling rate. There is a com-
promise to make between a good sampling rate (small
subcells) and lower sensitivity to input noise (large sub-
cells)

5. APPLICATION TO FOURIER IMAGING

In many coherent imaging modalities such as imaging
by sensor array arrays or SAR as well as MRI, the avail-
able information is a set of samples of the Fourier trans-
form, rather than the original object itself. The prob-
lem, therefore, is to recover the object from its Fourier

samples, which is an exact dual of the sampling prob-
lem considered in this paper with the roles of spatial
coordinates and frequencies interchanged. Our results
on sampling of 2D signals can be directly applied to
this problem.

Typically, the object itself would sparse, or can
be made sparse by a linear time invariant operation.
The implication is that one only needs a small fraction
of Fourier samples, to reconstruct the original object.
Note that the advantage of a linear time invariant op-
eration is that the Fourier transform is multiplied by
its corresponding frequency response.

6. SIMULATION RESULTS

The sampling and reconstruction was tested on an im-
age, Figure 2, of spatial occupancy about 9%. The
test image has a resolution of 336� 640 pixels, instead
of being a 2D function of continuous spatial variables.
Such an image was chosen merely for convenience. The
samples of the signal are taken in the transform do-
main according to a multi-coset sampling scheme cor-
responding to L = diag(4; 5).

If the subcells si are chosen to image pixels (the
smallest possible), this corresponds to M1�M2 = 84�
128, or a total of 10572 subcells. Then the maximum
number of overlaps on any subcell occurring due to
sub-sampling turns out to be q0(M1;M2) = 7. There-
fore p = 8 is necessary for perfect reconstruction from
samples. This corresponding to a sampling rate of
8

20
= 0:4, a 60% improvement over the Nyquist rate

for this signal. To approach the Landau-Nyquist rate
of 0.09, larger L1 and L2 can be used. Based on the
sampling performance on random images, a search over
256 random patterns of length p = 8, yielded a good
pattern,

ci = (
i mod 4; 
i mod 5)

f
ig = f1; 2; 8; 10; 15; 16; 17; 19g

which was used in all simulation experiments. White
noise of known variance was added to the Fourier sam-
ples in all simulations. This is a reasonably good model
that account for nonidealities in the system acquiring
the samples. This may be incorporated into (2) by
adding, to its right-hand side, a noise vector n(f) sat-
isfying E

�
n(f )n(f0)

�
= �2�(f�f0). The spectral sets

Ki are found by solving (6) on each subcell. Since this
subset selection problem is NP complete [7], a combi-
nation of a greedy algorithm and an exhaustive search
(for the case when the greedy algorithm returns too
large a residual in (6)) was used. Figures 2 and 3 show
the original image and reconstructed image when the
input SNR is 41 dB. The algorithm failed to compute
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the correct Ki in 0:16% of the cases, due the presence
of the input noise. The corresponding output SNR was
22 dB.
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Figure 2: Sparse test image: radar map of the US
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Figure 3: Image reconstructed from the samples of the
noisy test image.

The e�ect of changing the subcell size was studied for
a �xed input SNR of 21dB. The subset selection fail-
ure rates and the output SNR's are tabulated in Table
1. These simulations used a plain greedy algorithm,
which generally produces about 1% subset selection er-
rors even in the no noise case. An exhaustive search to
solve (6) is likely to produce better results. Among the
cases considered in Table 1, the optimal subcells are
blocks of 2 � 2 pixels. As the subcell size is increased
from its smallest size of 1 pixel, there is an improvement
in output SNR. But, for larger subcells, the condition
qi � p� 1 is violated more often for a �xed p, and this
eventually degrades the output SNR.
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Subcell Size Failure Rate Output SNR

1� 1 pix. 2.93% 13.94 dB
2� 2 pix. 1.29% 17.46 dB
3� 4 pix. 1.59% 14.62 dB
7� 8 pix. 8.95% 9.13 dB

Table 1: Subset selection failure rate and output SNR
for various subcell sizes. The input SNR was kept �xed
at 21 dB
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