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Filter Design for MIMO Sampling and Reconstruction
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Abstract—We address the problem of finite impulse response :

(FIR) filter design for uniform multiple-input multiple-output W) izl 5
(MIMO) sampling. This scheme encompasses Papoulis’ gener- zo(t) ; = %olt)
alized sampling and several nonuniform sampling schemes as Channel “t=nT |Reconstruction

special cases. The input signals are modeled as either contin- : o

uous-time or discrete-time multiband input signals, with different  zp_;(t)— X —=Zp-1(t)
band structures. We present conditions on the channel and the up-1(t) ;'ZP*I["}

sampling rate that allow perfect inversion of the channel. Addi-
tionally, we provide a stronger set of conditions under which the
reconstruction filters can be chosen to have frequency responses
that are continuous. We also provide conditions for the existence
of FIR perfect reconstruction filters, and when such do not exist,
we address the optimal approximation of the ideal filters using
FIR filters and a min-max I, end-to-end distortion criterion. The In practice, digital processing is used to perform the channel

design problem is then re_duced to a standard $emi_-infinite I_inear inversion. Consequently, the channel outputs need to be sam-
program. An example design of FIR reconstruction filters is given. pled prior to processing, and the objective is to reconstruct the
Index Terms—Filter design, MIMO equalization, min-max  channel inputs from the sampled output signals. The resulting

criterion, multiband sampling, multichannel deconvolution, mul- 5 o) inversion problem reduces to one in sampling theory
tiple source separation, multiple-input multiple-output (MIMO)

channel, multirate signal processing, semi-infinite optimization, thatwe callMIMO sampling To focus on the sampling and re-
signal reconstruction. construction issues, we restrict our attention to the scenario of
a linear time-invariant MIMO channel with known frequency
response matrix. As appropriate in many applications, the input
|. INTRODUCTION signals to the channel are assumed to be multiband signals, with
ULTIPLE-INPUT multiple-output (MIMO) deconvo- possibly different band structures.
M lution or channel equalization involves the recovery of The continuous-time model for the MIMO channel and its
the inputs to a MIMO channel whose outputs can be observestonstruction [13] is illustrated in Fig. 1. The linear time-in-
and whose characteristics may either be known or unknowmriant channel haB multiband inputs:,.(¢),r = 0,..., R—1,
The unknown inputs usually have overlapping spectra anghd P outputsy,(t), p = 0,...,P — 1. Only the sampled
hence, share a common bandwidth. MIMO deconvolution is @hannel outputs,[n] = y,(nT) are observed, and the goal is
important problem arising in numerous applications, including reconstruct the continuous-time channel inpytg).
multisensor biomedical signals [5], [6], multitrack magnetic Because the signal processing is usually done digitally, it is
recording [7], multiple speaker (or other acoustic sourcghnvenient to consider an equivalent discrete-time model for the
separation with microphone arrays [8], [9], geophysical dagstem. Since the channel inputs have bounded spectral sup-
processing [10], and multichannel image restoration [11], [12]qts we can convert the continuous-time channel model into
MIMO deconvolution or equalization might also be used ifhg jinear time-invariant discrete-time model in Fig. 2, where the
communications applications such as multiuser or mUIt'aCC%?e?quencesT[k] = 2, (kT,) represent samples of the underlying
wireless communications or telephone digital subscriber loo Sntinuous-time signalé taken at a sufficiently high rate. For ex-

[1] [2]. [4] when a simple linear preprocessor is desire mple,1/T, can be chosen equal to or larger than the highest

which does not use knowledge of the discrete nature of g, o Nyquist rates of any of the individual continuous-time in-

?é%gilstﬁagirgrl:?ill(t:::gn signals (or only uses it to adapt th&uts;zz,‘(t), r=0,...,R— 1. The discrete-time channel is rep-

resented by its frequency response maf¥{x] relating the in-

puts to outputs. Downsampling the outputs in the discrete-time
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L appropriate conditions on the channel and sampling rates, in this
Yolk] . . :
xolk] — *,®_, 2o[n] paper, we address the practical problem of implementing the
_ _ _ reconstruction system using FIR filters. We provide conditions
Glv] : ; for the existence of FIR perfect reconstruction filters, and when
such do not exist, we address the optimal approximation of the
33R-1[k] — ZP_1[TL] ideal filters using FIR filters and a min-mdx reconstruction
yp[k error criterion. We formulate the design problem as a semi-infi-
nite linear program. Semi-infinite formulations have been suc-
cessfully applied to other multirate filter design problems [33],
L [34] and solved using standard techniques [35]. Our FIR filter

z0[n) *,®_, -~ o[k] design formulation is fairly general and can be used to design
the interpolation filters for those generalized sampling schemes

Fig. 2. Discrete-time model for the MIMO channel.

: : Hly discussed above.
‘ L ' The paper is organized as follows. Section Il contains
zp-1[n] *’CD—’ — Zp-1[k] some basic notation and definitions. In Section Ill, we present
discrete-time models for the channel and reconstruction
Fig. 3. Discrete-time model for MIMO reconstruction. block. The channel inputs are modeled as multiband signals.

In Section IV-A, we present discrete-time versions of the
the input signals from the observed signaj$:]. The contin- results derived in [13]. In particular, we specify necessary and
uous-time inputs can finally be recovered from the discrete-tinggfficient conditions for the existence of reconstruction filters
sequences, [k] using a bank of conventional D/A converters. that are continuous in the frequency domain. This property is

In this paper, we present sufficient conditions for perfect rémportant in the context of FIR filter design, as we elaborate
construction in the discrete-time model with uniform subsankPon later. Finally, in Section V, we discuss the problem of FIR
p||ng (See []_5] and []_6] for necessary density conditions d’ﬁconstruction filter design for the MIMO sampling problem.
arbitrary nonuniform sampling) and conditions and a solutiofye formulate a cost function in terms of the filter coefficients.
to the related filter design problem. We will consider only uniMinimizing the cost produces the optimal filter coefficients.
form subsampling of the channel outputs. This sampling scherhiée problem may be recast as a semi-infinite linear program.
is fairly general and subsumes periodic nonuniform subsalfye present two design examples: one for multicoset sampling
pling of the MIMO outputs as a special case of uniform sutind another for MIMO sampling with two inputs.
sampling applied to a hypothetical channel with more outputs
[13]. Furthermore, several familiar sampling schemes can be Il. PRELIMINARIES

viewed as special cases of MIMO sampling. For example, in Pa\ye pegin with some basic definitions and notation. Denote

poulis’ generalized sampling [17], a single lowpass input signgle discrete-time Fourier transform ofufu] € (2 by the peri-
is passed through a bank bf filters, and the outputs are sam-gic function

pled at1/Mth the Nyquist rate of the signal. This fits in our

framework as a single-input multiple-output sampling problem, X[y = Z x[k]e 2™k,

i.e., R = 1. Additionally, if the channel filters are pure delays, kez

we obtain multicoset or periodic nonuniform sampling of th : . .

; . . X . . Fn general, we denote time signals (either scalar-valued or

input signal, which has been widely studied [18]-[30], as it al- ; . :

i . vector-valued) using lower-case letters and their Fourier

lows the approach of the Landau minimum sampling rate for :
. ; . . rzilnsforms by the corresponding upper-case letters. Denote the

multiband signals [31]. Seidner and Feder [32] provide a natura} - ; ; .

. - . : class of complex-valued, finite-energy discrete-time signals
generalization of Papoulis’ sampling expansions for a VeCtggndlimited to the set of frequencigsc [0, 1) b
input with its components bandlimitedfte B, B]. Clearly, their q =t y
sampling scheme is also a special case of MIMO sampling. B(F)={z[k] €>: X[¥]=0, Vv e [0,1)nF}. (1)

We studied the continuous-time MIMO sampling problem ’ /
and presented necessary and sufficient conditions for perfectWe denote the class of complex-valued matrices of &ize
stable reconstruction of the channel inputs from uniform sam by C* %~ | the conjugate-transpose Afby A | its pseudo
pling of the outputs in [13]. Importantly, we demonstrated homverse byA', and its range space ®/(A). For a given matrix
to achieve stable sampling and reconstruction at rates lower thnlet Az ¢ denote the submatrix ol corresponding to rows
the Nyquist rate of each of the individual inputs and, in sormadexed by the seR and columns by the s&. The quantity
cases, even at a combined average rate lower than the Landay denotes a submatrix formed by keeping all rowsAdbut
rate of each of the individual inputs. This provides motivatioanly columns indexed b¢, whereasdr , denotes the subma-
for using the MIMO sampling theory to design and implemeritix formed by retaining rows indexed I and all columns. We
MIMO deconvolution and source separation systems. use a similar notation for vectors. Hen€y, is the subvector

In this paper, we examine the related problem of finite inef X corresponding to rows indexed . We always apply the
pulse response (FIR) filter design for MIMO reconstruction filsubscripts of a matrix before the superscript. Therem%C is
ters. Whereas [13] only demonstrates the existence of ideal (ithg conjugate-transpose Afz . When dealing with singleton

unrealizable) filters for stable perfect reconstruction subject itadex setsR = {r} orC = {c}, we omit the curly braces for
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readability. Therefored,. . andA, . are therth row and the:th We model the reconstruction block as follows:

column of 4, respectively. For convenience, we always number

the rows and columns of a finite-size matrix starting from 0. For E[k] =) hlk — nL]z[n] (5)
infinite-size matrices, the row and column indices range dver nez

As aresult of the above notation, we have the following straig%hereh
forward proposition that is used later.

Proposition 1: Suppose thak € CZ and thatl is theL x L
identity matrix. ThenXx = Ix X forall K C {0,...,L—1}.
Additionally, if Xx. = 0, wherek¢ is the complement ok,
thenX = I.,]CX/C-

[k] € C*¥ is the impulse response matrix of the re-
construction filter.

From (5), it is obvious that the entire system consisting of the
channel, subsampling, and reconstruction is invariant to time-
shifts by any multiple of_, i.e.,

The identity matrix of sizeV x N is denoted by 5 and the T — %= z[—nl]—Z-—nl], VYnel
zero matrix by0. Finally, suppose thaf is a subset oR or Z,
anda is an element oR or Z; then Conversely, (5) describes the most general linear transformation
that allows this invariance. The discrete-time Fourier transform
S®a={s+a:s5€S}, SCa={s—a:s€S} of (5) is X[v] = H[v])Z|Lv] for v € [0, 1), whereH]v], which
a8 ={as:s€ S}, Smoda={smoda:seS} is the discrete-time Fourier transform bfn], is called there-

» ) . ) construction filter frequency response matr8inceZ[v] is a
denote the positive and negative translations, scaling, and Hé‘?iodic function. we have

modulus ofS by a, respectively.
/

= l I , 1
[ll. SAMPLING AND RECONSTRUCTIONMODELS X[V + f} - H[V + E}Z[LV]’ Petve {0’ f) - ©)

Fig. 2 depicts a discrete-time MIMO channel with input$ ot » _ {0,1

{zolk],...,zr—1[k]} and outputs{yolk],...,yp—1[k]}. Let pactly as
R = {0,1,...,R — 1} andP = {0,1,...,P — 1} denote

., L = 1}. We can now write (4) and (6) com-

index sets for the channel inputs and outputs. We mogdg], Z[Lv] =G[v]X[V] )
r € R as multiband signals,.[k] € B(F,), where thespectral X[v] = H[V|Z[Lv] ®)
supportZ,. C [0,1) is a finite union of disjoint intervals:

N, forv € [0,1/L), whereX[v] € CLR is defined as
Fr= [am,bm), ar1 < bp1 < apa <...<arn, <brn,. |: lj|

n=1 XRZ-‘,—T[V] =X, |lv+ —|, (’I“7 l) ERXL (9)

2 L
Let the channel inputs and outputs be expressed in vector fogl% j-[y] € CLR is defined analogously, whereas
as Glv] € CP*EL andH[v] € CPRLXP are themodulated
[k] :(xo[k] z1lk] - atR_l[k])T channel and reconstruction frequency response matrices

T which are defined as
y[k] Z(yo[k] yilk] - yP—l[k]) :

The MIMO channelis modeled as a linear shift-invariant system
with channel impulse response matgik] € CP*%. The entry
grp[k] corresponds to the filter that sends fite input to the

rth ou_tput. The input-output relations in the time and frequencyln the next section, we provide precise conditions for stable
domain are thus reconstruction of the channel inputs from the subsampled output

1 l
gp.,RlH’[’/]:EGpr |:I/ + z} (p,r,1) € PxRxL (10)

!
Hptgrp V] =Hrp [V n Z]’ (p,r,1) € PxR x L. (11)

y[k] =g * z[k] = Z gk — K']a[K] sequences. In particular, for FIR implementation reasons, we are
Ney interested in a reconstruction filter matd[v] whose entries
Y[v] =GV X|v] (3 are continuous iwv. Specifically, the continuity guarantees that

the approximation error resulting from the FIR implementation
wherex denotes convolution, an¥ [v], Y[v], andG[v] are the can be made arbitrarily small by choosing sufficiently long FIR
discrete-time Fourier transforms efk], y[k], andg[k], respec- filters. This point will be elaborated upon later.
tively. We callG[v] thechannel frequency response matiThe
channel outputs are uniformly subsampled by a factoL of IV. CONDITIONS FORPERFECTRECONSTRUCTION
and the resulting vector sequence is denoted[ay = y[nL],

n € Z. Using (3), we now have A. General Case

L - In this section, we present the condition for perfect recon-
1 «— v+1 1 «— v+1 v+1 struction from the MIMO channel outputs in the discrete-time
2= 3 v[P ] = S e[ x [ @
=0 =0

T T T setting. More specifically, we provide conditions on the channel
frequency response matri%[v] that guarantee stable recon-
forv € [0,1), which essentialy describes the input—output relatruction of the inputsvith/withoutthe continuity requirement
tion of a filterbank with vector-valued inputs. on the reconstruction filter matri# [v]. These results are
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discrete-time versions of their continuous-time counterpartswhereI is the RL x RL identity matrix. SinceG, i, [v] €
[13]. CPxIk (14) requires tha, i, () have full column rank a.e.

LetH = B(F;) x --- x B(Fg) denote the class of inputs to  As in the continuous-time case [13], it can be easily verified
the MIMO channel. Thenl is a Hilbert space equipped withthat H[v] is continuous if and only ifH[v] is continuous on
the inner productz, w) = 3, ., w”[n]z[n] for allz,w € H.  [0,1/L], and the following periodicity conditions hold:

Naturally, ||z|| = /{(=z,z) is the the norm oft € H. We first 1
review an important notion callestability of MIMO sampling Hi o [— + y} = Hi o[V] (15)
[13], [15]. b |

Definition 1: The MIMO sampling scheme is called stable ifor all £ C {0,...,RL — 1}, whereX’ = (K @& R)modRL.
there exist constantd, B > 0 such that As we will see later, in order to achieve continuity Hfv], it

is convenient to impose continuity @], and this produces a
Allz))* < Y llz[n]ll* < Blle|*, Ve €H.  (12) similar condition org[v]. Specifically, ifG,,,[v] is continuous
nez onF., (the closure off,.), thenG, i~ [v] is continuous o,
The implication of (12) is that we can reconstrucfrom and
z[n] stably in the sense that small perturbations in the inputs 1
or the channel output samples cannot cause large errors in the Gex [f + V} =Gox[V] (16)
reconstructed outputs. Note that in the absence of the MIMO
channel, i.e.yg[k] = =z[k], the condition (12) reduces to thefor all £ C {0,..., RL — 1}.
standard definition of stable sampling becarpg = y[nL] = The following theorem, which is the discrete-time version of
z[nL] is a subsequence afk]. similar results presented in [13], provides precise conditions for
The condition number of the sampling scheme isstable and perfect reconstruction of the channel inputs. We do
K = /B/A > 1, and it bounds the amplification of thenot prove these conditions, as they can be deduced in a manner
normalized 2-norm of the error due to the reconstructiorery similar to their continuous-time counterparts in [13]. Be-
filters [13]. In particular, the notion of stable sampling may béore stating the results, we point out that ess inf and ess sup de-
expressed as a frame-theoretic condition. See [36] for marete the essential infimum and supremum respectively, i.e.,
about frames and [37] and [38] for their application in sampling

theory. essinf(t) =sup{y:g(t) > v a.e}
Now, define the following index sets ess sup(t) =inf{y:g(t) < ya.e}
K, = {Rl +7:(r,]) e R x Landv + L € J—"T} for any real functiory. _ _ .
L Theorem 1: Suppose thaf¥[v] is such that7,,..[v] is contin-
K ={0,...,RL —1}\K, (13) wuous forv € F,, andG, x~[v] has full column rank for all

m € M,v € I, = [Ym»7¥m+1]; then, the MIMO sampling

for v € [0,1/L]. Just as in the continuous-time case in [13kcheme is stable, and the stability bounds are given by
we can decompose the intery@l 1/ L] into a union of intervals

whereC, is piecewise constant. A=L inf Amin(Glxc [V]Gax, [V]) (17)
Proposition 2: Suppose that sef&,, » € R have multiband velo,1/L] u
structure, as defined in (2). Then, there exists a collection of B=L sup Amax(Gex,[V]Gex,[V]) (18)
disjoint intervalszZ,,, and setsC™, m = 1, ..., M such that velo,1/L]
M Furthermore, the existence of a continuous reconstruction filter
U T - [0. l) and K, =K™. VveT matrix H|[v] is guaranteed if and only if
) L v ) m-
m=1
_ _ _ _ rank(Ge k- [V]) =|K™|
_ ThIS result is ea_sny demonstrated by using an argument very Vi € int oy =Y, Vo1 (19)
similar to the one in [29]. K
We writeZ,, = [ym,Ym41) form € M = {1,... M}, with rank(Ge. 7, ([Yml) =|Tml, m e M (20)
Y1 < v2 < ... < YM+1, such thatyl =0 andeH = 1/L. where
For convenience, we also define
lof TIn =KmuKk™l m=2.. M 21)
am = |K™. Ji =KiU((KM @ R) modRL).

Equation (13) implies that all nonzero entries &fv] are Theorem 1 provides conditions for stable reconstruction and

captured inXx, [v]. Hence, from (7) and (8), we concludecontinuity of at least one solutioH[z/] who_se_ corresponding
that for perfect reconstructioftfx, «[]Ge x, [v] = I}, | and modulated frequency response matrix satlsflgs (14). [Note that,
Hic: o[V]Ge s, [V] = 0 must hold almost everywhere (a.e.)in general, (14) does not have a unique solution beckijs€

This characterization o that provides perfect reconstruction?’-] The continuity requirement is desirable from the viewpoint
can be written compactly as of implementation, as we see in Section V. A simple neces-

sary condition for perfect reconstruction using continuous re-
H[VGex, V] =Tex,, a.e. (14) construction filters is provided by the following.
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(@) illustrates that owing to the band structure of the inputs, perfect
0 " 04 ' 1 reconstruction is possible even with< RL.
B. FIR Reconstruction
(b) . . Under certain conditions, perfect reconstruction is realizable

0 025 05 1 using FIR filters. We say that a filter is FIR if its impulse re-

sponse has a finite number of nonzero terms. An FIR filter need
not be causal but can be made causal by adding a finite delay.
The obvious advantage of having FIR reconstruction filter is
Corollary 1: Perfect reconstruction using continuous recorsimplicity of implementation.
struction filters is only possible i > max,, | J|- For convenience, we consider only FIR channels because they
Note that when all inputs have identical band structéire=  can be parametrized using a finite number of parameters. We
F, ¥Vr € R, the necessary condition of Corollary 1 reducegjj| see in Theorem 2 that the FIR assumption on the channel
to the familiar condition” > RL. However, in general, the does not guarantee perfect reconstruction using FIR filters un-
spectral band structure of the inputs can be such that a smaiefs the channel satisfies additional conditions. (More generally,
P (even the bound in the corollary) suffices. This is illustrateg channel with a rational transfer function matrix can also be

in the examples. _ _ . ~ described using a finite number of parameters, but we do not
In Theorem 1, the assumption ti@f] is continuous iV is  consider this case here.) Let

made for convenience; it is possible for continuous perfect re-

construction filter matrix [v] to exist, despite the lack of con- G*[z] = Z glk]z=*

tinuity of G[v]. However, this is rare, and the conditions in the kez

general case are cumbersome. On the other hand, perfect recon- .
struction is not possible whe, x- [v] is rank deficient. In this denote the’-transform ofg[k]. We use the superscript™hers
case, one could compute the solution that minimizes the lelfsdistinguish between thg-transform and the discrete-time

squares approximation error. We do not consider this problézrﬂuri('lr transfprm G| (trz:;msfer function and frequency
here; however, see [39] for related work. response matrices, respectively). Then, clearly

Example 1: Consider a MIMO channel wittk = 2 inputs
andP = 5 outputs. Suppose that the inputgk] andz; [k] have

spectral supports illustrated in Fig. 4, namely Let H*[z] denote the Z-transform of A[k]. Finally, let
G*[z] and H*[z] be the Z-domain analogs of the modu-
lated frequency response matriagp/] and H[v]. From (10)
and (11), we see thaf* o, [2] = +G;, [ze/"/L] and

Fig. 4. (a) Spectral support of (&, [v] and (b)X [v] for Example 1.

here

G[v] = G*[exp(j2nv)], v E€R.

Fo =1[0,0.4) U[0.75,1.0) and F; = [0.25,0.5)

zjnndcg)[z]n(]i;[rrwigt\elzvsm:;ejoél(;vzltn%t;:.ontmuous channel transfe}riﬁl%p[z] _ H:p[zeﬂ”’/L] for (pr,l) € P xR x L.
- puts: Accordingly, we callG*[z] and H*[z] the modulated channel
1 1 and reconstruction transfer function matrices.
1 14 2-1 Theorem 2: Suppose that the channel impulse respaise
Glv] = 271 0.25+ 272 |, where z = /2™, is FIR, and let
1405271 14272 L-1 M
0.25+ 22 z7t K= K™ @ RI) mod RL 23
22) ,U mglu ® RI) mod RL] (23)

Let L = 4 be the subsampling factor. For this choice, we have
M =2,7; =[0,0.15), andZ, = [0.15,0.25). Using (13) and and@ = |K|. Then, perfect reconstruction using an FIR recon-

(21), it is easy to check that struction filter matrixH*[2] is possible if and only if? > @,
and the@ x @ minors ofG;} «[z] have no zero common to all
Ky ={0,2,3,6} exceptz = 0 orz = co.
Ky ={0,3,6} Proof: The coprimeness condition on the minors guaran-

B B . tees the existence of an FRg: , [z] such tha{y. ,[2]G} x[2] =

Ji =K1 U((K> &2) mods) = {0,2,3,5,6} I and the periodicity conditions (15) and (16) hold. This is
T2 =K2 UKy ={0,2,3,6}. a standard result that can be proved using Bezout's identity
[40]-[42]. Furthermore, lettind{. ,[z] = 0, we also obvi-

Hence, by Theorem 7 > max,, [K™| = 4 is required for g1y havelr. ,[2]G% [z] = 0. Combining the last two re-
the existence of a reconstruction filter matfi{v| that achieves ¢ s we obtaiﬁi*[z](j*K[z] — I. «. SinceK™ C K, it fol-

perfect reconstruction. If we also require that the filters be copy,s that

tinuous, Corollary 1 states th&t > max, |J,| = 5 is neces-

sary. It can be verified numerically that (19) and (20) in Theorem H[V|Gexm V] =Texm, Vv eIy, (24)

1 are satisfied for the channel (22). Hence, we are guaranteed

the existence of a perfect reconstruction filter maffif’] that which is essentially equivalent to (14). Thus, we have found an
is continuous inv. This example, with? = 5 andRL = 8, also FIR realization of perfect reconstruction filters.
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Conversely, suppose thdi[k] is an FIR filter matrix Thus, Theorem 2 generalizes all these problems simultaneously.
achieving prefect reconstruction. The€@[r] and H[v] are In particular, whenL = 1 and all the discrete-time inputs are
analytic if v is viewed as a complex variable since bgflt] full-band signals, our result reduces to that of [42].
and h[k] are finite sequences. Because, by (24), the analyticExample 2: Let us reconsider the MIMO channel of Ex-

function H[v]|Ge k] — L.~ vanishes on an interval, it ample 1. It is easy to check using (23) that= {0,1,...,7}.
follows that it must vanish everywhere, and SinceP = 5 does not satisfy? > @ = |K| = 8, by Theorem
2, we cannot achieve perfect reconstruction using FIR filters
H[V]g._’]&"m [l/] = I._’]Cm (25) alone
holds for allv € R andm € M, rather than just € Z,,. For V. MINIMAX RECONSTRUCTIONFILTER DESIGN

fixedm € M andl € £, define(K™' = K,,, ® Rl)modRL and
W' = We Rl)modRL for an arbitrary¥ C {0,..., RL—1}.
Then, using the conditions (15), (16), and (25), we see that  In this section, we study the problem of reconstruction filter
design for a given MIMO sampling scheme. We have seen in

l l Section IV-A that under certain conditions on the channel and

Hw o [V1Ge o [V] =Hv.e {V + f} Goxcr {V + E} the class of input signals, perfect reconstruction is possible. Un-
fortunately, these ideal filters are not necessarily FIR filters.

Conversely, FIR filters do not generally guarantee perfect recon-

implying thatH[v]Ge s [v] = I~ for all I andm. There- struction of the channel inputs. Nevertheless, we can approx-

A. Reconstruction Error

:IWJCW = IW’,IC"”

fore, we obtainH[v]Ge x[v] = I.x for all v € R, where imate the ideal reconstruction filters using FIR filters chosen

K =, U,,[(K™ ® Rl)modRL]. Equivalently, we have judiciously so that an appropriate cost function, such as the
worst-case end-to-end distortion, is minimized.

H*[2]G% x[2] = Lo x (26) We model the input signals as discrete-time multiband func-

tions X, [v] = 0, v ¢ F,. withz € C, whereC is the constraint

in the Z-domain. If P < Q, then rankG} [z]) < @ — 1, setforthe channel inputs:

implying that (26) fails to hold. Similarly, if all th€) x @ minors

of G, x[z] share a common factor of the form € z¢) where zelC=A{z:|lz.| <m}

z0 # 0, thenG; [z] loses rank at = z,, and this contradicts ) ) _ )

(26) becaus®@{*[z] is FIR and cannot cancel the £ z) factor. for somez, > 0, € R, i.e., the input signal energies are

This proves the converse statement. ] upper bounded. The reconstruction filters are approximated by
The import of this result is that for FIR channels, perfect r&=IR filters, i.e., we enforce the following parameterization on

construction is possible using FIR filters, provided that the modl[V]:

ulated channel transfer function matgx| -] is sufficiently “di- ,

verse” inthe sense thatits null space is empty for &l {0, 0o }. Hyv]= > hypre™™™*, reR,peP (27)

Of course, we do not care about the cases 0 or z = co be- keQrp

cause no causality requirement is imposed on the FIR filters. ) .

Note, however, that the FIR channel is not a necessary requiflere Qrp = {k : iy < k < Iy + Ky — 1} is a finite set

ment but just a convenient case to consider. representing the I_o_catlons of the nonzero filter coefﬁments of
Suppose thaP = Q; then,G%  [z] is aQ x Q matrix, and H,,[v]. The quantities,, andk,., are the length of the filter and

the necessary and sufficient condition for perfect reconstructiif Position of its first nonzero filter coefficient, respectively.
using FIR filters reduces to Let e[k] = Z[k] — =[k] denote the reconstruction error due to

the FIR restriction. We will now derive an expression for
detGy [zl =Kz %, K+#0,deL 1
EW) =X - X[], ve [0, ﬂ (28)
This condition is similar to the perfect reconstruction condition
for filterbanks. Even in this special case, however, the resulf , nction of the input signals, the channel, and the recon-
generalizes the filterbanks result by the dependence on the bgﬁlgction filters alone. Define index sets
structure of the inputs via the skt
We point out some other relations of our results to existing I, =(RC)®r={Rl+r:1€L} (29)
results. The problem in [42] deals with existence of MIMO FIR I
equalizer filters in the absence of decimation of channel outputs, K, =K, NZ,={Rl+r:1 € L and (1/+ f) €F,} (30)
whereas the classical filter bank problem deals with a single-
input multiple-output channel whose outputs are decimated. Thoe eachr € R. Itis clear from (9) and (29) that
present problem deals with the existence of an MIMO FIR re-
construction filter in the presence of decimation. The solution X7 [v] = (X, [v] X, [v+ %] - X, [v+ E2])"
depends not only on the channel transfer function magifix]
(asin[42]) but on the decimation factéra well (as in the filter with a similar expression fo®'; [v], for eachr € R, i.e.,
bank problem) and the band-structure of the inputs thrdlGgh these quantities are the lengthvectorized representations of
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X, [v] and X,.[v], respectively. Hence, the energy«fcan be Note that the condition:, € B(F,) implies that some entries
expressed as a function &fv] using Parseval’s theorem: of Xz, [v] necessarily vanish due to (34) becaiikg, is a diag-
onal matrix with zeros or ones on the diagonal. In other words,
ller||* = / |E,[V]|?dv = / €z, [V]|*dv.  (31) Xz, [v]is notan arbitrary vector i®’L**. From (35) and (37),
J10.1] J0,1/L] itis clear that if thekth component oft 7_[v] vanishes for some
Similar relations hold for:,. and other signals in terms of thek, then theith column ofI"*[] also vanishes. Hence, the range
vectorized version of their discrete-time Fourier transformspace of T"*[v])* equals the signal space for inpymnamely,
Now for eachr € R andv € [0,1/L], (7) and its analog for Xs[v]. Now, it follows immediately that we can drop the con-

7, [v] yield straintz, € B(F;) in (41) to obtain
X1 [v] =Hz, J[VIGIX]] T2 = sup [T = sup  ouax(T7[V]) (42)
S HraGer XLl (32 e e
= oV|Ye 1, |V LV )
eR o * g where||T"*[v]|| is the spectral norm of matriX"*[v] for each

» v, ando,ax(-) is the largest singular value.
where the second step holds because the {&t} partition

{0,1,..., RL — 1}. Therefore, (28) and (32) give us B. Cost Function
E7 [V] = X7 [v] - Xz, [V] Our goal is to design an FIR reconstruction filter ma_ﬂ{cu]
_ Py Py such that a measure of the reconstruction estigsrminimized.
= ;HI W1Ge 7. WX, [V] = X7, [V] From (31) and (36), we have
sE
=3 (HzlvlGur. V] - 60.10) Xz (0] (33) el = / H > Il Vv @3
SER 0,1/I)]

whereé,. is the Kronecker delta function, add is the identity Clearly, the above expression is completely parameterized by
matrix of sizeL x L. SinceX_  [v] captures all the nonzerothe coefficients of the filteH,,. ,[], namely
components o'z, [v], we can invoke Proposition 1 to write

h" ={hypr: peP, ke Qp}

XIS [l/] = Es,uXIS [I/] (34
becausél”*[v] depends only oH,. ,[v] andG, ;[v]. Conse-
where quently, for each- € R, the set of coefficientd” (or, equiva-
lently, therth row of H[v]) can be optimized independently of
Es. II KewdKo T (35) the others by minimizing a cost that measures the fidelity of re-
is a diagonal matrix with zeros or ones on the diagonal. Hen&@nstruction of the'th input,
(33) and (34) yield \We choose the cost function to be the norm of the erran
the worst case over alandz € C, i.e.,sup, cc max,¢cr ||e||.
Er, W] =) T[] X1, [V] (36) Thus, we seek the solution to
SER
< min sup max ||e,|| = IIllIl maxsup llex]]-
T[] :('HI,,o[V]go,IS V] — 5TSIL)ES,V- (37) H:FIR ,cc reR FIR reR ,

From our earlier argument, this decouples into the followfhg

We point out that if [/] is a perfect reconstruction filter matrix,
P [v]isap independent subproblems:

then using (14), it is easily shown that

-l = C.(h"), ER
T[] = (HI,,o[V]g.,IS ] - 5rsIL) —0 (38) 11}1Llrnilép||€ | = H}lln (h"), r
For simplicity, we rewrite (36) as whereC,.(h") is the cost function associated with tHa output:
€r = Z T %, (39) Cr(h")=sup [leq|| st |lzs]|<ns, zs € B(Fy), s€R. (44)
sE€R It turns out that (44) is difficult to minimize directly; there-
whereT"™ : B(F,) — [y is the linear operator equivalent offore, we look for an alternate expression for the cost such as
T"%[v] acting onz;,. a bound orC,.(h"). The following proposition, which is proved
The norm of the operatdr”®, which is needed later, can bein the Appendix, provides upper and lower bounds on the cost
computed as follows: function.
ano e o Proposition 3: The cost functiorC,.(h") can be bounded as
177" = S 177, || (40)
e T Co(h') < C,(h") < Co(R")
—sup [ T P where
v€f0,1/L]

~ def TS| _ TS
s.t./||XIS[1/]||2du§17 z, € B(F,). (41) Cr(h") =3 nllT™ =D ns sup IT Ill-

SER seR V€
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Instead of minimizing®,.(A") to compute the optimal filter In other wordsHz, «[v] can be written as the following linear
coefficientsh”, we minimizeC,.(h") as it produces a consid- combination:
erably simpler algorithm to implement. Therefore, the approxi-

rpk
mate optimal filter coefficients are given by Hr o= > hepu K74V (48)
PEP kEQ,p
hi =argmin C.(R"), C.(h") =Y n. sup [TVl whereK™"*[1] are matrices whose entries are
h ier  vE1/L]

(45) [K™P* V)] = Sppre™ 2 H /LI,

Owing to Proposition 3, the approximate solution will produce
a cost that is greater by a factor of not more théR times the  Combining (37) and (48), we obtain the desired affine form in
true minimum, i.e., (47), where

win Gy (W) < C(he) < VEminC, (). (4g) 10 V1= “hrelie and Fyib] = K000 2 L,

h h are the explicit expressions for the matrices involved, provided
for the sake of completeness.

Proposition 4 shows th&"*[v] has an affine form in terms

. . . o of the filter coefficientsh”. Next, recall that
Animportant question pertaining to the FIR design is whether

the resulting approximation error goes to zero when the filter |IT™[v]|| = sup m(yHTTS[V]z)
lengths go to infinity. Under some conditions, we can answer T.yco

affirmatively, as the following theorem shows. where||T|| denotes the spectral norm of a matfixTherefore,

Theorem 3: Suppose thaf[v] is continuous and thalf ] ¢ & od ind ite the optimization in (45
has an FIR parameterization described in (27). If there exis(t)sr afixed indexr, we rewrite the optimization in (45) as

a perfect reconstruction filter matrix continuous in then min 277555 st 6, > m(yHTTS[V]z)
ming,- Cr(h") — 0 ask,p — —oo0 ande,p + I, — oco. -

C. Asymptotics of the Approximation Error

SER
Theorem 3, which is proved in the Appendix, guarantees the 1
existence of continuous FIR solutio##[v] that can get arbi- VseR, Vv e [0, f]’ andvz, y € O
trarily close to perfect reconstruction, provided that there ex- (49)

ists a continuouf ° [v] with the perfect reconstruction property.

Furthermore, empirical evidence suggests that for the optinvelhereR(-) denotes the real part, adti= {v € C~ : ||v|| < 1}
FIR approximation, the worst-case reconstruction error falls off the unit ball for lengthk vectors. For convenience, we treat
exponentially fast with increasing filter length. Combining thig" as a row-vector (with any ordering of coefficients), i.e.,
fact with (46) (which follows from Proposition 3) suggests that .

the impact of using the surrogate cost functigth) instead i) = Mok

of C(h) has a minimal impact: At most, a usually negligiblg,here ;). 1) is an invertible mapping that takes the pair of in-

O(log R) increase in filter length is required to meet a ﬁxeqiiCESp € Pandk € Q,, to a single index in the set7,
error tolerance. defined as " '

D. Semi-Infinite Linear Program Formulation To={0, . Je =1}, L E S0 = Y

Next, we present an algorithm to compute the optimal solu- peP PeP

tion to the problem in (45). We show that this problem can geca thatQ,, = {k : k,p < k <l + krp — 1}. Hence, an
reduced to aemi-infinite linear programwhich can then be example of one such mapaingi_s
solved by a standard method.

We begin by expressing the matricES’[v] as functions of ] p—!
the filter coefficientsh”. o, k) = Z by + (k= Fp)-

Proposition 4: The quantityT"*[v] defined in (37) can be p'=0
written as Define a row-vecto$ = [&, --- 8r_1]. Using the affine rep-

resentation in (47), we can rewrite (49) as
T W] =Fe'l+ > Y henFpilv] (47)
P kEQrp
PemREs min Z 765 St R | 65 — Z Z hrpi (yHF;Z[l/]Z)
for appropriate matriceB°[v] and F,; [v]. SER PEP KEQmp
Proof: Observe from (11) and (27) that thie ) entry of > SR(yHFS'* [Vz) V(s,v,z,y) €U

Hz, o[v] is given by
whereld = R x [0,1/L] x O x O. This problem can be recast
, as
[HIP,O[V]]lp =H, [,,_|_ L} — Z thke—]Qﬂ-(u+l/L)k.
L&, minR(cf) st R(a(w)€) > R(b(w)), Vuell (50)
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where¢ = [§ R'] is the set of program variables, = !—I | . I—\ .
(s,v,z,y) € U parameterizes the constraints, ab(@) is 0 02 055075 1
a complex-scalar. The problem (50) issami-infinite linear

program because the number of program variables is finite

while the number constraints (cardinality of) is infinite. )
The quantitiesz(x) ande are row-vectors of lengt® + J,, IS nonempty. Howevesy need not be a singleton set because

whose firstR entries are real, and the remainifigentries are the perfect reconstruction filter matrices are not necessarily

Fig. 5. Indicator function of the spectral supp&rtfor Example 3.

complex-valued: uniqge. The optimization always produ_ces Fhe FIR fi!ter matrix
_ that is closest to the set of reconstruction filter matriSgsin
L ifn=s the sense that it minimizes the cost function that represents the
a,(u) =140, " fneR, n#s worst-case approximation error energy over all inputs C
TS 1 N . . e . .
—y Fpilvle, ifn=R+j(pk) due to imperfect reconstruction. If the conditions for continuity
b(u) =y Fiy* vz in Theorem 1 are satisfied, theély; contains a continuouH [v]
PR and guarantees, by Theorem 3, that the approximation error can
nNs, Fn=TR -S| k e X
=30, otherwise. be made arbitrarily small by using sufficiently long FIR filters.

The semi-infinite program in (50) is in a nonstandard form sinde. Design Examples

it contains a mixture of real and complex variables. Neverthe-|n this section, we consider two FIR filter design examples. In
less, it can be converted to the standard real form by decogRe first example, we design reconstruction filters for the multi-
posing all complex variables into their real and imaginary partggset sampling scheme that is a special case of MIMO sampling
Finding the dual of this real program and reconverting to thg9] [30]. In the second example, we consider MIMO sampling

complex form produces the following dual program: using a channel having two inputs and five outputs. The semi-in-
finite algorithm was programmed using MATLAB and C.
max/u b(u)dw(u) st c= /Ma(u)dw(u% w >0 Example 3: In this example, we design FIR reconstruction

(51) filters for multicoset sampling, which is a scheme where a single

wherew is a real and positive measure &n The optimal so- (scalar) multiband signal is sampled on a nonuniform but peri-
lution w has a point-distribution with cardinality no more tharpdic set of locations.
2J. + R, ie., LetF =[0,0.2) U[0.55,0.75), as illustrated in Fig. 5, be the
spectral support for the class of signals to be subsampled. The
Landau lower bound on the downsampling rate for this spectral

max Z blujjw; st e= Z a(uj)w;, w20 support is 0.4 (the total measure8j. However, the minimum

=1 =1 (52) downsampling rate that can be achieved for this spectral support
wherew; > 0 is the intensity of the point-distribution at ¢ by uniform sampling is only 0.75 because translate db not
U. The solution to (52) can be found using a simplex-type apack efficiently. Instead, consider nonuniform subsampling on
gorithm for semi-infinite programs [35]. The method involvedhe set
pivoting starting from an intitial feasible solution. Since there is
no duality gap, the primal and dual solutions satisfy

2J,+R 2J.+R

A= U{4n,4n+1}
nez

a(u;)§ =b(u;), j=1,...2J, +R. (53)  for signals inB(F). This corresponds to nonuniform downsam-

. . ' pling by a factor of two, or a downsampling rate of 0.5, which
Once the optimal dual solutionsf, w;) has been found, the is just slightly higher than the Landau rate, and a factor of 1.5

rimal solution can be computed by solving (53) forAt any . . .
P . b y N9 (53) o Y improvement over the best uniform subsampling rate. The sam-
stage of the dual algorithm, the dual cost is a lower bound on t . . .
; : ing setA is clearly a union of two uniformly subsampled
optimal cost. An upper bound on the optimal cost can be corm-

: . . . streams, namelyjdn : n € Z} and{4n + 1 : n € Z}. There-
gtu;eg 2%/ ti?ﬂiﬂgl(gls)ov:ilttr?r;hes?r:ggrtirg Vﬁgﬁgﬁiue“sngo?qgr rr1;<|)_re, this sampling scheme can be recast as the uniform MIMO
9 9 ’ P g mpling (see Fig. 2) with one input, two outputs, dne- 4.

i - S
nate in a finite number of steps, we stop when the lower bour‘\g‘e first channel output is the input itself, and the second output
IS

(dual cost) is close enough to the upper bound. The analysis . i

the computational complexity of this algorithm is beyond thé he input delayed by one sgmple so that the subsampled out
. puts produce the two desired input streams. Thus, we have

scope of this paper.

In summary, the semi-infinite linear program (50) and its dual 1

(51) are expressed in terms @fu), b(u), ande¢, which ulti- Glv] =

mately depend on the chanr@(f), the band-structures of the ) ) ]

channel inputs, and the weights, s € R. The dual problemis  FOr this single-input double-output channel, we seek

e—j27Tl/

solved using a simplex-type algorithm. the optimal 2<1 FIR reconstruction filter matrix
Recall that whenever the technical conditions in TheoremH[V] = [HO[V] Hy [v]], where each of the filters7, [v]
are satisfied. the set is an FIR filter with impulse response of length 21 centered

at the origin, i.e.,Q:, = {-10,...,10}, p = 0,1. Since
Sy = {H|v] : perfect reconstruction is achievéd. R = 1, we can takey, = 1 without loss of generality. Applying
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the semi-infinite algorithm, we obtain the optimal FIR filters
Hy[v] and H,[v], which are shown in Fig. 6. The resulting
maximum approximation errdI’™ [v/]|| at optimality is shown
for v € [0,1/4) in Fig. 7. The equal-ripple nature of this plot
is due to the minimax criterion:

6 = min Cy(h°) = minsup [|[ T[]
h' R v

Optimal Cost

The optimal cost i$ = 0.1348.

Example 4: Consider the Z 5 MIMO system with inputs
xo[k] andx [k] described in Example 1. We have already se¢
that the existence of a continuous perfect reconstruction filt
matrix H[v] is guaranteed. As a consequence of Theorem

0 L L L I Q L

the approximation error approaches zero as the filter lengths ? 4 56 7 & 8 0 1w

h Filter length: 2t+1
increased.

~Letny =m = 0.5 be the bound$ on the two-norms of the:ig 8. Optimal costs (afls (k) and (b)C, () for FIR reconstruction filters
inputs. Using the semi-infinite algorithm, we design six sets of length2r + 1,1 < 7 < 6.
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) TABLE | APPENDIX
CosT FuNcTIoNs Cy (R2) AND C1(hY) AT OPTIMALITY FOR FIR

RECONSTRUCTIONFILTERS OFLENGTH2T + 1,1 <7 <6 Proof of PrOpOSition 3

or+1 | 3 | 5 | 7 | 9 | 11 | 13 From (39) and (44), we obtain an upper bound on the cost
Co(hY) 1 0.4835 [ 0.3643 | 0.1093 | 0.0836 | 0.0716 | 0.0329 function
C1(R1) [ 0.3554 | 0.1600 | 0.0637 | 0.0124 | 0.0076 | 0.0034 Co (") = sup H S 77

SER

. . . . . S.t. sl <ns, xs € B(Fs), s €R
reconstruction filters of varying filter lengths, indexed by sl <, @ (Fs), s

{1,2,...,6}, having the following specifications: <sup Z ||Trsxs||
SER
st |lzsl| <ns, x5 € B(Fs), seR
Ly =27 +1 =Y 0T =D n. sup T[]
0—7, ifpe{0,1} s€R ser  vEDI/E)
Krp = { 1— 77 if p e {2’ 3, 4} where the last step follows from (42). Hen¢g(h") < C,.(h").

To prove the other inequality, we start by choosing a set of sig-

In other words, all the FIR reconstruction filters for a given nalszy € B(F), s € R such thaf|z¢|| = 7, and||T"z|| =

have equal length2f + 1). Furthermore, the filters,,.[k] are 7|77 || — ¢/, wheree > 0. In view of (40), suchx;, exist for

centered ak = Oforp = 0,1 and atk = 1 forp = 2,3,4. anye>0. First, letzo = «f. Then, fors = 1,2,...,R—1, let

Table | and Fig. 8 show the cost functions for the two outputs be eitherz; or —z{ such that

and the six design cases. Observe that the cost falls off quickly s—1

as the filter lengths increase. <T”:ES, Z T”"fa> > 0. (A1)
Therefore, as discussed earlier, the use of the surrogate cost =0

functionC(h) instead ofC(h) leads to at most a slight increaséNow, (A.1) implies that for any € R

in the lengths of filter required to meet a fixed error tolerance. In s 9 s—1

this exampley/R = /2 so that by (46), the required increase Z T %, | =|T"%,|* + 2<T”55:S./ Z T”’i;a>

in length is two or less in most cases listed in Table I. Finally, in o=0 o=0

this example, the costs would converge to zere as oo since s—1 .
the conditions required in Theorem 1 are satisfied. + H > 177,
o=0
s—1 9
TS~ |12 ro —
VI. CONCLUSION (|77, || + H ZOT zaH (A2

We examined the problem of FIR reconstruction filter desighherefore

for uniform MIMO sampling of multiband signals with different (a) B=1 2 (b)

band structures. The analysis is facilitated by the conversionto ~ Cr(R")* > H SoTr| = Y Tz

an equivalent hypothetical discrete-time system. We presented o=0 SER

necessary and sufficient conditions for perfect reconstruction of © Z T8 — € (A.3)
the channel inputs with and without a continuity requirement on R ’

the transfer functions of the reconstruction filters. We also Pr&ihere(a) follows from the definition ofC, ("), (b) by recur-
sented necessary and suffi