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Filter Design for MIMO Sampling and Reconstruction
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Abstract—We address the problem of finite impulse response
(FIR) filter design for uniform multiple-input multiple-output
(MIMO) sampling. This scheme encompasses Papoulis’ gener-
alized sampling and several nonuniform sampling schemes as
special cases. The input signals are modeled as either contin-
uous-time or discrete-time multiband input signals, with different
band structures. We present conditions on the channel and the
sampling rate that allow perfect inversion of the channel. Addi-
tionally, we provide a stronger set of conditions under which the
reconstruction filters can be chosen to have frequency responses
that are continuous. We also provide conditions for the existence
of FIR perfect reconstruction filters, and when such do not exist,
we address the optimal approximation of the ideal filters using
FIR filters and a min-max 2 end-to-end distortion criterion. The
design problem is then reduced to a standard semi-infinite linear
program. An example design of FIR reconstruction filters is given.

Index Terms—Filter design, MIMO equalization, min-max
criterion, multiband sampling, multichannel deconvolution, mul-
tiple source separation, multiple-input multiple-output (MIMO)
channel, multirate signal processing, semi-infinite optimization,
signal reconstruction.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) deconvo-
lution or channel equalization involves the recovery of

the inputs to a MIMO channel whose outputs can be observed
and whose characteristics may either be known or unknown.
The unknown inputs usually have overlapping spectra and,
hence, share a common bandwidth. MIMO deconvolution is an
important problem arising in numerous applications, including
multisensor biomedical signals [5], [6], multitrack magnetic
recording [7], multiple speaker (or other acoustic source)
separation with microphone arrays [8], [9], geophysical data
processing [10], and multichannel image restoration [11], [12].
MIMO deconvolution or equalization might also be used in
communications applications such as multiuser or multiaccess
wireless communications or telephone digital subscriber loops
[1], [2], [4] when a simple linear preprocessor is desired,
which does not use knowledge of the discrete nature of the
digital communication signals (or only uses it to adapt the
reconstruction filters).
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Fig. 1. Models for MIMO sampling and reconstruction. Only the sampled
channel outputsz [n] are observed, and the goal is to reconstruct the
continuous-time channel inputsx (t).

In practice, digital processing is used to perform the channel
inversion. Consequently, the channel outputs need to be sam-
pled prior to processing, and the objective is to reconstruct the
channel inputs from the sampled output signals. The resulting
channel inversion problem reduces to one in sampling theory
that we callMIMO sampling. To focus on the sampling and re-
construction issues, we restrict our attention to the scenario of
a linear time-invariant MIMO channel with known frequency
response matrix. As appropriate in many applications, the input
signals to the channel are assumed to be multiband signals, with
possibly different band structures.

The continuous-time model for the MIMO channel and its
reconstruction [13] is illustrated in Fig. 1. The linear time-in-
variant channel has multiband inputs , ,
and outputs , . Only the sampled
channel outputs are observed, and the goal is
to reconstruct the continuous-time channel inputs .

Because the signal processing is usually done digitally, it is
convenient to consider an equivalent discrete-time model for the
system. Since the channel inputs have bounded spectral sup-
ports, we can convert the continuous-time channel model into
the linear time-invariant discrete-time model in Fig. 2, where the
sequences represent samples of the underlying
continuous-time signals taken at a sufficiently high rate. For ex-
ample, can be chosen equal to or larger than the highest
of the Nyquist rates of any of the individual continuous-time in-
puts , . The discrete-time channel is rep-
resented by its frequency response matrix relating the in-
puts to outputs. Downsampling the outputs in the discrete-time
model by an integer factor then produces the observed
outputs , which coin-
cide with the sampled outputs of the continuous-time channel,1

thus completing the equivalence between the channel models in
Figs. 1 and 2. The role of downsampling can also be understood
in a purely discrete-time context; in general, the spectral band
structures may allow us to reconstruct the inputs using only a
subset of the output samples. The discrete-time reconstruction
block, which is depicted in Fig. 3, produces estimates of

1L can be taken as an integer without loss of generality for any givenT in
Fig. 1 by choosingT = T=L.
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Fig. 2. Discrete-time model for the MIMO channel.

Fig. 3. Discrete-time model for MIMO reconstruction.

the input signals from the observed signals . The contin-
uous-time inputs can finally be recovered from the discrete-time
sequences using a bank of conventional D/A converters.

In this paper, we present sufficient conditions for perfect re-
construction in the discrete-time model with uniform subsam-
pling (see [15] and [16] for necessary density conditions on
arbitrary nonuniform sampling) and conditions and a solution
to the related filter design problem. We will consider only uni-
form subsampling of the channel outputs. This sampling scheme
is fairly general and subsumes periodic nonuniform subsam-
pling of the MIMO outputs as a special case of uniform sub-
sampling applied to a hypothetical channel with more outputs
[13]. Furthermore, several familiar sampling schemes can be
viewed as special cases of MIMO sampling. For example, in Pa-
poulis’ generalized sampling [17], a single lowpass input signal
is passed through a bank of filters, and the outputs are sam-
pled at th the Nyquist rate of the signal. This fits in our
framework as a single-input multiple-output sampling problem,
i.e., . Additionally, if the channel filters are pure delays,
we obtain multicoset or periodic nonuniform sampling of the
input signal, which has been widely studied [18]–[30], as it al-
lows the approach of the Landau minimum sampling rate for
multiband signals [31]. Seidner and Feder [32] provide a natural
generalization of Papoulis’ sampling expansions for a vector
input with its components bandlimited to . Clearly, their
sampling scheme is also a special case of MIMO sampling.

We studied the continuous-time MIMO sampling problem
and presented necessary and sufficient conditions for perfect
stable reconstruction of the channel inputs from uniform sam-
pling of the outputs in [13]. Importantly, we demonstrated how
to achieve stable sampling and reconstruction at rates lower than
the Nyquist rate of each of the individual inputs and, in some
cases, even at a combined average rate lower than the Landau
rate of each of the individual inputs. This provides motivation
for using the MIMO sampling theory to design and implement
MIMO deconvolution and source separation systems.

In this paper, we examine the related problem of finite im-
pulse response (FIR) filter design for MIMO reconstruction fil-
ters. Whereas [13] only demonstrates the existence of ideal (i.e.,
unrealizable) filters for stable perfect reconstruction subject to

appropriate conditions on the channel and sampling rates, in this
paper, we address the practical problem of implementing the
reconstruction system using FIR filters. We provide conditions
for the existence of FIR perfect reconstruction filters, and when
such do not exist, we address the optimal approximation of the
ideal filters using FIR filters and a min-max reconstruction
error criterion. We formulate the design problem as a semi-infi-
nite linear program. Semi-infinite formulations have been suc-
cessfully applied to other multirate filter design problems [33],
[34] and solved using standard techniques [35]. Our FIR filter
design formulation is fairly general and can be used to design
the interpolation filters for those generalized sampling schemes
discussed above.

The paper is organized as follows. Section II contains
some basic notation and definitions. In Section III, we present
discrete-time models for the channel and reconstruction
block. The channel inputs are modeled as multiband signals.
In Section IV-A, we present discrete-time versions of the
results derived in [13]. In particular, we specify necessary and
sufficient conditions for the existence of reconstruction filters
that are continuous in the frequency domain. This property is
important in the context of FIR filter design, as we elaborate
upon later. Finally, in Section V, we discuss the problem of FIR
reconstruction filter design for the MIMO sampling problem.
We formulate a cost function in terms of the filter coefficients.
Minimizing the cost produces the optimal filter coefficients.
The problem may be recast as a semi-infinite linear program.
We present two design examples: one for multicoset sampling
and another for MIMO sampling with two inputs.

II. PRELIMINARIES

We begin with some basic definitions and notation. Denote
the discrete-time Fourier transform of a by the peri-
odic function

In general, we denote time signals (either scalar-valued or
vector-valued) using lower-case letters and their Fourier
transforms by the corresponding upper-case letters. Denote the
class of complex-valued, finite-energy discrete-time signals
bandlimited to the set of frequencies by

(1)

We denote the class of complex-valued matrices of size
by , the conjugate-transpose ofby , its pseudo

inverse by , and its range space by . For a given matrix
, let denote the submatrix of corresponding to rows

indexed by the set and columns by the set. The quantity
denotes a submatrix formed by keeping all rows ofbut

only columns indexed by, whereas denotes the subma-
trix formed by retaining rows indexed by and all columns. We
use a similar notation for vectors. Hence, is the subvector
of corresponding to rows indexed by. We always apply the
subscripts of a matrix before the superscript. Therefore, is
the conjugate-transpose of . When dealing with singleton
index sets or , we omit the curly braces for
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readability. Therefore, and are the th row and the th
column of , respectively. For convenience, we always number
the rows and columns of a finite-size matrix starting from 0. For
infinite-size matrices, the row and column indices range over.
As a result of the above notation, we have the following straight-
forward proposition that is used later.

Proposition 1: Suppose that and that is the
identity matrix. Then, for all .
Additionally, if , where is the complement of ,
then .

The identity matrix of size is denoted by and the
zero matrix by0. Finally, suppose that is a subset of or ,
and is an element of or ; then

mod mod

denote the positive and negative translations, scaling, and the
modulus of by , respectively.

III. SAMPLING AND RECONSTRUCTIONMODELS

Fig. 2 depicts a discrete-time MIMO channel with inputs
and outputs . Let

and denote
index sets for the channel inputs and outputs. We model ,

as multiband signals , where thespectral
support is a finite union of disjoint intervals:

(2)
Let the channel inputs and outputs be expressed in vector form
as

The MIMO channel is modeled as a linear shift-invariant system
with channel impulse response matrix . The entry

corresponds to the filter that sends theth input to the
th output. The input-output relations in the time and frequency

domain are thus

(3)

where denotes convolution, and , , and are the
discrete-time Fourier transforms of , , and , respec-
tively. We call thechannel frequency response matrix. The
channel outputs are uniformly subsampled by a factor of,
and the resulting vector sequence is denoted by ,

. Using (3), we now have

(4)

for , which essentialy describes the input–output rela-
tion of a filterbank with vector-valued inputs.

We model the reconstruction block as follows:

(5)

where is the impulse response matrix of the re-
construction filter.

From (5), it is obvious that the entire system consisting of the
channel, subsampling, and reconstruction is invariant to time-
shifts by any multiple of , i.e.,

Conversely, (5) describes the most general linear transformation
that allows this invariance. The discrete-time Fourier transform
of (5) is for , where , which
is the discrete-time Fourier transform of , is called there-
construction filter frequency response matrix. Since is a
periodic function, we have

(6)

Let . We can now write (4) and (6) com-
pactly as

(7)

(8)

for , where is defined as

(9)

and is defined analogously, whereas
and are themodulated

channel and reconstruction frequency response matrices,
which are defined as

(10)

(11)

In the next section, we provide precise conditions for stable
reconstruction of the channel inputs from the subsampled output
sequences. In particular, for FIR implementation reasons, we are
interested in a reconstruction filter matrix whose entries
are continuous in . Specifically, the continuity guarantees that
the approximation error resulting from the FIR implementation
can be made arbitrarily small by choosing sufficiently long FIR
filters. This point will be elaborated upon later.

IV. CONDITIONS FORPERFECTRECONSTRUCTION

A. General Case

In this section, we present the condition for perfect recon-
struction from the MIMO channel outputs in the discrete-time
setting. More specifically, we provide conditions on the channel
frequency response matrix that guarantee stable recon-
struction of the inputswith/without the continuity requirement
on the reconstruction filter matrix . These results are
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discrete-time versions of their continuous-time counterparts in
[13].

Let denote the class of inputs to
the MIMO channel. Then, is a Hilbert space equipped with
the inner product for all
Naturally, is the the norm of . We first
review an important notion calledstability of MIMO sampling
[13], [15].

Definition 1: The MIMO sampling scheme is called stable if
there exist constants such that

(12)

The implication of (12) is that we can reconstructfrom
stably in the sense that small perturbations in the inputs

or the channel output samples cannot cause large errors in the
reconstructed outputs. Note that in the absence of the MIMO
channel, i.e., , the condition (12) reduces to the
standard definition of stable sampling because

is a subsequence of .
The condition number of the sampling scheme is

, and it bounds the amplification of the
normalized 2-norm of the error due to the reconstruction
filters [13]. In particular, the notion of stable sampling may be
expressed as a frame-theoretic condition. See [36] for more
about frames and [37] and [38] for their application in sampling
theory.

Now, define the following index sets

and

(13)

for . Just as in the continuous-time case in [13],
we can decompose the interval into a union of intervals
where is piecewise constant.

Proposition 2: Suppose that sets , have multiband
structure, as defined in (2). Then, there exists a collection of
disjoint intervals and sets , such that

and

This result is easily demonstrated by using an argument very
similar to the one in [29].

We write for , with
, such that and .

For convenience, we also define

Equation (13) implies that all nonzero entries of are
captured in . Hence, from (7) and (8), we conclude
that for perfect reconstruction, and

must hold almost everywhere (a.e.).
This characterization of that provides perfect reconstruction
can be written compactly as

a.e. (14)

where is the identity matrix. Since
, (14) requires that have full column rank a.e.

As in the continuous-time case [13], it can be easily verified
that is continuous if and only if is continuous on

, and the following periodicity conditions hold:

(15)

for all , where mod .
As we will see later, in order to achieve continuity of , it
is convenient to impose continuity on , and this produces a
similar condition on . Specifically, if is continuous
on (the closure of ), then is continuous on ,
and

(16)

for all .
The following theorem, which is the discrete-time version of

similar results presented in [13], provides precise conditions for
stable and perfect reconstruction of the channel inputs. We do
not prove these conditions, as they can be deduced in a manner
very similar to their continuous-time counterparts in [13]. Be-
fore stating the results, we point out that ess inf and ess sup de-
note the essential infimum and supremum respectively, i.e.,

ess inf a.e.

ess sup a.e.

for any real function .
Theorem 1: Suppose that is such that is contin-

uous for , and has full column rank for all
, ; then, the MIMO sampling

scheme is stable, and the stability bounds are given by

(17)

(18)

Furthermore, the existence of a continuous reconstruction filter
matrix is guaranteed if and only if

rank

int (19)

rank (20)

where

mod
(21)

Theorem 1 provides conditions for stable reconstruction and
continuity of at least one solution whose corresponding
modulated frequency response matrix satisfies (14). [Note that,
in general, (14) does not have a unique solution because

.] The continuity requirement is desirable from the viewpoint
of implementation, as we see in Section V. A simple neces-
sary condition for perfect reconstruction using continuous re-
construction filters is provided by the following.
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Fig. 4. (a) Spectral support of (a)X [�] and (b)X [�] for Example 1.

Corollary 1: Perfect reconstruction using continuous recon-
struction filters is only possible if .

Note that when all inputs have identical band structure
, the necessary condition of Corollary 1 reduces

to the familiar condition . However, in general, the
spectral band structure of the inputs can be such that a smaller

(even the bound in the corollary) suffices. This is illustrated
in the examples.

In Theorem 1, the assumption that is continuous in is
made for convenience; it is possible for continuous perfect re-
construction filter matrix to exist, despite the lack of con-
tinuity of . However, this is rare, and the conditions in the
general case are cumbersome. On the other hand, perfect recon-
struction is not possible when is rank deficient. In this
case, one could compute the solution that minimizes the least
squares approximation error. We do not consider this problem
here; however, see [39] for related work.

Example 1: Consider a MIMO channel with inputs
and outputs. Suppose that the inputs and have
spectral supports illustrated in Fig. 4, namely

and

and denotes the following continuous channel transfer
function matrix with outputs:

where

(22)
Let be the subsampling factor. For this choice, we have

, , and . Using (13) and
(21), it is easy to check that

mod

Hence, by Theorem 1, is required for
the existence of a reconstruction filter matrix that achieves
perfect reconstruction. If we also require that the filters be con-
tinuous, Corollary 1 states that is neces-
sary. It can be verified numerically that (19) and (20) in Theorem
1 are satisfied for the channel (22). Hence, we are guaranteed
the existence of a perfect reconstruction filter matrix that
is continuous in . This example, with and , also

illustrates that owing to the band structure of the inputs, perfect
reconstruction is possible even with .

B. FIR Reconstruction

Under certain conditions, perfect reconstruction is realizable
using FIR filters. We say that a filter is FIR if its impulse re-
sponse has a finite number of nonzero terms. An FIR filter need
not be causal but can be made causal by adding a finite delay.
The obvious advantage of having FIR reconstruction filter is
simplicity of implementation.

For convenience, we consider only FIR channels because they
can be parametrized using a finite number of parameters. We
will see in Theorem 2 that the FIR assumption on the channel
does not guarantee perfect reconstruction using FIR filters un-
less the channel satisfies additional conditions. (More generally,
a channel with a rational transfer function matrix can also be
described using a finite number of parameters, but we do not
consider this case here.) Let

denote the -transform of . We use the superscript “” here
to distinguish between the-transform and the discrete-time
Fourier transform (transfer function and frequency
response matrices, respectively). Then, clearly

Let denote the -transform of . Finally, let
and be the -domain analogs of the modu-

lated frequency response matrices and . From (10)
and (11), we see that and

for .
Accordingly, we call and the modulated channel
and reconstruction transfer function matrices.

Theorem 2: Suppose that the channel impulse response
is FIR, and let

mod (23)

and . Then, perfect reconstruction using an FIR recon-
struction filter matrix is possible if and only if ,
and the minors of have no zero common to all
except or .

Proof: The coprimeness condition on the minors guaran-
tees the existence of an FIR such that

and the periodicity conditions (15) and (16) hold. This is
a standard result that can be proved using Bezout’s identity
[40]–[42]. Furthermore, letting , we also obvi-
ously have . Combining the last two re-
sults, we obtain . Since , it fol-
lows that

(24)

which is essentially equivalent to (14). Thus, we have found an
FIR realization of perfect reconstruction filters.
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Conversely, suppose that is an FIR filter matrix
achieving prefect reconstruction. Then, and are
analytic if is viewed as a complex variable since both
and are finite sequences. Because, by (24), the analytic
function vanishes on an interval, it
follows that it must vanish everywhere, and

(25)

holds for all and , rather than just . For
fixed and , define mod and

mod for an arbitrary .
Then, using the conditions (15), (16), and (25), we see that

implying that for all and . There-
fore, we obtain for all , where

mod . Equivalently, we have

(26)

in the -domain. If , then rank ,
implying that (26) fails to hold. Similarly, if all the minors
of share a common factor of the form ( ) where

, then loses rank at , and this contradicts
(26) because is FIR and cannot cancel the ( ) factor.
This proves the converse statement.

The import of this result is that for FIR channels, perfect re-
construction is possible using FIR filters, provided that the mod-
ulated channel transfer function matrix is sufficiently “di-
verse” in the sense that its null space is empty for all .
Of course, we do not care about the cases or be-
cause no causality requirement is imposed on the FIR filters.
Note, however, that the FIR channel is not a necessary require-
ment but just a convenient case to consider.

Suppose that ; then, is a matrix, and
the necessary and sufficient condition for perfect reconstruction
using FIR filters reduces to

This condition is similar to the perfect reconstruction condition
for filterbanks. Even in this special case, however, the result
generalizes the filterbanks result by the dependence on the band
structure of the inputs via the set.

We point out some other relations of our results to existing
results. The problem in [42] deals with existence of MIMO FIR
equalizer filters in the absence of decimation of channel outputs,
whereas the classical filter bank problem deals with a single-
input multiple-output channel whose outputs are decimated. The
present problem deals with the existence of an MIMO FIR re-
construction filter in the presence of decimation. The solution
depends not only on the channel transfer function matrix
(as in [42] ) but on the decimation factora well (as in the filter
bank problem) and the band-structure of the inputs through.

Thus, Theorem 2 generalizes all these problems simultaneously.
In particular, when and all the discrete-time inputs are
full-band signals, our result reduces to that of [42].

Example 2: Let us reconsider the MIMO channel of Ex-
ample 1. It is easy to check using (23) that .
Since does not satisfy , by Theorem
2, we cannot achieve perfect reconstruction using FIR filters
alone.

V. MINIMAX RECONSTRUCTIONFILTER DESIGN

A. Reconstruction Error

In this section, we study the problem of reconstruction filter
design for a given MIMO sampling scheme. We have seen in
Section IV-A that under certain conditions on the channel and
the class of input signals, perfect reconstruction is possible. Un-
fortunately, these ideal filters are not necessarily FIR filters.
Conversely, FIR filters do not generally guarantee perfect recon-
struction of the channel inputs. Nevertheless, we can approx-
imate the ideal reconstruction filters using FIR filters chosen
judiciously so that an appropriate cost function, such as the
worst-case end-to-end distortion, is minimized.

We model the input signals as discrete-time multiband func-
tions , with , where is the constraint
set for the channel inputs:

for some , , i.e., the input signal energies are
upper bounded. The reconstruction filters are approximated by
FIR filters, i.e., we enforce the following parameterization on

:

(27)

where is a finite set
representing the locations of the nonzero filter coefficients of

. The quantities and are the length of the filter and
the position of its first nonzero filter coefficient, respectively.
Let denote the reconstruction error due to
the FIR restriction. We will now derive an expression for

(28)

as a function of the input signals, the channel, and the recon-
struction filters alone. Define index sets

(29)

and (30)

for each . It is clear from (9) and (29) that

with a similar expression for , for each , i.e.,
these quantities are the length-vectorized representations of
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and , respectively. Hence, the energy ofcan be
expressed as a function of using Parseval’s theorem:

(31)

Similar relations hold for and other signals in terms of the
vectorized version of their discrete-time Fourier transforms.
Now, for each and , (7) and its analog for

yield

(32)

where the second step holds because the sets partition
. Therefore, (28) and (32) give us

(33)

where is the Kronecker delta function, and is the identity
matrix of size . Since captures all the nonzero
components of , we can invoke Proposition 1 to write

(34)

where

(35)

is a diagonal matrix with zeros or ones on the diagonal. Hence,
(33) and (34) yield

(36)

(37)

We point out that if is a perfect reconstruction filter matrix,
then using (14), it is easily shown that

(38)

For simplicity, we rewrite (36) as

(39)

where is the linear operator equivalent of
acting on .

The norm of the operator , which is needed later, can be
computed as follows:

(40)

s.t. (41)

Note that the condition implies that some entries
of necessarily vanish due to (34) because is a diag-
onal matrix with zeros or ones on the diagonal. In other words,

is not an arbitrary vector in . From (35) and (37),
it is clear that if the th component of vanishes for some

, then the th column of also vanishes. Hence, the range
space of equals the signal space for input, namely,

. Now, it follows immediately that we can drop the con-
straint in (41) to obtain

(42)

where is the spectral norm of matrix for each
, and is the largest singular value.

B. Cost Function

Our goal is to design an FIR reconstruction filter matrix
such that a measure of the reconstruction erroris minimized.

From (31) and (36), we have

(43)

Clearly, the above expression is completely parameterized by
the coefficients of the filter , namely

because depends only on and . Conse-
quently, for each , the set of coefficients (or, equiva-
lently, the th row of ) can be optimized independently of
the others by minimizing a cost that measures the fidelity of re-
construction of the th input.

We choose the cost function to be the norm of the errorin
the worst case over alland , i.e., .
Thus, we seek the solution to

From our earlier argument, this decouples into the following
independent subproblems:

where is the cost function associated with theth output:

s.t. (44)

It turns out that (44) is difficult to minimize directly; there-
fore, we look for an alternate expression for the cost such as
a bound on . The following proposition, which is proved
in the Appendix, provides upper and lower bounds on the cost
function.

Proposition 3: The cost function can be bounded as

where
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Instead of minimizing to compute the optimal filter
coefficients , we minimize as it produces a consid-
erably simpler algorithm to implement. Therefore, the approxi-
mate optimal filter coefficients are given by

(45)
Owing to Proposition 3 , the approximate solution will produce
a cost that is greater by a factor of not more than times the
true minimum, i.e.,

(46)

C. Asymptotics of the Approximation Error

An important question pertaining to the FIR design is whether
the resulting approximation error goes to zero when the filter
lengths go to infinity. Under some conditions, we can answer
affirmatively, as the following theorem shows.

Theorem 3: Suppose that is continuous and that
has an FIR parameterization described in (27). If there exists
a perfect reconstruction filter matrix continuous in, then

as and .
Theorem 3, which is proved in the Appendix, guarantees the

existence of continuous FIR solutions that can get arbi-
trarily close to perfect reconstruction, provided that there ex-
ists a continuous with the perfect reconstruction property.
Furthermore, empirical evidence suggests that for the optimal
FIR approximation, the worst-case reconstruction error falls off
exponentially fast with increasing filter length. Combining this
fact with (46) (which follows from Proposition 3) suggests that
the impact of using the surrogate cost function instead
of has a minimal impact: At most, a usually negligible

increase in filter length is required to meet a fixed
error tolerance.

D. Semi-Infinite Linear Program Formulation

Next, we present an algorithm to compute the optimal solu-
tion to the problem in (45). We show that this problem can be
reduced to asemi-infinite linear program, which can then be
solved by a standard method.

We begin by expressing the matrices as functions of
the filter coefficients .

Proposition 4: The quantity defined in (37) can be
written as

(47)

for appropriate matrices and .
Proof: Observe from (11) and (27) that the () entry of

is given by

In other words, can be written as the following linear
combination:

(48)

where are matrices whose entries are

Combining (37) and (48), we obtain the desired affine form in
(47), where

and

are the explicit expressions for the matrices involved, provided
for the sake of completeness.

Proposition 4 shows that has an affine form in terms
of the filter coefficients . Next, recall that

where denotes the spectral norm of a matrix. Therefore,
for a fixed index , we rewrite the optimization in (45) as

s.t.

and

(49)

where denotes the real part, and
is the unit ball for length- vectors. For convenience, we treat

as a row-vector (with any ordering of coefficients), i.e.,

where is an invertible mapping that takes the pair of in-
dices and to a single index in the set
defined as

Recall that . Hence, an
example of one such mapping is

Define a row-vector Using the affine rep-
resentation in (47), we can rewrite (49) as

s.t.

where . This problem can be recast
as

s.t. (50)
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where is the set of program variables,
parameterizes the constraints, and is

a complex-scalar. The problem (50) is asemi-infinite linear
program because the number of program variables is finite
while the number constraints (cardinality of) is infinite.
The quantities and are row-vectors of length ,
whose first entries are real, and the remainingentries are
complex-valued:

if
if
if

if
otherwise.

The semi-infinite program in (50) is in a nonstandard form since
it contains a mixture of real and complex variables. Neverthe-
less, it can be converted to the standard real form by decom-
posing all complex variables into their real and imaginary parts.
Finding the dual of this real program and reconverting to the
complex form produces the following dual program:

s.t.

(51)
where is a real and positive measure on. The optimal so-
lution has a point-distribution with cardinality no more than

, i.e.,

s.t.

(52)
where is the intensity of the point-distribution at

. The solution to (52) can be found using a simplex-type al-
gorithm for semi-infinite programs [35]. The method involves
pivoting starting from an intitial feasible solution. Since there is
no duality gap, the primal and dual solutions satisfy

(53)

Once the optimal dual solution ( ) has been found, the
primal solution can be computed by solving (53) for. At any
stage of the dual algorithm, the dual cost is a lower bound on the
optimal cost. An upper bound on the optimal cost can be com-
puted by solving (53) with the program variablesduring any
stage of the dual algorithm. Since the pivoting does not termi-
nate in a finite number of steps, we stop when the lower bound
(dual cost) is close enough to the upper bound. The analysis of
the computational complexity of this algorithm is beyond the
scope of this paper.

In summary, the semi-infinite linear program (50) and its dual
(51) are expressed in terms of , , and , which ulti-
mately depend on the channel , the band-structures of the
channel inputs, and the weights, . The dual problem is
solved using a simplex-type algorithm.

Recall that whenever the technical conditions in Theorem 1
are satisfied, the set

perfect reconstruction is achieved.

Fig. 5. Indicator function of the spectral supportF for Example 3.

is nonempty. However, need not be a singleton set because
the perfect reconstruction filter matrices are not necessarily
unique. The optimization always produces the FIR filter matrix
that is closest to the set of reconstruction filter matricesin
the sense that it minimizes the cost function that represents the
worst-case approximation error energy over all inputs
due to imperfect reconstruction. If the conditions for continuity
in Theorem 1 are satisfied, then contains a continuous
and guarantees, by Theorem 3, that the approximation error can
be made arbitrarily small by using sufficiently long FIR filters.

E. Design Examples

In this section, we consider two FIR filter design examples. In
the first example, we design reconstruction filters for the multi-
coset sampling scheme that is a special case of MIMO sampling
[29], [30]. In the second example, we consider MIMO sampling
using a channel having two inputs and five outputs. The semi-in-
finite algorithm was programmed using MATLAB and C.

Example 3: In this example, we design FIR reconstruction
filters for multicoset sampling, which is a scheme where a single
(scalar) multiband signal is sampled on a nonuniform but peri-
odic set of locations.

Let , as illustrated in Fig. 5, be the
spectral support for the class of signals to be subsampled. The
Landau lower bound on the downsampling rate for this spectral
support is 0.4 (the total measure of). However, the minimum
downsampling rate that can be achieved for this spectral support
by uniform sampling is only 0.75 because translates ofdo not
pack efficiently. Instead, consider nonuniform subsampling on
the set

for signals in . This corresponds to nonuniform downsam-
pling by a factor of two, or a downsampling rate of 0.5, which
is just slightly higher than the Landau rate, and a factor of 1.5
improvement over the best uniform subsampling rate. The sam-
pling set is clearly a union of two uniformly subsampled
streams, namely, and . There-
fore, this sampling scheme can be recast as the uniform MIMO
sampling (see Fig. 2) with one input, two outputs, and .
The first channel output is the input itself, and the second output
is the input delayed by one sample so that the subsampled out-
puts produce the two desired input streams. Thus, we have

For this single-input double-output channel, we seek
the optimal 2 1 FIR reconstruction filter matrix

, where each of the filters
is an FIR filter with impulse response of length 21 centered
at the origin, i.e., . Since

, we can take without loss of generality. Applying
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Fig. 6. Magnitude and phase responses of the optimal FIR filtersH [�] and
H [�].

the semi-infinite algorithm, we obtain the optimal FIR filters
and , which are shown in Fig. 6. The resulting

maximum approximation error at optimality is shown
for in Fig. 7. The equal-ripple nature of this plot
is due to the minimax criterion:

The optimal cost is .
Example 4: Consider the 2 5 MIMO system with inputs

and described in Example 1. We have already seen
that the existence of a continuous perfect reconstruction filter
matrix is guaranteed. As a consequence of Theorem 3,
the approximation error approaches zero as the filter lengths are
increased.

Let be the bounds on the two-norms of the
inputs. Using the semi-infinite algorithm, we design six sets of

Fig. 7. Approximation errorkTTT [�]k at optimality for Example 3.

Fig. 8. Optimal costs (a)�C (hhh ) and (b)�C (hhh ) for FIR reconstruction filters
of length2� + 1, 1 � � � 6.
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TABLE I
COST FUNCTIONS �C (hhh ) AND �C (hhh ) AT OPTIMALITY FOR FIR

RECONSTRUCTIONFILTERS OFLENGTH 2� + 1, 1 � � � 6

reconstruction filters of varying filter lengths, indexed by
, having the following specifications:

if
if

In other words, all the FIR reconstruction filters for a given
have equal lengths ( ). Furthermore, the filters are
centered at for and at for .
Table I and Fig. 8 show the cost functions for the two outputs
and the six design cases. Observe that the cost falls off quickly
as the filter lengths increase.

Therefore, as discussed earlier, the use of the surrogate cost
function instead of leads to at most a slight increase
in the lengths of filter required to meet a fixed error tolerance. In
this example, so that by (46), the required increase
in length is two or less in most cases listed in Table I. Finally, in
this example, the costs would converge to zero as since
the conditions required in Theorem 1 are satisfied.

VI. CONCLUSION

We examined the problem of FIR reconstruction filter design
for uniform MIMO sampling of multiband signals with different
band structures. The analysis is facilitated by the conversion to
an equivalent hypothetical discrete-time system. We presented
necessary and sufficient conditions for perfect reconstruction of
the channel inputs with and without a continuity requirement on
the transfer functions of the reconstruction filters. We also pre-
sented necessary and sufficient conditions for the existence of
FIR perfect reconstruction filters when the channel itself is FIR.
These conditions, which depend on the channel, input multiband
structures, and downsampling rate, generalize previous results
on multichannel deconvolution and filterbanks. In general, per-
fect reconstruction FIR filters do not exist for the MIMO sam-
pling problem. Therefore, from an implementation viewpoint,
we considered the problem of FIR approximation to the recon-
struction system. The continuity property was shown to be im-
portant in this context, as it allows us to make the signal recon-
struction error arbitrarily small by designing sufficiently long
filters in the FIR approximation.

Finally, we formulated the reconstruction filter design
problem as a minimax optimization, which was recast as a
standard semi-infinite linear program and solved efficiently
by computer. The generality of the MIMO setting allows this
algorithm to be used for various other sampling schemes that
fit into the MIMO framework as special cases.

APPENDIX

Proof of Proposition 3

From (39) and (44), we obtain an upper bound on the cost
function

s.t.

s.t.

where the last step follows from (42). Hence, .
To prove the other inequality, we start by choosing a set of sig-

nals , such that and
, where . In view of (40), such exist for

any . First, let . Then, for , let
be either or such that

(A.1)

Now, (A.1) implies that for any

(A.2)

Therefore

(A.3)

where follows from the definition of , by recur-
sively applying (A.2) starting with , and by the
choice of . Now, using the Cauchy-Schwarz inequality, we
have

(A.4)

Finally, from (A.3) and (A.4) and because the can be
chosen to make arbitrarily small, we obtain the other desired
inequality: .

Proof of Theorem 3

In view of Proposition 3, it suffices to prove that
for all , where

Suppose that is continuous in and achieves perfect re-
construction. In addition, let be the modulated recon-
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struction matrix corresponding to . From (38), we con-
clude that

(A.5)

for all because we would be guaranteed perfect recon-
struction if we chose . Then, combining (37) and
(A.5), we obtain

for any reconstruction matrix . Therefore

where

is finite because is a continuous function on the compact
set , and is a constant on each . Using (11) and
(29), we obtain

(A.6)

Now, suppose that has an FIR parameterization as in (27),
i.e.,

where . Then, clearly, each entry of
can be expressed as a trigonometric polynomial of degree

at least . Moreover, the coefficients of the polynomial can be
individually controlled by changing the parameters. Equiv-
alently, we can reparameterize so that the new parameters are
the coefficients of the trigonometric polynomials (rather than
the filter coefficients). Now, by the Stone–Weierstrass theorem
[43], we obtain

(A.7)

for any if is sufficiently large. Combining (A.6) and
(A.7), we obtain the desired result

Incidentally, this also proves that
by Proposition 3
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