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ABSTRACT

We present a family of equalizers and targets for certain inter-
symbol interference (ISI) channels with the property that the
performance of a maximum-likelihood (ML) or maximum a
posteriori (MAP) based detector for the target channel is also
simultaneously optimal for the equalized channel. In particu-
lar, the MMSE Decision feedback equalizer (DFE) belongs to
this family of filters. Although, these solutions are infinite im-
pulse response (IIR) filters, we can achieve good performance
using finite impulse response (FIR) filters. We present an al-
gorithm for designing equalizers and FIR targets that mini-
mize the probability of sequence detection error.

1. INTRODUCTION

Communication systems that can be modeled as inter-symbol
interference (ISI) channels often employ the Viterbi algorithm
to perform maximum-likelihood (ML) or maximum a poste-
riori (MAP) detection of the input sequence. The implemen-
tation of the Viterbi algorithm with low complexity requires
that the ISI length be short. In practice the ISI is usually re-
duced by using linear equalization. The equalizer is a filter
that modifies the channel impulse response to match a spec-
ified short FIR filter called the partial response target. The
Viterbi detector operates on the equalized channel with the
assumption that the target filter approximates the channel re-
sponse well.

The purpose of this work is to identify the set of equalizers
and targets that yield the best performance with respect to
ML and MAP-based detection for the equalized channel. We
first show the existence of a family of IIR filters that incur
no loss of optimality. We relate these solutions to minimum
mean-square (MMSE) decision feedback equalizers (DFE).
We finally extend these ideas to the FIR case and show how
to design optimal FIR targets.

1.1. Definitions and Notation

We denote a discrete-time sequence {an : n ∈ Z} by a. The
discrete-time Fourier transform of a finite energy sequence a

is defined as

F{a} = A(ω) =
∑

n

ane−j2πnω .

The convolution of sequences a and b is denoted by c = a�b
and their inner product is 〈a, b〉 =

∑
n a∗

nbn, where ∗ de-
notes complex conjugation. Thus, the norm of a is ‖a‖ =
〈a, a〉1/2. Given a sequence a, let ä be the sequence ob-
tained by time-reversal and conjugation of a, i.e., än = a∗

−n.
For a real or circularly symmetric complex stationary ran-
dom process, x, denote its auto-correlation function by r x

n =
E(xm+nx∗

m) where E(·) denotes expectation. The power spec-
tral density of this random process is Sx(ω) = F{rx}. Fi-
nally, let �(·) denote the real part.

1.2. Channel Model

We model our ISI channel as a real or complex discrete-time
linear time invariant system

y = h � x + w (1)

where x = {xm} is the input to the channel, h = {hm} is the
channel response and w = {wn} is an additive white Gaus-
sian noise with power spectral density Sw(ω) = σ2

w. Assume
that the channel impulse response has finite energy but is pos-
sibly non-causal and IIR. Equation (1) describes a variety of
communication systems including magnetic recording.

In this paper, we assume that the input symbols are inde-
pendent and identically distributed (IID) with Sx(ω) = 1. In
the case of complex channels, the noise is assumed to be a
circularly symmetric, i.e., the real and imaginary components
of the noise samples are independent with variance σ 2

w/2.

2. MAXIMUM-LIKELIHOOD SEQUENCE
DETECTION

Suppose that a message x = {xm : m = 0, . . . , M − 1} is
transmitted through the channel (1). The received signal is
given by

yn =
M−1∑
m=0

hn−mxm + wn. (2)
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Given the output sequence y, the ML sequence detector esti-
mates the input sequence as x̂ = arg maxx p(y|x). Since the
additive noise is white Gaussian, this reduces to finding the
input whose channel response has minimum Euclidean dis-
tance from the output:

x̂ = arg min
x

D(y, x) (3)

where

D(y, x) :=
∑

n

∣∣∣yn −
M−1∑
m=0

hn−mxm

∣∣∣2. (4)

The above summation is carried over the finite region of in-
terest where the samples yn are available. If the ISI is small,
i.e., hn is a short FIR sequence, the above problem cost func-
tion can be minimized exactly in a computationally efficient
way using the Viterbi algorithm [1]. For long ISI lengths the
usefulness of the above approach is limited because the com-
plexity grows exponentially with the length of the ISI.

3. REVIEW OF LINEAR EQUALIZATION

Let f = {fn} denote the equalizer filter and g = {gn} denote
the target filter. The equalizer output is

z = f � y = f � h � x + f � w = l � x + u (5)

where l = f � h is the response of the equalized channel and
u = f � w is the output noise whose power spectral density
is Su(ω) = |F (ω)|2Sw(ω) = σ2

w |F (ω)|2. Traditionally, the
equalized channel response l and the target g are designed to
be “close” to each other, while keeping the overall noise as
white as possible.

3.1. Zero Forcing Equalizer (ZFE)

A zero forcing equalizer modifies the channel response to
match a given target filter exactly, i.e., l = g. Thus, the equal-
izer is given by F (ω) = G(ω)/H(ω). The spectral density of
the noise u is

Su(ω) = |F (ω)|2Sw(ω) =
|G(ω)|2
|H(ω)|2 σ2

w . (6)

An undesirable problem with zero forcing is that if |H(ω)|
has a spectral null or attains very small values, the equalized
noise is highly colored and amplified. For this reason, the
ZFE is rarely used in practice.

3.2. Minimum Mean Squared Error (MMSE) Equalizer

A widely used equalizer in practical systems is the MMSE
equalizer, which is designed to minimize the variance of the

equalization error e = f � y − g � x. The expression for the
MMSE equalizer is given by

F (ω) =
Sx(ω)H∗(ω)G(ω)
|H(ω)|2Sx(ω) + σ2

w

. (7)

The spectral density of the the estimation error is given by

Se(ω) =
|G(ω)|2Sx(ω)σ2

w

|H(ω)|2Sx(ω) + σ2
w

(8)

The advantage of the MMSE design over the ZFE is that we
do not have stability issues due to any spectral nulls in H(ω).
The MMSE error (8) is less colored and smaller than the ZFE
noise (6). However, the MMSE error is signal dependent and
non-Gaussian in general. This may cause undesirable effects
during Viterbi detection.

3.3. Target Design

Instead of choosing a fixed target, we seek the best target of a
given length. In practice, the target design is usually done in
conjunction with MMSE equalization. Since Sx(ω) = 1, we
minimize the variance of the MMSE equalization error (8):

min E =
1
2π

∫ π

−π

Se(ω)dω =
1
2π

∫ π

−π

|G(ω)|2σ2
wdω

|H(ω)|2 + σ2
w

assuming a finite length target: g = {g0, g1, . . . , gL−1}. The
resulting cost function is a simple quadratic function of the
target filter taps. To avoid the trivial solution g = 0, we im-
pose additional constraint on g such as the unit-energy con-
straint: ‖g‖2 = 1 or the monic constraint: g0 = 1. In each of
these cases, the optimal target is found easily by minimizing
the cost function subject to the appropriate constraint. The
solutions to these problems for the design of FIR equalizers
and targets can be found in [2].

For illustrative purposes, we present the solution to the
monic design in the IIR case, where the problem can be ex-
pressed in the frequency domain as

min E =
1
2π

∫ π

−π

|G(ω)|2σ2
wdω

|H(ω)|2 + σ2
w

(9)

over all causal targets g with g0 = 1. Using variational cal-
culus, it can be shown that the solution is

Q(ω) := |G(ω)|2 = λ(|H(ω)|2 + σ2
w) (10)

where

λ = exp
(
− 1

2π

∫ π

−π

log(|H(ω)|2 + σ2
w)dω

)
.

The target G(ω) can be chosen as the causal minimum-phase
spectral factor of Q(ω). The MMSE equalizer (7) reduces to

F (ω) =
H∗(ω)G(ω)
|H(ω)|2 + σ2

w

. (11)
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Coincidentally, this is related to the linear MMSE decision
feedback equalizer (DFE) for the given ISI channel [3, 4] with
g being the feedback filter and f being the combination of the
matched filter and the feed-forward filter. We emphasize that
the sequence detector need not be implemented using decision
feedback, but simply that the filters have the same form as the
optimal MMSE DFE. The spectrum of the estimation error (8)
is white for this solution. It has been experimentally observed
the MMSE DFE design attains better performance than other
design criteria. We shall formally prove this conjecture below.

4. SEQUENCE DETECTION FOR THE EQUALIZED
CHANNEL

Let us consider the performance of ML sequence detection
for the equalized channel (5):

z = l � x + f � w.

Suppose that the above channel approximates the so-called
target channel whose response is the target filter g:

z̃ = g � x + ũ (12)

where ũ white Gaussian noise. The ML sequence detector for
this channel takes the form

x̂ = argmin
x

D̃(z̃, x) (13)

where the surrogate cost function is

D̃(z̃, x) =
∑

n

∣∣∣z̃n −
∑
m

gn−mxm

∣∣∣2. (14)

Now, consider the following problem

x̂ = argmin
x

D̃(z, x) (15)

where z is the output of the equalized channel (5), rather than
the target channel (12). In other words, we are minimizing the
cost function D̃ applied to the output of the equalized chan-
nel. We would like to study the performance loss due to this
modification relative to the optimal rule (3). Our main result
is summarized below.

Theorem 1. Suppose the equalizer f and target g are chosen
such that

F (ω) =
H∗(ω)G(ω)
|H(ω)|2 + β

(16)

|G(ω)|2 = α(|H(ω)|2 + β) (17)

for any α > 0 and β > − infω |H(ω)|2, then

D̃(z, x) − ‖z‖2 = α(D(y, x) − ‖y‖2) + αβ‖x‖2.

In particular,

arg min
x

D(y, x) = argmin
x

(D̃(z, x) − αβ‖x‖2) (18)

since y and z are constants in the minimization.

The proof is very straightforward. A corollary is that if all
the input sequences in the message codebook have equal en-
ergy, the solutions to the problems (3) and (15) are identical:

x̂ = argmin
x

D(y, x) = arg min
x

D̃(z, x). (19)

For example, if the input symbols are elements of the Q-
phase PSK constellation, i.e., xn ∈ X = {ej2πq/Q : q =
0, . . . , Q− 1} in the complex case or the BPSK constellation
X = {−1, +1} in the real case, then all messages sequences
have equal energy. Thus, (19) is immediately applicable. If
the inputs have unequal energy, we need the energy bias term
in (18).

Theorem 1 shows that for a special family of equalizer
and target filters there is no performance loss if we minimize
the surrogate cost function D̃(z, x) instead of the original
cost D(y, x). In fact, the equalized channel (5) and the tar-
get channel (12) have the same a posteriori probability dis-
tribution. Thus, the two channels are equivalent as far as
any MAP based detector is concerned. The parameter α is
merely a scaling factor but β affects the shape of the filters.
The phase response of G(ω) is arbitrary, but the most logi-
cal choice would be to choose G(ω) as the causal minimum-
phase spectral factor of (17). In general, these solutions are
IIR. However for a Viterbi-based implementation, we require
a short FIR target. We address this problem in Section 5.

4.1. Special Cases

Letting α = 1 and β = 0 we obtain |G(ω)|2 = |H(ω)|2 and
F (ω) = G(ω)/H(ω), which corresponds to an all-pass zero-
forcing equalizer filter for which the noise remains white. Set-
ting α = λ and β = σ2

w yields the MMSE DFE solution
(10) and (11). This proves that the monic design is optimal
in the asymptotic (IIR) case. When β �= σ2

w, the solution
corresponds to an MMSE DFE design for a different noise
variance β. However, this mismatch causes no performance
loss in sequence detection. Curiously, some negative values
− infω |H(ω)|2 < β < 0 are also allowed even though they
do not represent the variance of any noise.

5. OPTIMAL FIR TARGET DESIGN

In the last section we derived a family of IIR equalizers and
targets that achieve the optimal performance for sequence de-
tection of the equalized channel. In practice, we can afford
to use long equalizers, but we still require a short FIR target
to keep the complexity of the Viterbi algorithm low. In this
section, we present a solution to the problem of FIR target
design for real channels with a BPSK input (X = {−1, +1})
assuming that the equalizer is IIR.

Suppose that x◦ is the actual input to the channel, and x̂
is the ML estimated sequence. Then e = (x̂ − x◦) is an
error event. Of all such events, the dominant error event is
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that which minimizes ‖ẽ‖2 where ẽ = h � e is the dominant
output error event. The following result is easily proved using
error analysis similar to that of standard Viterbi detection [1].

Theorem 2. The probability of sequence detection error at
moderately high SNR for a real BPSK channel is given by
Pe � κQg(

√
SNR) for some constant κ, where Qg(·) is the

Gaussian Q-function and SNR = maxv SNR(p, q, v) is the
effective signal-to-noise ratio of the system:

SNR(p, q, v) =
|�〈e, p � h � e〉|2

‖(q − p̈ � ḧ) � e − v‖2 + σ2
w‖p � e‖2

,

where p = f � g̈, q = g � g̈, and v is a sequence with the
same support temporal as the dominant input error event e.

The result is valid for FIR as well as IIR filters. The bit er-
ror rate (BER) also takes the same form as Pe but has a differ-
ent constant κ. For an optimal design, we seek the equalizer
and target filters that maximize the value of SNR. The op-
timal equalizer f and target g are those that maximize SNR
subject to relevant constraints. In particular we are interested
in an FIR target of length L and an IIR equalizer. In this case,
it is more convenient to perform the maximization over p, q
and v since f and g can be recovered from p and q by spec-
tral factorization. Note that q is the autocorrelation of the FIR
target g. Hence, q is FIR and constrained by Q(ω) ≥ 0.

Let δ denote the discrete delta function: δn = 0 for n �= 0
and δ0 = 1. Then, the triplets (p, q, v) and (p′, q′, v′) :=
(p, q + βδ, v − βe) for any β > 0 produce the same value
for the effective SNR. Thus, we can perform the maximiza-
tion ignoring the constraint Q(ω) ≥ 0 and finally add a suf-
ficiently large β to Q(ω) to make it nonnegative. Having rid
of the constraint on Q(ω), the maximization is readily trans-
formed into a quadratic minimization and solved analytically.
We omit the details here. The above argument also shows that
there are infinitely many solutions parameterized by β. This
is reminiscent of the family of solutions in Theorem 1. The
two families of solutions converge as L → ∞.

5.1. Example

We illustrate the FIR target design using the example of a real
ISI channel (1) with binary inputs xn ∈ {−1, +1} and im-
pulse response hn = e−n/2 for 0 ≤ n ≤ 10 and hn = 0
otherwise. The SNR is defined as ‖h‖2/σ2

w where σ2
w is the

noise variance. For each SNR we design the optimal length-3
target and IIR equalizer which is truncated to 21-taps (cen-
tered at the origin) since it captures most of the energy. The
dominant error event for this channel is e = {1,−1}. We
also design length-21 MMSE equalizers (centered at 0) and
length-3 targets described in Section 3 (see also [2]) for the
unit-energy and monic target constraints.

Using computer simulations we compare the three designs
in terms of their BER performance for IID binary inputs. The

three systems use the Viterbi algorithm to perform the se-
quence detection. The results are shown in Figure 1. It is clear
that the optimal FIR design slightly outperforms the monic
FIR design while the unit-energy design performsworst of all.
The performance gap between the optimal and monic designs
will diminish even further if we let the target length grow, as
predicted by Theorem 1.
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Fig. 1. Comparison of BER peformance of three designs.

6. CONCLUSION

We proved the existence of a family of IIR equalizers and tar-
gets for ML optimal sequence detection in certain ISI chan-
nels. The MMSE DFE is shown to be a particular solution in
this family, proving the previous conjecture regarding its op-
timality. We also showed how to design optimal FIR targets
for optimal detection.
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