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Abstract We develop reduced, stochastic models for high dimensional, dissipative dynam-
ical systems that relax very slowly to equilibrium and can encode long term memory. We
present a variety of empirical and first principles approaches for model reduction, and build
a mathematical framework for analyzing the reduced models. We introduce the notions of
universal and asymptotic filters to characterize ‘optimal’ model reductions for sloppy linear
models. We illustrate our methods by applying them to the practically important problem of
modeling evaporation in oil spills.
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1 Introduction

The methods of equilibrium statistical physics are remarkably successful in characterizing
the thermodynamic limit of Hamiltonian systems with many interacting degrees of freedom.
Considering adiabatic perturbations of the equilibrium state, one can also compute the trans-
port coefficients that characterize the linear response to external forcing in non-equilibrium
states.

For many out-of-equilibrium systems, the relaxation to equilibrium is exponential and
is governed by linear response theory. There are interesting examples that do not fit this
paradigm—Glassy systems relax very slowly (typically logarithmically) [7]. Such systems
include spin glasses [6], forced crumpling [42] and the stick-slip phenomenon and evolution
of frictional strength [45]. In these systems, the relaxation to a putative equilibrium state is
extremely slow and it is unclear if an equilibrium can ever be reached.

A striking example in this direction is the phenomenon of aging [1,7]. A glassy system
is allowed to relax over a long time scale and is then driven by an external perturbation for
a length of time tw , the waiting time. The perturbation is then removed, and the system is
allowed to relax once again. In this situation, the subsequent relaxation dynamics depends
not only on the (initially perturbed) macroscopic state of the system, but also on the waiting
time tw , showing that the relaxation of the system depends on details of its micro-state, and
that the micro-state has memory, i.e. it can ‘record’ aspects of the history of the system.
In particular the dynamics can distinguish identical macro-states that result from distinct
preparations (e.g. different waiting times) of an initially “relaxed” or “equilibrium” sample.

There are other consequences of slow relaxation to equilibrium. In amorphous materials
below the glass transition temperature Tg , the slow relaxation manifests itself as a slow
change in the effective properties of the material, a process called physical aging. As we
discuss below, a similar phenomenon is very important in the modeling of oil spills, although
themechanisms are different and crude oil is not a “glassy system” in the usual understanding
of this term.

The evolution of oil in the environment is also calledWeathering.Weathering is informally
defined as the mechanical or chemical changes that occur in compounds, such as rock, due
to exposure. Its distinguishing feature is that it occurs over very long times. Weathering is
a process that is distinct from glassy dynamics, nevertheless, it shares the feature of slow
relaxation with the latter.

Our interest in capturing such weathering dynamics arose from work developing a model
for oil spill transport in the ocean [43,49,50]. Crude oil is made up of hundreds, even
thousands of different chemical compounds. Oil will react chemically due to its complex
chemistry, its their exposure to the elements, and due to biological action [30,51]. These
changes occur at many time scales (from hours to decades) without any clear scale separa-
tion [22].

Oil is both a major economic commodity and a particularly dangerous pollutant so there
is great urgency in addressing a spill as soon as it happens. A transport model for an oil spill
is thus not very useful if it can only model the asymptotic state. This is because the buoyancy,
surface tension, and viscosity of oil droplets depend on their chemical composition and are
changing, due to exogenous and endogenous reactions, at different rates at different times.
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These changes on the micro-scale have dramatic consequences on the large scale dynamics
of expansive oil spills, and on how these oil spills are going to be contained. Petroleum
and chemical engineers are thus keenly interested in understanding and effectively modeling
these changes, and one of the goals in this work is to develop methods to construct reduced
dimensional models to this end (see [22,51] for a review of existing modeling approaches).
We seek to develop low dimensional, stochastic models for multi-scale, dissipative dynamics,
that can be applied to the practically important problems.

The other goal of this work is just as important—we want to develop intuition and new
approaches for problems in statistical physics including (i) coarse graining for systems with
slow relaxation/long memory and (ii) robust predictions for sloppy models [9,62].

Recently, several techniques have been proposed to address the issue of dimension reduc-
tion for complex systems using tools from non-equilibrium statistical mechanics[13,20,27,
52,59]. These techniques are based on earlier work by Mori [44], Zwanzig [64,65] and
Kawasaki [33]. The Mori–Zwanzig projection operator formalism [32,66] decomposes the
high-dimensional phase space of a system into resolved (or observed) variables and unre-
solved/unobserved degrees of freedom. The key idea is to project the full dynamics on the
phase space (more properly, to project the Liouville equation for the evolution of probability
measures on phase space) on to dynamics on the resolved degrees of freedom using statis-
tical information to take an expectation over the unresolved degrees of freedom [66]. This
procedure results in a generalized Langevin equation (GLE)

Ẋ = f (X) +
∫ t

0
K (X (t − s), s)ds + η(X, t),

where X ∈ R
n is the set ofn resolveddegrees of freedom, K (X (t−s), s) is thememory kernel,

that quantifies the information in the history of the resolved variables X on its subsequent
evolution, and η ∈ R

n the “noise” is governed by the orthogonal dynamics [20,28].
In situations with an invariant measure on phase space, and one uses a linear Mori pro-

jection [44], the resulting GLE is linear, and the memory kernel and the noise covariance are
related by the fluctuation–dissipation theorem [36]. If the memory kernel H decays expo-
nentially one can truncate the memory integral. Approximating the memory kernel H(s) in
terms of particular families of functions [32,35,60,66] gives rise to autonomous, stochastic
differential equations that approximate the evolution of the resolved degrees of freedom z(t),
and for a particular “nonlinear” Zwanzig projection which gives the evolution of the con-
ditional expectation of the current state, i.e an optimal predictor for the resolved variables
[13,14]. In this work, we will explore to what extent these methods carry over to situations
without a non-trivial invariant measure on phase space.

This paper is organized as follows. In Sect. 2 we review some of the literature onmodeling
the evaporation of crude oil, and present a simplified model for this process. In Sect. 3
we review the Mori–Zwanzig projection operator formalism focusing on the discrete time
setting as in Darve et al. [20]. Section 4 reviews some basic ideas in signal processing
and then discusses various approaches to dimension reduction/stochastic modeling using
autonomous/shift-invariant filters. In Sect. 5 we develop an analytic framework that allows
us to design non-autonomous/time-varying reducedmodels for systems with slow relaxation.
In Sect. 6we apply ourmethods toweathering in oil spills and present a concluding discussion
in Sect. 7.
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2 A Dynamical System with Slow Relaxation

There is considerable interest in the evaporation process of crude oil, since this is an important
process in the initial stages of an oil spill. Typical crude oil spills in the ocean can lose up to
40% or more of their oil to evaporation in the first few days before other important processes,
e.g. the emulsification of oil in water, have a significant effect [24].

Theoretical approaches to modeling oil evaporation [23,40,53] are based on modifying
equations for the (much better understood process of) evaporation of water [54]. Thermo-
dynamics governs the process by which water molecules from the liquid enter the vapor
phase at an air–water interface. However, this is not the limiting factor which determines the
rate of evaporation. Rather, the rate of evaporation is regulated by the saturation of the air
boundary-layer near the water surface. Indeed, dry air can hold up to a certain (temperature
dependent) maximum amount of water vapor (the relative humidity cannot be more than
100%), and once the boundary layer reaches this level of saturation, the rate of evaporation is
essentially governed by how quickly the water vapor can be transported (turbulent diffusion,
laminar flow, etc) away from the water surface. Using similar ideas, the evaporation of each
compound in oil can be modeled as

E/C ≈ KTS

where E is the evaporation rate, C the concentration of the compound, K is a mass transfer
rate, T is a coefficient that characterizes the turbulent/laminar transport of the vapor away
from the interface and S is a factor that depends on the saturation of the boundary layer by the
evaporating fluid (cf. Eq. (1) in [24]). The quantity α = KTS is the evaporation rate constant,
and various theoretical/empirical approaches to for obtaining expressions for T and S are
discussed in detail by Fingas [24].

Based on these considerations, we investigate a simple, generic dynamical system that
exhibits slow relaxation as amodel for the evaporation of ‘oil’, thought of as a composite with
many individual species. This system is solvable and thus offers a benchmark for measuring
the performance of reduced dimensional models.

We will assume that ‘oil’ consists of I distinct species with concentrations ci (t), i =
1, 2, . . . , I each decaying at a constant rate αi = KiT Si , to obtain

∂t ci (t) = −αi ci (t), αi > 0, 1 ≤ i ≤ I. (1)

We can also think of this system as describing non-interacting eigenmodes in a dissipative
system that is relaxing to its equilibrium. I � 1 will be assumed very large. It is in this
situation that a low-dimensional approximation of the system is particularly useful. We can
chose the indexing so that αi+1 > αi (identifying “chemically distinct” species with the
same evaporation rate as a single virtual species). The species with α close to zero decay
very slowly, so this model is similar in spirit to the approach of Amir et al. [1] for studying
aging in glasses.

Note that, every concentration ci is decaying in time, so the eventual state is one with no
oil—the invariant measure is a singular measure corresponding to a point mass at 0. This
system is dissipative, so the methods of equilibrium statistical mechanics of Hamiltonian
systems do not directly apply. The projection operator formalism, however, does not rely on
the underlying dynamics on phase space beingHamiltonian, and theMori–Zwanzig approach
is thus applicable [12].
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We consider the case of a single source of measurements (i.e. a scalar function M(t)). We
assume that the observation M(t) is a weighted average of the concentrations ci :

M(t) =
∑
i

βi ci (t) =
∑
i

βi ci (0)e
−αi t .

It is impractical/impossible to separately measure the concentrations/amounts ci of all the
individual species. One approach that naturally suggests itself is to use the measured quantity
M(t) to extract the various decay rates αi using nonlinear fitting. This approach will not work
[62]. Indeed, the discrete oil evaporationmodel (1) is a prototypical example of a sloppymodel
[62]. It is identical to themodel for themixture of radioactive nuclides considered inWaterfall
et al. [62], and as they show, one cannot hope to extract the decay rates αi , i = 1, 2, . . . , I
from the measured function M(t) [56,62].

We will therefore consider the complementary limit, where the number of distinct species
distinct species I � 1. We will not attempt to identify the individual species in the mixture;
rather we will use ideas from signal processing and statistical mechanics to make predictions
for quantities that are robust [9] and insensitive to the precise composition of the oil. To this
end, we will assume that βi and αi depend “smoothly” on i , i.e we can interpolate the values
of αi and βi to get functions that only vary on scales Δi � 1. Thus, we can replace the
discrete index i by a continuous variable w

αi = αmin(1 − w) + αmaxw, (2)

where αmin = α1 is the evaporation rate of the least volatile species and αmax = αI is the
evaporation rate of the most volatile species. A natural time scale for the system is

t0 = 1

αmax − αmin
, (3)

corresponding to the time by which the relative concentration

cI (t0)

c1(t0)
= 1

e

cI (0)

c1(0)
.

We will now obtain the equations for the continuum limit I → ∞ for time scales t � t0 i.e.
on time scales on which the relative concentrations of the various species vary significantly.
Let i(w) connote a smooth, monotonic interpolation of the inverse of the function

w(i) = αi − αmin

αmax − αmin
,

and ρ(w, t) the smooth interpolation of the function

ρ(w(i), t) = eαmintβi ci (t) · αmax − αmin

αi+1 − αi
.

A direct calculation now yields

M(t) =
∑

βi ci (t) = e−αmint
∑

ρ(w(i), t)[w(i + 1) − w(i)].
Using the differential equation for ci , we get

∂tρ(w(i), t) = −(αmin + (αmax − αmin)w(i))ρ(w(i), t).

We rescale to a non-dimensional time t̃ = t
t0

= (αmax−αmin)t and consider the caseαmin = 0
to describe slow relaxation. Indeed, for crude oil in the environment, αmin ≈ 0 and it is in
the scale of 1/decade.
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Taking the (naive) continuum limit in the two previous equations, and dropping the tildes
on t̃ with the understanding that henceforth t is dimensionless, we obtain

∂tρ(w, t) = −wρ(w, t), M(t) =
∫ 1

0
ρ(w, t) dw. (4)

We will refer to this equation, along with an appropriate random initial condition ρ(w, 0)
as the linear evaporation process. The only assumptions that went into the derivation of the
continuum limit are, (1) I � 1; (2) αi and βi vary on scales Δi � 1. The continuum limit
equations are independent of the precise details of αi and βi , which are absorbed into the
change of variable from ci (t) to ρ(w, t).

For a complete specification of the problem, we need to characterize the statistics of the
initial measure ρ(w, 0), which is random, reflecting the uncertainties in the initial composi-
tion of the oil. In particular, the statistics of ρ(w, 0) should be inferred from the statistics of
the concentrations ci (0) (of the discrete species), but one needs some attention to manner in
which we take the limit I → ∞ so that we do not get a deterministic (instead of random)
limit for ρ(w, 0). This would indeed be the case, from the central limit theorem, if the various
ci (0)were i.i.d random variables with finite variance and distributions independent of I . This
issue is somewhat subtle, and we address it in Sect. 5.

We can explicitly solve (4) to get ρ(w, t) = ρ(w, 0)e−wt . This is the Schrödinger picture
of the evolution of the system, in which the measure associated with the state of the oil
changes with time.

The Heisenberg picture arises from considering linear observables given by pairing the
measure dμt ≡ ρ(ω, t)dω with (an appropriate subset of) continuous functions on [0, 1].
Every continuous function g is associated with a linear observable G given by

G(t) =
∫

g(w)ρ(w, t)dw.

The total mass M(t) is thus the observable associated with the constant function f (x) = 1.
In the Heisenberg picture we have

G(t) =
∫

g(w)ρ(w, t)dw =
∫

g(w)e−wtρ(w, 0)dw =
∫

gt (w)dμ0(w). (5)

The evolution of the continuous function associated with an observableG is gven by gt (w) =
g(w)e−wt so that ∂t gt (w) = −wgt (w).

We note the contrast between our system (4), and the typical situation of a dynami-
cal system ẋ = f (x) on a high-dimensional phase space Σ . For the dynamical system,
the Heisenberg picture is given by evolving continuous functions on Σ through gt (x) =
g(ϕ(x, t)) where ϕ is the solution map, i.e ϕ(x, 0) = x and ∂tϕ(x, t) = f (ϕ(x, t)). In
particular, the constant function 1 is an invariant under this evolution. g(x) = 1 for all x
in Σ implies that gt (x) = 1 for all x and t . In contrast, the evolution in (5) which gives
gt (w) = e−wt . Consequently, the continuum limit (4) is not the Liouville equation for a
dynamical system.

We will henceforth work in a discrete time setting, that can be viewed as a Takens delay-
coordinate embedding [55] of the continuous time system. There are many reasons to do this,
including the difficulty in parametrizing continuous time stochastic processes [15,39] and
the fact that, for our application to oil spills, the sensor data is only obtained at discrete time
intervals. We can recast (4) and (5) as maps in discrete time by defining t = nτ, ρn(w) ≡
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ρ(w, nτ). With these substitutions,

ρn+1(w) = ΛT ρn(w),

g(n+1)τ (w) = Λgnτ (w), (6)

whereΛ is a bounded operator onC([0, 1]) that takes a continuous function g(w) toΛg(w) ≡
e−wτ g(w), andΛT is the adjoint on the dual space of measures on [0, 1]. Note thatΛ extends
naturally to a self-adjoint operator on L2([0, 1]) also defined by Λh(w) = e−wτh(w) for
all h ∈ L2, so we can also consider the (larger) set of oservables given by L2 functions on
[0, 1]. In this case the density ρ is also in L2 and the evolution is given by a self-adjoint
operator ΛT = Λ on L2([0, 1]). Although the maps in (6) are not the transfer operator [3]
(respectively theKoopman operator [10]) corresponding to a dynamical system, they have the
same formal structure so we will attempt to use discrete time projection operator techniques
for model reduction [15,38,39].

3 The Mori–Zwanzig Projection Formalism

We first present a short review of the discrete-time Mori–Zwanzig projection formalism
following the presentation in Darve et al. [20]. The setup is as follows: H is a Hilbert space
and Λ : H → H is a linear operator on this space. We can think of Λ as eτL where τ

is a ‘time-step’ and L is the Liouville operator (the generator) evolving measures on phase
space Σ and H ⊆ M(Σ) so every element of H can be interpreted as a (signed) measure
on Σ . Linear observables are given by linear operators g : H → R, so the set of linear
observables is the dual H∗ = H. A (general, nonlinear) observable is any (measurable)
function of a finite collection of linear observables, so the observables form an algebra of
mappings H → R. Finally, P : H → H is an orthogonal projection and Q = I − P is the
complementary projection. We will use the bra-ket notation and represent states (elements
of H) by ket-vectors and linear observables by bra-vectors.

We consider the discrete time dynamical system
∣∣ρn+1

〉 = Λ
∣∣ρn 〉. We decompose

∣∣ρn 〉 =∣∣ξn 〉+∣∣ηn 〉where ∣∣ξn 〉 = P
∣∣ρn 〉 (the observations) and ∣∣ηn 〉 = Q

∣∣ρn 〉. An elementary argument
by induction shows that

∣∣ρn 〉 = ∣∣ξn 〉+ ∣∣ηn 〉 = ∣∣ξn 〉+ QΛ(
∣∣ξn−1

〉+ ∣∣ηn−1
〉
)

= ∣∣ξn 〉+ QΛ
∣∣ξn−1

〉+ (QΛ)2(
∣∣ξn−2

〉+ ∣∣ηn−2
〉
)

= ∣∣ξn 〉+ QΛ
∣∣ξn−1

〉+ (QΛ)2
∣∣ξn−2

〉+ · · · + (QΛ)n
∣∣ξ0〉+ (QΛ)nQ

∣∣ρ0〉. (7)

For an observable Gn = 〈g|ρn〉, we therefore obtain

Gn =
n∑

k=0

〈g|(QΛ)k
∣∣ξn−k

〉+ 〈g|(QΛ)nQ
∣∣ρ0〉. (8)
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In the Heisenberg picture, Gn = 〈gn |ρ0
〉
, and from (8) it follows that

〈gn | =
n∑

k=0

〈g|(QΛ)k PΛn−k + 〈g|Q(ΛQ)n

= 〈g|PΛn +
n∑

k=1

〈g|Q(ΛQ)k−1ΛPΛn−k + 〈g|Q(ΛQ)n

= 〈g|PΛn +
n∑

k=1

〈Fk−1|ΛPΛn−k + 〈Fn |, (9)

where we have defined 〈Fk | = 〈g|Q(ΛQ)k . Equation (9) is identical to Eq. (6) in Ref. [20].
It follows that 〈Fk |ξ j

〉 = 0 for all j and k since QP = 0. For this reason, 〈Fk | is usually
treated as ‘noise’, although, in principle, one can characterize 〈Fk | through solutions of the
the orthogonal dynamics [20,28] (see also Appendix 2)

〈Fn+1| = 〈Fn |ΛQ, 〈F0| = 〈g|Q. (10)

Equation (9) is the discrete timeMori–Zwanzig decomposition and (11) below is the adjoint,
which evolves the states instead of the observables. These equations are identities and are
often taken as starting points for building methods to estimate quantities that are not directly
observed, in terms of quantities ξn, ξn−1, . . . , ξ0 that have been observed by time n.

A problem of significant interest is prediction, i.e. estimating ξn using the information
available at time n−1, which are the quantities ξn−1, ξn−2, . . . , ξ0. Using (7) with n → n−1
and

∣∣ξn 〉 = PΛ
∣∣ρn−1

〉
, we obtain

∣∣ξn 〉 = PΛ
∣∣ξn−1

〉
︸ ︷︷ ︸
Markovian

+
n∑

k=2

PΛ(QΛ)k−1
∣∣ξn−k

〉
︸ ︷︷ ︸

memory

+ PΛ(QΛ)n−1Q
∣∣ρ0〉︸ ︷︷ ︸

noise

, (11)

where the right hand side is decomposed into the Markovian term, the “optimal” estimate
of
∣∣ξn 〉 given the current state

∣∣ξn−1
〉
, the memory term that encodes the dependence on

the past observations
∣∣ξn−2

〉
,
∣∣ξn−3

〉
, . . . ,

∣∣ξ0〉, and the noise, which is orthogonal to
∣∣ξ j 〉 and

depends on the microscopic details of the initial condition, i.e it depends on
∣∣ρ0〉 and not just

on
∣∣ξ0〉. Of course, an important caveat here is that the interpretation of the decomposition

as Markovian, memory and noise terms relies on the origins of this procedure in the near-
equilibrium statistical mechanics context, and it is by no means clear that this interpretation
is valid for the evaporation process (4).

Nonetheless, the equation is a formally exact decomposition of a PDE with stochastic
initial conditions into a part that only depends on a subset of the degrees of freedom, the
resolved variables, along with an exact expression for the remainder. In what follows, we will
lump the Markovian and the memory terms into a single quantity, so the distinction between
the resulting two terms is whether or not they only depend on the observed quantities

∣∣ξ j 〉,
or the entire (microscopic) initial condition

∣∣ρ0〉.
3.1 The Memory Kernel for the Weathering of Oil

We now return to the evaporation model. We assume there is a single observed quantity,
Mn = ∫ ρndw. We take H = L2([0, 1]), the space of square integrable functions on [0, 1].
Defining

∣∣1〉 to denote the constant function g(x) = 1, we have
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Mn = 〈1|ρn〉, 〈1|1〉 = 1.

The orthogonal projection on to the one-dimensional space spanned by the constant functions
is given by P = ∣∣1〉〈1|. Consequently, ∣∣ξn 〉 = P

∣∣ρn 〉 = ∣∣1〉〈1|ρn 〉 = Mn
∣∣1〉 and Mn = 〈1|ξn

〉
.

Using this in (11) and projecting on to constants gives

Mn =
n∑

k=1

hkMn−k + βn, (12)

where hk = 〈1|(ΛQ)k−1Λ|1〉 and βn = 〈1|(ΛQ)n
∣∣ρ0〉 is the ‘noise’ that depends explicitly

on the microscopic initial condition
∣∣ρ0〉. We can also obtain the same equation from the

(usual) Mori–Zwanzig decomposition in (9) by taking 〈g| = 〈1|Λ.
Equation (12) is exact. In particular, it holds for

∣∣ρ0〉 = ∣∣1〉, in which case the noise
vanishes, βn ≡ 0 for all n. If

∣∣ρ0〉 = c
∣∣1〉, for some constant c, M0 = 〈1|c|1〉 = c and we can

explicitly solve (4) to obtain

Mn = M0

∫ 1

0
e−wnτdw =

{
M0

1−e−nτ

nτ
n ≥ 1,

M0 n = 0.
(13)

Consequently, the memory kernel hk is determined by

1 − e−nτ

nτ
=

n∑
k=1

hk
1 − e−(n−k)τ

(n − k)τ
for all n ≥ 1. (14)

We can solve for hk using theZ-transform (equivalently the generating function). Let M̂(z) =∑∞
n=0 Mnz−n and Ĥ(z) =∑∞

n=0 hnz
−n . The sum defining M̂(z) converges for z outside the

unit disk since Mn is clearly a decreasing sequence. We can compute the sum explicitly to
obtain

M̂(z) = M0

∞∑
n=0

∫ 1

0
e−wnτ z−ndw = M0

∫ 1

0

zewτ

zewτ − 1
dw = M0

τ
log

[
zeτ − 1

z − 1

]
.

Multiplying (14) by z−n and summing on n ≥ 1 gives

M̂(z) − M0 = M̂(z)Ĥ(z), (15)

and rearranging yields

H(z) =
[
1 − M0

M̂(z)

]
=
[
1 − τ

log(eτ z − 1) − log(z − 1)

]
. (16)

H is analytic outside the unit circle and has a branch point singularity at z = 1. Expanding
about z = ∞ gives

H(z) = z−1 1 − e−τ

τ
+ z−2 (1 − e−τ )((τ − 2) + (τ + 2)e−τ )

2τ 2
+ · · · ,

so that the coefficients hk can be explicitly computed. Our interest is in the long time behavior
of hk , which can be deduced from the z → 1 behavior of Ĥ(z). Ĥ(z) has a logarithmic branch
point at z = 1. In particular, this implies that the series for Ĥ(z) does not converge for any z
with |z| < 1, so that the sequence hk decays slower than the exponential e−εk for any ε > 0.
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The transfer operator methods in Flajolet and Odlyzko [25] (Theorem 3A and comments on
pp. 231–232) imply, in fact, that

hk ∼ 1

k log2(k)
as k → ∞, (17)

so that hk decays algebraically. Although
∑

hk converges to Ĥ(1) = 1 (by (16)), the partial

sums go to 1 extremely slowly,
∣∣∣1 −∑N

k=1 h(k)
∣∣∣ ∼ log(N )−1.

The memory kernel hk thus has a fat tail. The algebraic decay of hk is a reflection of
the extremely slow relaxation in ρ(w, t) = ρ0(w)e−wt for species with w close to zero. In
general, the initial conditionρ0(w) has an effect for times of order 1/w, so the initial condition
is not “forgotten” for long times, leading to the fat tails and slow decay of correlations.

4 Dimension Reduction, Stochastic Modeling and Filtering

We are interested in model reduction, i.e. in developing low dimensional (approximate)
models for predicting the behavior of high dimensional complex systems, e.g. the linear
evaporation process (4). Before we describe our work on this problem, we first review some
basic terminology from signal processing, and then present a roadmap to guide the reader
through our various approaches to the problem of prediction/model reduction for (4).

4.1 Filtering, Estimation and Prediction

In our context, the general prediction/estimation problem along with data assimilation is the
following: The sequence

∣∣ρk 〉 describes the “state” of the system (4) sampled at discrete times
t = kτ . We are given a sequence of noisy measurements M̃k = 〈1|ρk〉 + σγk where the γk
are uncorrelated normal variates. What is the “best” prediction for Mn = 〈1|ρn〉 in terms of
the measurements M̃k for k < n? Abstractly, the optimal estimate is given by a conditional
expectation

M̄n = E[Mn | M̃n−1, M̃n−2, . . . , M̃1, M̃0].
We seek a concrete representation for the optimal estimator, i.e. a (sequence of) explicit
functions Fn such that

E[Mn | M̃n−1, M̃n−2, . . . , M̃1, M̃0] ≈ Fn(M̃n−1, M̃n−2, . . . , M̃ j , . . .).

with M̃ j = 0 for j ≤ 0. We will call such functions Fn filters or predictors. We can classify
filters by the following properties:

1. The filter is autonomous or shift-invariant if Fn ≡ F independent of n.
2. If Fn only depends on M̃n−1, M̃n−2, . . . , M̃n−L for somefinite L , then it is a finite impulse

response (FIR) filter with L taps. Otherwise, the filter is an finite impulse response (IIR)
filter that uses information from the entire time history of the time series M̃k .

3. A filter Fn is linear if it is given by a linear function of its arguments.
4. A filter Fn is genie-aided if it has access to more information than is available in

M̃n−1, M̃n−2, . . .. Such filters cannot be built in practice. Nonetheless, as with the
Maxwell demon, this fictional construct is useful because it allows us to bound the
best-case behavior of constructible filters.

5. A filter Fn is empirical or data-driven if it is obtained through regression on many
realizations of the underlying random process M̃k .
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Table 1 A summary of the various filters we will consider in this work, along with a description of their
features

Filter Definition Linear Data driven Other features

Memory-kernel/transfer function based methods

MZ filter Eq. (18) Yes No Needs all history

Truncated MZ (FIR) Eq. (19) Yes No

MZ-Pade Eq. (20) Yes No

Harmonic filter Eq. (23) No No

Statistical regression based methods

Linear Oracle Sect. 4.4 Yes Yes Genie-aided

Empirical linear Eq. (24) Yes Yes Averaged over runs

Empirical harmonic Eq. (25) No Yes Averaged over runs

Methods that exploit slow decay of correlations

Asymptotic filter Eq. (33) Yes No Non-autonomous

Universal filter Eq. (35) Yes No Unstable

Extended asymptotic Eq. (37) No No Hidden variables

All but the Asymptotic filter are shift-invariant, and all but the MZ filter have finitely many taps

Table 1 describes our various approaches to building filters for the linear evaporation
process (4). At the gross level, there are three distinct approaches. The first approach is based
on the memory kernel (16), or equivalently, the single realization corresponding to

∣∣ρ0〉 = ∣∣1〉
given by (13). These filters are described in Sects. 4.2 and 4.3. The second approach, discussed
in Sect. 4.4, is empirical and relies of estimating coefficients in filter functions using statistical
regression on independent realizations of the random process (4). The final approach is non-
empirical, and exploits the slow relaxation inherent in the process Mk . In this case, the slow
decay of the memory kernel (17) is beneficial, rather than detrimental, contrary to intuition.
This approach is discussed in Sect. 5.

We also note that solving the filtering/prediction problem is very closely related to obtain-
ing reduced models for the high-dimensional system (4). If Fn is a (close to) optimal filter,
then the process

M̂n = Fn(M̂n−1, M̂n−2, . . . , M̂ j , . . .) + θn,

where the quantities θn are stochastic with the appropriate statistics, is a good surrogate for
the high dimensional process that generates Mn . This reduction is particularly efficient if the
filter Fn is shift-invariant and has finitely many taps. Indeed, this is the framework in which
theMori–Zwanzig projection operator formalism is used to build reduced models for various
high-dimensional systems [15,29,39].

A natural question is: “Why consider multiple approaches?” We do this because we have
good analytical understanding of the ‘high-dimensional’ dynamics of (4), so we have a
good theoretical basis for assessing the performance of many of the popular approaches to
stochastic modeling/dimension reduction. We are able to evaluate the relative merits of the
various assumptions/approximations that are inherent in the different approaches. Finally,
we are able to develop an analytic framework that gives new approaches to model reduction
for high dimensional systems with long term memory, and one that is applicable to practical
problems.
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In order to assess the performance of our various filters, as well as to generate the empirical
filters by regression, we need realizations of the evaporation process (4) with random initial
data

∣∣ρ0〉 drawn from an appropriate distribution. We numerically generate such realizations
as follows:

Algorithm I Generating synthetic data

1. Wediscretize the interval [0, 1] into I equal intervals of sizeΔ = 1/I . For our simulations
we take I = 1000.

2. We assign the initial mass distribution by picking I independent random variables ui , i =
1, 2, . . . , I uniformly distributed random variables on [0, 1] and then normalize to set

ρ0(i) = ui

Δ
∑I

i=1 ui
.

By symmetry, the marginal distributions of the quantities ρ0(i) are identical, but they
do depend on I , the “total number of species”. They are however not independent. By
construction

∑
i ρ0(i) = I . To the interval [(i − 1)Δ, i�], indexed by i , we associate

the decay rate

w(i) =
(
i − 1

2

)
Δ, i = 1, 2, . . . I,

corresponding to the middle of the interval.

3. We pick τ = log(3/2) so that ρn(i) = ρ0(i)
( 2
3

)nw(i)
.

4. We compute Mn = ∑
ρn(i)Δ for 1 ≤ n ≤ N , where we choose N such that the

assumption that we are discretizing a continuum density using I intervals is still valid.
This requires that there are at least ∼ 10 intervals for which the density ρn(i) has
not decayed down to zero. This gives the rule of thumb log(3/2)w(10)N ∼ 1 so that
N ∼ I

10 log(3/2) ∼ I
4 . We can thus safely take N = 200. ��

The numerical procedure is very close in spirit to the original discrete model (1) with I
distinct species. The one difference is that, since we are rediscretizing a continuum limit, we
can pick the decay rates w(i) on the basis of our discretization, and not through any relation
with the “true” decay rates of the components of oil. This also ties in with the idea that the
individual decay rates in the mixture cannot be identified, and our methods have to be robust
to possible changes in the underlying “bare” decay rates.

Through this procedure we obtain many random realizations of (a discretization of) the
system in (4) with M0 = 1. We use the computed values of Mk as the “measurements” M̃k

in estimating Mn from the measurements for k < n. In particular, we will assume there is no
measurement noise.

4.2 The Mori Projection and Linear Autonomous Estimators

Equation (12) is exact (see also (41) in Appendix 1) and gives a stochastic reduced model of
the system (4) on replacing the quantities βn (determined by the microscopic initial conditon∣∣ρ0〉) with a stochastic process θn , typically a Gaussian process, that has the same “statistics”,
i.e. we match the means and the covariances

E[βn] = E[θn] = 0, E[βT
n βm] = E[θTn θm], for all m, n ≥ 0,

where the expectations E for β are over a natural measure for the initial conditions and the
expectations for θ are over the measure underlying the stochastic process θn . Equation (12)
thus gives the stochastic model
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Mn =
n∑

k=1

hkMn−k + θn .

Consequently, we also have the associated prediction/filtering algorithm

M̄n =
n∑

k=1

hk M̃n−k, (18)

whichwewill call theMZfilter. TheMZfilter is shift-invariant (autonomous), but nonetheless
evaluating the sum in (18) requires us to keep track of the entire history of M̃n , As we argued
above, since hk has a fat tail, one cannot simply truncate the sum at a fixed L and expect to
get good results.

Figure 1 compares the performance of three potential estimators. The first estimator does
not use any data assimilation, so the predicted sequence M̄n is given by (13). The second
estimator truncates the sum in the Mori–Zwanzig decomposition at L = 6 where the value
6 has no particular significance and is chosen purely for the purposes of illustrating the
effects of truncating the sum. Naive truncation gives the estimator M̄n ≈∑L

k=1 hk M̃n−k ,
which is biased at O(n−1), because the quantities hkMn−k have positive means and their
sum over n − L ≤ k < n is O(n−1). We can attempt to eliminate this bias by an ad hoc
“renormalization” of the weights

h′
k = hk∑L

k=1 hk
, M̄n =

L∑
k=1

h′
k M̃n−k (19)

so that
∑L

k=1 h
′
k =∑∞

k=1 h(k) = 1, and the estimator has a bias O(n−2) and is thus ‘better’
in the limit n → ∞. We will call this the truncated FIR (Finite impulse response) filter in
contrast to the third estimator, (18) which is an IIR (Infinite impulse response) filter that is
obtained from the Mori–Zwanzig decomposition and incorporates the entire history of Mn .

For each estimator, we define the “inferred noise” or the one-step prediction error εn as
the difference |M̄n − Mn | between the estimate M̄n using information available at time n−1
and the (random) value Mn (“the truth”) for a realization. We display these differences for a
single ‘typical’ realization in Fig. 1. Figure 2 show the averaged error over many realizations.

Very surprisingly, the MZ estimator using the entire history does worse than the truncated
MZ estimator with renormalization and, on average, also worse than the estimator without
any data assimilation.

An alternative approach to truncating the sum in the Mori–Zwanzig estimator is to work
in the Z-transform domain and approximate Ĥ(z) in (15) by a rational function in z−1 [46],
i.e. Ĥ(z) ≈ p(z−1)/q(z−1) where p and q are polynomials of degrees less than or equal to
L , and we normalize by requiring that q(0) = 1. Since h0 = 0, it follows that p(0) = 0. The
Z-transform of the sequence M̄n of estimates given by

∞∑
n=0

M̄nz
−n ≡ ̂̄M(z) ≈ M0

1 − p(z−1)

q(z−1)

= M0
q(z−1)

q(z−1) − p(z−1)
.

If we define b(z−1) = q(z−1)− p(z−1), b is also a polynomial with the normalization b(0) =
1. Thus, we get an auto-regressive AR(L) model [8,37] b(z−1) ̂̄M(z) = M0q(z−1). Writing
b(z−1) = 1+b1z−1 +b2z−2 +· · ·+b j z− j and q(z−1) = 1+q1z−1 +q2z−2 +· · ·+q j z− j ,
we have the estimator
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Fig. 1 The inferred error for the three estimators used on one random realization. The estimator with no data
assimilation (yellow) is given by (13), the renormalized FIR filter (blue) is given by (19) and theMori–Zwanzig
estimator (red) that uses the entire history is given by (18) (Color figure online)

Fig. 2 The inferred error averaged over 100 realizations. These curves are very stable and do not vary
discernibly between sets of 100 independent realizations. Three of the estimators are the same as in Fig. 1. We
also compare the FIR filter generated by the [6,6] Padé approximant of the Mori–Zwanzig transfer function
H(z). The one-step prediction error for the Padé filter is substantially smaller than the errors in the other
estimators

M̄n = M0qn −
n∑

k=1

bk M̄n−k,

where we have used the convention bk = 0 (resp. qk = 0) for indices k greater than the
degrees of the respective polynomials. The sum on the right hand side therefore has no more
than L non-zero terms. Of course, if the estimator is ‘good’, then M̄n the estimate for Mn

using information available prior to time n is close to the true value Mn . In fact, one might
argue that the Mori–Zwanzig decomposition (12) is exact for the “true” sequence Mn and
thus one would do better (or certainly not much worse) by replacing the estimates M̄n−k by
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their measured values Mn−k since we are assuming there is no measurement error. This gives
the estimator

M̄n = M0qn −
n∑

k=1

bkMn−k . (20)

One can view this as an alternate renormalization of the weights hk in a truncatedMZ estima-
tor, one that is perhaps better justified and less ad hoc than the choice h′

k = hk(
∑L

k=0 hk)
−1

from above. In Fig 2, we present the results using the [6,6] Padé approximant of H(z) about
z = ∞ to obtain the 6th order polynomials p and q , which then give a 6 tap filter (20)
for predicting Mn from Mn−1, Mn−2, . . . , Mn−6. Very surprisingly, the Padé filter, which
is ostensibly designed to approximate the MZ estimator through a filter with finitely many
delays, performs significantly better than the MZ estimator (18).

4.3 Nonlinear Filters

Since the evaporation process (4) is linear, the equations do not have a natural scale for
the mass M . In particular, the total amounts of oil is an extensive quantity whose (scale-
free) logarithmic derivative ∂t M(t)/M(t) should only depend on the relative fractions of the
different species and not their total amounts. It follows that the dynamics, and consequently
also the estimators, should be homogeneous of degree 1, i.e if the estimator of Mn is given by
M̄n = Fn(Mn−1, Mn−2, . . . , M1, M0), then Fn must satisfy Fn(λMn−1, . . . , λM1, λM0) =
λFn(Mn−1, . . . , M1, M0) for all λ > 0. It is easy to verify that all the linear estimators in
Sect. 4.2 have this property.

Note also that the Mori–Zwanzig decomposition (12) is exact, and further, the noise in the
equation is exactly zero for choices of the initial condition

∣∣ρ0〉 in the range of the projection
P = |1〉〈1|. Consequently, the estimators in the previous section were designed to (exactly
or approximately) recover the sequence Mn for initial conditions in the range of P . We can
also seek nonlinear estimators with the same property.

Themotivation for considering nonlinear estimators that the processMn behaves (roughly)
like 1/n, so no finite-lag ARMA filter can generate such a process. Indeed, the impulse
response of such a filter is determined by its poles [46] and consists of sums of sequences of
the form nl z−n

j where l < the order of the pole z j of the filter transfer function. On the other

hand, for the sequence in (13), M−1
n ∼ n with exponentially small corrections. The sequence

M−1
n = n can indeed be generated by an ARMA filter [8], in particular, by a 2nd order pole

at z j = 1.
This naturally leads us to filter M−1

n by seeking weights νk such that

1

Mn
=

n∑
k=1

νk

Mn−k

exactly for the sequence (13), and then use this as a starting point for truncation as in the
previous Sect. 4.2. We have, for

∣∣ρ0〉 = ∣∣1〉,

1

Mn
=
{

nτ
M0(1−e−nτ )

= nτ
M0

+ nτe−nτ

M0
+ nτe−2nτ

M0
+ · · · n ≥ 1,

1
M0

n = 0.
(21)
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The Z-transform of the sequence M−1
n is given by

T (z) =
∞∑
n=0

z−n 1

Mn
= 1

M0

⎡
⎣1 + z−1τ

(1 − z−1)2
+

∞∑
j=1

z−1τe− jτ

(1 − e− jτ z−1)2

⎤
⎦ .

Note that, in contrast to theZ-transform forMn , which has logarithmic branch points at z = 1
and z = e−τ , the Z -transform for M−1

n is has poles of order 2 at z = e− jτ , j = 0, 1, 2, . . .
and an essential singularity at z = 0.

As before, we can compute the sequence νk through its Z-transform by

S(z) =
∞∑
k=0

νk z
−k = z

[
1 − M−1

0 T (z)−1
]
.

This form is not directly useful, since we do not know the zeros of T (z), which correspond
to the poles of S(z), which in turn determine the asymptotic behavior of νn .

We will instead use an alternative approach that directly determines rational approxima-
tions to T (z) which can then be used to generate finite lag estimators for M−1

n . Since the
series expansion for 1

Mn
in (21) converges exponentially, we can truncate the sum at order

e−mnτ to obtain

M0T (z) ≈ 1 + z−1τ

(1 − z−1)2
+ z−1τe−τ

(1 − e−τ z−1)2
+ · · · + z−1τe−mτ

(1 − e−mτ z−1)2
,

a rational function approximation,where the error in this approximation is uniformly bounded
on the unit circle. Given a rational approximation to T (z) = M−1

0 q(z−1)/b(z−1), we can
design a linear predictor for M−1

n as above (cf. (20)). We illustrate this method with explicit
calculations for m = 1:

T (z) ≈ 1

M0

[
1 + z−1τ

(1 − z−1)2
+ z−1τe−τ

(1 − e−τ z−1)2

]

= 1

M0

((1 − z−1)2(1 − e−τ z−1)2 + z−1τ
[
(1 − z−1)2 + (1 − e−τ z−1)2

]
(1 − z−1)2(1 − e−τ z−1)2

≡ 1

M0

q(z−1)

b(z−1)
, (22)

where the last line defines the polynomials b and q through the expressions on the middle
line. The polynomials b and q are normalized, b(0) = q(0) = 1, and have degree 2m + 2
(in general) corresponding to the m + 1 quadratic factors from the poles of order 2 in the
rational approximation of T (z). By the same arguments as in Sect. 4.2, we get the following
estimator for M−1

n :

M̄−1
n = M−1

0 qn −
n∑

k=1

bkM
−1
n−k, (23)

with the convention that b j = q j = 0 for j > 2m + 2 so that the sum on the right hand side
has at most 2m + 2 non-zero terms, i.e 4 terms in the case in (22) with m = 1. We will refer
to the estimator in (23) as a harmonic filter, because for the case m = 0, the filter reduces to

M̄−1
n = 2M−1

n−1 − M−1
n−2 for n ≥ 3,

i.e. the middle value Mn−1 is the harmonic mean of the extreme values Mn−2 and Mn .
Figure 3 shows the comparison between the performance ofthe pade-truncated MZ estimator
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Fig. 3 The one step error for the harmonic filters with m = 0, 1 and 2 corresponding to predictions using
L = 2, 4 and 6 respectively. We also show the inferred error of the Padé filter which was the ‘best’ among the
various linear filters that we considered in 4.2

(20) with 6 taps, and the harmonic estimator (23) with m = 0, 1 and 2. The Padé truncated
estimator performs better for small n, while the Harmonic predictors have comparable or
superior performance for n � 30.

4.4 Empirical Filters: Data-Driven Stochastic Parameterization

A powerful approach to stochastic parameterization is through data-driven model reduction
[11,16,29,39]. In this approach, the coefficients in a parametric or semi-parametric model are
determined by comparison with data. For this procedure, it is crucial that one begins with an
appropriate form for the reducedmodel. Indeed amodel with toomany parameters can overfit
the training data, i.e. the coefficients can become sensitive to the random noise in the data,
which will then lead to poor predictions from the reduced model. We can view the finite lag
linear and harmonic estimators in the previous two sections (see Eqs. (20) and (23)) as useful
ansatzes for building data driven ‘empirical’ estimators. In this approach, the coefficients of
the polynomials q and b are not inferred from the particular sequence corresponding to the
initial condition

∣∣ρ0〉 = M0
∣∣1〉, but rather, are estimated from many (random) realizations of

the time series forMn with the initial condition
∣∣ρ0〉 sampled from an appropriate distribution.

The appropriate state spacemodel isMn =∑n
k=1 hkMn−k+βn whereβn = 〈1|(ΛQ)n

∣∣ρ0〉
is now a non-stationary random process (see Sect. 5). Nonetheless, as a crude approximation,
we can assume the AR(L) model

M̄n = M0qn +
min(n,L)∑

k=1

h′
kMn−k + σ({Mn−1, Mn−2, . . . , M0})θn,

where qk , h′
k are fixed (in n) renormalized weights that are zero for n > L , and θn are i.i.d.

normal variates, giving a stochastic parameterization [2] of Mn . The non-stationarity of the
noise process is modeled through the variance parameter σ that could, in principle, depend
on the state as encoded by the entire history {Mn, Mn−1, . . . , M0}. This is a common idea
in regression analysis, called variance inflation [37]. It is an uncontrolled approximation
because we are insisting that the covariance matrix for the fluctuations be diagonal.
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We estimateσ by (i) using the homogeneity of the underlying process (4), and (ii) assuming
that, for n > L , σn only depends on the ‘recent’ past of Mn so it is only a function of the
quantitiesMn, Mn−1, . . . , Mn−L that appear in the sum

∑L
k=1 h

′
kMn−k . This still leaves open

a range of possibilities, and to the extent any of these approximations are valid, the results
should not depend on precisely how we choose to parameterize the variance (we give a post
facto justification for the insensitivity to the particular approximations through the analysis
in Sect. 5 below). We will thus make the “simple” choice

σ({Mn−1, . . . , M0}) ∝ Mn−1 + Mn−2 + · · · + Mn−L .

for parameterizing the variance in terms of the state. With this choice, we can estimate the
weights h′

k by the following Monte-Carlo procedure:

Algorithm II: Filters determined by statistical regression

1. Pick initial conditions
∣∣ρ( j)

0

〉
for j = 1, 2, . . . , J by sampling from an appropriate distri-

bution.
2. For each initial condition

∣∣ρ( j)
0

〉
, generate the sequence M ( j)

k for k = 1, 2, . . . , N . This
is the “training data set”.

3. Find the weights h′
k by minimizing the sum of the normalized squared residuals

∑J
j=1
∑N

n=L+1

[
M( j)

n −∑L
k=1 h

′
k M

( j)
n−k∑L

k=1 M
( j)
n−k

]2
, where the outer sum is over different realizations,

and the inner sum is over all subsequences of L consecutive values of M ( j)
k . The resulting

equations are of course the analogs of the Yule–Walker equations [8,61,63] for the design
of AR filters for stationary random processes. In our case, the covariances E[MnMk] are
estimated by averaging over time in each realization and also averaging over an ensemble
of realizations.

4. Once we determine the parameters h′
k , we can then determine the parameters qn by min-

imizing
∑J

j=1

[
M ( j)

n −∑n
k=1 h

′
kM

( j)
n−k − M0qn

]2
, where we assume that the solutions

have been scaled such that M0 is the same for the L independent realizations. Note that
we are only averaging over different realizations, and not over time, so we do not have
the issue of estimating the variance of a non-stationary noise process. Minimizing over
the choice of q j yields

qn = 1

JM0

J∑
j=1

[
M ( j)

n −
n∑

k=1

h′
kM

( j)
n−k

]

5. An obvious modification of this method also applies to determine the regression coef-
ficients for estimating M−1

n from its history. Since (M + Δ)−1 ≈ M−1 − Δ/M2 if
Δ/M � 1, we can postulate the variance parameterization for the filter

M̄−1
n = q ′

n +
min(n,L)∑

k=1

ν′
kM

−1
n−k + σ ′({Mn−1, Mn−2, . . . , M0})θ ′

n

as σ ′ ∝ (Mn−1 + Mn−2 + · · · + Mn−L)/M2
n ∼ M−1

n−1 + M−1
n−2 + · · · + M−1

n−L . ��
Wedisplay the results of this procedure in Fig. 4.Weobtain the empiricalAR(L) estimators

(qk, h′
k) and (q ′

k, ν
′
k)with L = 6 by averaging the residuals over 100 independent realizations,

each starting with M0 = 1 and run for 200 steps. The resulting filters are given by
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Fig. 4 The performance of the empirical filters determined by regression using many model runs. a One-step
prediction error for a single realization. The dips in the error correspond to times where the error changes
sign, and the number of such changes is naturally related to the number of taps in the filter. b The average
performance of the empirical filters over 100 random realizations. The empirical linear filter performs better
than the empirical harmonic filter for all n. It also tracks the average performance of (the realization dependent)
linear oracle, except at the dips, which persist even upon averaging

M̄n = 5.2218Mn−1 − 11.3232Mn−2 + 13.0495Mn−3 − 8.4286Mn−4

+ 2.8926Mn−5 − 0.4120Mn−6 (24)

M̄−1
n = 4.9161M−1

n−1 − 10.1034M−1
n−2 + 11.1366M−1

n−3 − 6.9607M−1
n−4

+ 2.3446M−1
n−5 − 0.3332M−1

n−6 (25)

We test the performance of these filters on 100 new realizations, that were not part of the
training set, and also construct, for each realization, a linear oracle, i.e. a filter that has
knowledge of the future, byminimizing the sumof the squared residuals over all subsequences
of consecutive values of Mn for this realization. By construction, the linear oracle has the
smallest possible error among all linear filters for the given realization, and is thus a good
benchmark for measuring the performance of any given linear filter.
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Fig. 5 Distribution of the poles of the linear oracles for 200 independent realizations. The abscissa in each
plot is 1− z j , j = 1, 2, . . . , 6 where z j is the j th smallest pole. The empirical filter is obtained by averaging
the residuals over time and also the first 100 realizations. It has poles at 0.6876, 0.7641, 0.8599, 0.9355, 0.9784
and 0.9963 respectively and these locations are marked on the corresponding histograms. Note that the relative
variation in the pole location, among the various realizations, gets larger, exponentially in j , showing that the
pole locations are sloppy parameters

The process Mn is not stationary, and certainly not ergodic, so there is no reason to expect
that we can replace an ensemble average over different realizations by a time average. Also,
as discussed above, the procedure for computing the linear oracle cannot be done ‘online’
(i.e. as the data Mn is being generated) because we need the entire history of the sequence
Mn to compute it. Nonetheless, as we illustrate in Fig. 5, the variations between the linear
oracles for different realizations are small, and they all agree with the filter generated by
averaging the residuals over time and realizations. This is also reflected in the fact that the
averaged filter performs nearly as well as the linear oracle, for data that were not part of the
training set.

5 Asymptotic Filters

In the previous sectionwe considered various approaches to building a stochastic parametriza-
tion of the process Mn . The numerics revealed some counter-intuitive results. The numerics
also demonstrate, unequivocally, that the ‘best’ stochastic parameterization came from the
data-driven empirical linear filter. In this section, we develop a framework for the analyz-
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ing the continuum model (4) in a probabilistic setting with random initial conditions drawn
from a distribution. We also characterize the noise process βn in the Mori–Zwanzig pro-
jection (12), and this allows us to rigorously analyze the stochastic parametrization/filtering
schemes from Sect. 4. Through this analysis we provide an explanation for the observations
from numerical simulations, and also present some new theoretical insights into stochastic
parametrization/prediction for systems with slow relaxation/algebraic decay of correlations.

In our numerical discretization of (4), we take

ρ I
0 (w) =

I∑
i=1

ΔγiΔ

(
w −

(
i

I
− 1

2I

))
, (26)

where Δ = 1/I and the quantities γi are i.i.d non-negative random variables with mean
μγ = E[γ ] and variance σ 2

γ = E[(γ − E[γ ])2]. If φ,ψ are continuous functions on [0, 1],
direct calculations show that

E

[∫ 1

0
ρ0(w)φ(w)dw

]
= E[γ ]

I∑
i=1

φ

(
i

I
− 1

2I

)
Δ ≈ μγ

∫ 1

0
φ(x)dx,

and

E

[∫∫
φ(w)ψ(w′)ρ0(w)ρ0(w

′)dwdw′
]

=
[
E[γ ]

I∑
i=1

φ

(
i

I
− 1

2I

)
Δ

]2

+ E[(γ − E[γ ])2]
I∑

i=1

φ

(
i

I
− 1

2I

)
ψ

(
i

I
− 1

2I

)
Δ2

≈ μ2
γ

∫∫
φ(w)ψ(w′)dwdw′ + σ 2

γ

I

∫
φ(w)ψ(w).

The distribution for γ can potentially depend on I . We will assume that μγ → 1 and
σ 2

γ

I → σ̄ 2 as I → ∞. If the distribution of the weights γI is independent of I , then either
σ̄ 2 = 0, the central limit theorem scaling, or σ̄ 2 = ∞, and neither situation is appropriate
for modeling natural oil where we expect that there is some finite variance associated with
the uncertainty in the composition of oil. Thus, we need to sample from initial conditions
with 0 < σ̄ 2 < ∞.

For any prescribed value 0 < σ̄ 2 < ∞, we can indeed find a family of I -dependent distri-
butions that satisfy these conditions, by appropriately truncating and rescaling a distribution
that has finite mean but infinite variance. The details are presented in Appendix 3.

Under the conditions μγ → 1 and
σ 2

γ

I → σ̄ 2 as I → ∞, we have a distribution of initial
conditions

∣∣ρ0〉 defined by the weak limits of sequences of the form (26). For any pair of
observables φ and ψ , we have

E[〈φ|ρ0〉] = 〈φ|1〉 ≡ 〈φ|E[|ρ0]〉
E[〈φ|ρ0〉〈ψ |ρ0〉] = 〈φ|1〉〈1|ψ〉 + σ 2〈φ|ψ〉 ≡ 〈φE[|ρ0〉〈ρ0|]|ψ〉. (27)

These equations characterize the first twomoments of the distribution on the initial conditions
for the continuum limit (4). Alternatively, we could have postulated that the distribution of
the initial conditions had these expressions for the first and second moments by requiring
that the distribution be invariant under all the (mathematically simplifying but not physically
well motivated) exchanges w → w′ that interchanges the amounts of two distinct species in
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the oil. This naturally leads to E
∣∣ρ0〉 ∝ ∣∣1〉 and E|ρ0〉〈ρ0| is a linear combination of |1〉〈1|

and the identity operator onH as these are the only invariant operators under the permutation
w → w′. The homogeneity of the model (4) allows us to eliminate one parameter from
the distribution of initial conditions by rescaling the initial mass to M0 = 1. The symmetry
argument therefore allows for a two parameter family of distribution of initial conditions

∣∣ρ0〉
characterized by

E[〈φ|ρ0〉] = 〈φ|1〉, E[〈φ|ρ0〉〈ψ |ρ0〉] = ζ 2〈φ|1〉〈1|ψ〉 + σ̄ 2〈φ|ψ〉, ζ 2 ≥ 1.

In this view, we have given an explicit construction for how to sample initial conditions from
a one-parameter subfamily (corresponding to ζ 2 = 1) of such measures, as (subsequential)
weak limits of measures consisting of finitely many point masses.

We now characterize the noise process βn in (12). In the Schrödinger picture the mass at
time n is given by the observable 〈g| = 〈1|Λ acting on the state

∣∣ρn−1
〉
at time n − 1. Using

this with (11), we get

hk = 〈1|Λ(QΛ)k |1〉, βn = 〈1|(ΛQ)n |ρ0〉.

Consequently,

E[βn] = E[〈1|(ΛQ)n |ρ0〉] = 〈1|(ΛQ)n |1〉 = 0,

and

E[βnβm] = 〈1|(ΛQ)nE[|ρo〉〈ρo|](QΛ)m
∣∣1〉

= 〈1|(ΛQ)n(P + σ̄ 2)(QΛ)m
∣∣1〉

= σ̄ 2〈1|(ΛQ)n+m−1Λ|1〉
= σ̄ 2hn+m−1.

We have used PQ = 0, Q2 = Q. This is a fluctuation–dissipation relation for the system
in (4), and not unexpectedly, it does not have the form of the usual fluctuation–dissipation
theorem for a Hamiltonian system with short memory [19]. Note also, that

E[βnM j ] = 〈1|(ΛQ)nE[|ρo〉〈ρo|]Λ j
∣∣1〉

= 〈1|(ΛQ)n(P + σ̄ 2)Λ j
∣∣1〉

= σ̄ 2〈1|(ΛQ)nΛ j |1〉.

These expectations are non-zero in general; we compute them explicitly in Appendix 2.
This result is somewhat unexpected. It is certainly true that 〈Fn |ξn〉 = 〈Fn |PΛn |ρ0〉 = 0

(see discussion before (10)) for any initialmeasureρ0, but this does not imply thatE[βnM j ] =
E[〈Fn |ρ0〉〈ρ0|ξn〉] = 0. The issue is that the observable gt given by the constant function
g0(x) = 1 has non-trivial evolution (see discussion after (5)) in contrast to the situation for
dynamical systems, so the usual intuition does not apply. The “noise” is no longer uncorrelated
with the observations, and this explains why the projection formalism does not give an
optimal prediction/stochastic parametrization procedure for (4). The empirical filters, albeit
still linear, and with far fewer taps, do perform better than the MZ estimator, because, by
construction, the ensemble average of the product of the noise and past observations is zero.
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5.1 Optimal Time-Varying Filters

We now address the question of why the empirical linear filter performed almost as well as
the linear oracles. For the process Mn = 〈1|Λn |ρ0〉, we have

E[Mn] = E[〈1|Λn |ρ0〉] = 〈1|Λn |1〉 = 1 − e−nτ

nτ
,

and

E[MnMj ] = 〈1|Λn |E[|ρ0〉〈ρ0|]Λ j |1〉 = E[Mn]E[Mj ] + σ̄ 2〈1|Λn+ j |1〉.
By regression, there is indeed an optimal AR(L) filter of the form

Mn = qnM0 + h(n)
1 Mn−1 + h(n)

2 Mn−2 + · · · + h(n)
L Mn−L + θn,

where the innovation θn is orthogonal to Mn−1, Mn−2, . . . , Mn−L and M0 = 1. Note that
the optimal filter is allowed to (and as we see below, in general does) depend on n, so it is
not autonomous. The orthogonality condition gives the Yule–Walker equations

E[MnMn−k] = qnE[Mn−k] +
L∑
j=1

h(n)
j E[Mn− j Mn−k], (28)

E[Mn] = qn +
L∑
j=1

h(n)
j E[Mn− j ]. (29)

Multiplying the second row by E[Mn−k] and subtracting from the first row gives

1 − e(2n−k)τ

(2n − k)τ
=

L∑
j=1

h(n)
j

1 − e(2n−k− j)τ

(2n − k − j)τ
, k = 1, 2, . . . , L .

Note that these equations are independent of σ̄ 2, so they do not require small noise. For
n − L � τ−1 ∼ O(1), we can ignore the exponentially small quantities and get the matrix
system v = Ah where the vector v and matrix A are as defined below,

⎛
⎜⎜⎜⎝

1
2n−1
1

2n−2
...
1

2n−L

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
2n−2

1
2n−3 · · · 1

2n−L−1
1

2n−3
1

2n−4 · · · 1
2n−L−2

...
...

. . .
...

1
2n−L−1

1
2n−L−2 · · · 1

2n−2L

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

h(n)
1

h(n)
1
...

h(n)
L

⎞
⎟⎟⎟⎟⎠ . (30)

The coefficient matrix A for this system is a variant of the classical Hilbert matrix, a well
known example of an ill-conditioned matrix. The condition number of this matrix is ∼
(2n)L/L! which can be enormous, and we cannot solve the system in a numerically stable
manner, although, of course, a unique solution does exist. We compute solutions to this
system in Appendix 4 to obtain

h(n)
j =

L∏
i �= j

i

i − j

L∏
i=1

2n − i − j

2n − i

= (−1) j−1
(
L

j

)
+ (−1) j

L2

2n

(
L − 1

j − 1

)
+ O(n−2). (31)
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We can fix L , the order of the filter, and look at the behavior of the filter coefficients as expan-
sions in n. Picking L = 6 (corresponding to predicting Mn using Mn−1, Mn−2, . . . , Mn−6)
for illustration, we get

h(n)
1 = 6 − 36

2n − 1
,

h(n)
2 = −15 + 630

2n − 1
− 225

n − 1
,

h(n)
3 = 20 − 3360

2n − 1
+ 2100

n − 1
− 1200

2n − 3
,

h(n)
4 = −15 + 7560

2n − 1
− 6300

n − 1
+ 6300

2n − 3
− 450

n − 2
,

h(n)
5 = 6 − 7560

2n − 1
+ 7560

n − 1
− 10080

2n − 3
+ 1260

n − 2
− 180

2n − 5
,

h(n)
6 = −1 + 2772

2n − 1
− 3150

n − 1
+ 5040

2n − 3
− 840

n − 2
+ 210

2n − 5
− 3

n − 3
. (32)

The (non-autonomous) filter

M̄n =
6∑
j=1

h(n)
j Mn− j (33)

with the coefficients given by (32) is the Asymptotic filter with 6 taps. Clearly, the filter
coefficients converge as n → ∞

lim
n→∞ h(n)

j = (−1) j−1
(
L

j

)

This is a post facto justification for why we could average over n, in addition to averaging
over independent ensembles, in determining the coefficients of the empirical filter (Sect. 4.4).

5.2 Universal Filters for Slowly Decaying Correlations

There is a satisfying intuitive explanation for the form of the asymptotic limit filter. Consider
the problem of finding coefficients α0, α1, α2, . . . , αL such that the asymptotic growth for
the linear combination

∑L
i=0 αi (n − i)−1 is as small as possible, where we normalize the

coefficients by requiring that α0 = 1. It is clear that for generic choices of αi , the decay rate
of the combination is O(n−1), but we can do better by judicious choices of α. For example,
α0 = 1, α1 = −1 and the rest of the αi = 0 gives a decay rate O(n−2). The smallest possible
asymptotic behavior comes from the coefficients αi set equal to a row of Pascal’s triangle
with alternating signs, as we can see from an inductive argument. For this choice of αi , we
have

L∑
i=0

(
L

i

)
(−1)i

n − i
= L!

n(n − 1)(n − 2) · · · (n − L)
∼ L!

nL+1 ,

and for any other choice of the coefficients, the decay of the linear combination is slower. So
it is indeed to be expected that if the optimal filter coefficients converge limn→∞ h(n)

j = α j ,

then α j = (−1) j
(L
j

)
. The coefficient qn is determined by (28) as
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qn = E[Mn] −
L∑
j=1

h(n)
j E[Mn− j ] ∼ L!

nL+1 + o(n−L−1).

Thus qn decays very rapidly so that it can be set to zero for n > L ∼ O(1).
These filter coefficients are ‘universal’ for all processes with slowly decaying correlations.

Indeed, for a slowly decaying function f (x) (say one consisting of nonpositive powers of
log(x) and of x), we have

L∑
i=0

(
L

i

)
(−1)i f (n − i) ∼ dL

dxL
f

(
n − L

2

)
,

and one cannot get better asymptotic decay with constant coefficient linear combinations of
L+1 consecutive terms. It is thus tempting to suggest that all processes with slowly decaying
correlations can be stochastically parameterized by

[(1 − R)L f ]n =
L∑

i=0

(
L

i

)
(−1)i fn−i = σnθn, (34)

where R is the right shift operator on sequences, [R f ]n = fn−1, θn are independent normal
variates and the variance parameter σn has statistics that can be estimated from data. Eq. (34)
is the model reduction that is associated with the filter

M̄n =
L∑
j=1

(−1) j−1
(
L

j

)
Mn− j , (35)

which is anuniversalfilter for processeswith slowly decaying correlations, since it is expected
to work just as well for any such process.

The universal stochastic parametrization (34) does not depend on the correlation structure
of the process that is being modeled, besides requiring that it decay algebraically. Thus one
does not expect this model to track a realization of the underlying process without additional
data assimilation. Nor does one expect that an ensemble of solutions of (34) with appropriate
statistics for θn necessarily reproduce the statistics of an ensemble of realizations of the
underlying process. Indeed, the transfer function of the universal filter is (1 − z−1)−L and
has a pole of order L at z = 1. The filter is thus unstable, and has homogenous solutions
fn = n j for j = 0, 1, 2, . . . , L − 1 which do not decay to 0.
We can attempt to remedy these shortcomings by going to higher order in the solutions of

theYule–Walker equations (33). The n-dependent corrections to the limiting filter coefficients
do reflect the particular correlation function E[MnMj ] ∼ 1/(m + j) for the evaporation
process and are thus not universal. The correction depends explicitly on n so including these
corrections will make the filter non-autonomous. However, these corrections make the filter
stable. Figure 6 shows the poles of the filter transfer function

H (n)(z) = 1

1 −∑L
j=1 h

(n)
j z− j−1

,

corresponding to a shift invariant filter obtained by “freezing” the time index n. Note that all
the poles are real, less than 1, and approach 1 as n → ∞ from inside the unit circle.

If we order the poles by z j ≤ z j+1, we have z j ≈ 1 − c j n−1, and the constants c j are
(roughly) geometrically distributed, i.e log(c j−1/c j ) ∼ O(1) (strong level repulsion) for
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Fig. 6 The poles z j , j = 1, 2, . . . , L of the asymptotic filter (33) as a function of n for L = 6. To show the
convergence to 1 we plot 1 − z j ≈ − log(z j ), and these quantities are all positive indicating that the filters

are stable. Also, for each of the poles, we see that z j ≈ 1− c j n
−1 from the slope of the corresponding graph.

These curves also demonstrate that our model is sloppy, as evident from the level repulsion between the poles
z j at every fixed value of n

all j , indicating that the poles are sloppy parameters [62] for the description of the linear
evaporation process (4). The filter coefficients h(n)

k are determined by

1 −
L∑

k=1

h(n)
k z− j−1 =

L∏
j=1

(
1 − z j

z

)
≈

L∏
j=1

(
1 − 1 − c j n−1

z

)

so that the filter coefficients are n dependent, symmetric functions of the quantities c j .
Although the poles are sloppy, the filter coefficients themselves are robust [62]. We first
learned this principle, viz. symmetric functions of random quantities are computable in terms
of the low order moments of their distribution, and are hence robust, in work with Leo
Kadanoff on the extremal distribution of points for the Thomson problem in 2D domains [4].

We can now given an analytical explanation for the reason that the empirical linear filter
performed almost as well as the genie-aided linear oracle, and thus is demonstrably a near-
optimal linear filter, among all shift-invariant linear filters with L (a given number of) taps.
For an interval of time 1 ≤ k ≤ N , we can pick an autonomous filter that is (approximately)
optimal for the entire range by using the corrections in (33) with n = κ̄ being an appropriate
“averaged” time index over the interval of interest. Thiswill give a filterwith fixed coefficients
and L taps, that is guaranteed to be stable. Since the corrections in (33) are O(n−1) it is not
unreasonable to expect that

1

κ̄
∼ 1

N

N∑
j=L

1

j
∼ log(N )

N
,

so that κ̄ is the harmonic mean of the time interval. For N = 200, we would estimate
κ̄ ≈ 37.75. Since the quantity of interest is the deviation of the j th pole from 1. We define
the discrepancy
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Fig. 7 The discrepancy Δn between the poles of the empirical filter and the poles of the asymptotic fil-
ter (33). The empirical filter was constructed as described in Sect. 4.4 by running the process for N = 200
time steps and averaging the residuals over 100 realizations. The poles of the empirical filter are at
0.9963, 0.9784, 0.9355, 0.8599, 0.7641 and 0.6876 respectively

Δn =
L∑
j=1

∣∣∣∣∣log
(
1 − z(n)

j

1 − z̃ j

)∣∣∣∣∣
2

,

where z(n)
j is the j th pole of the asymptotic filter (33) (shown in Fig. 6) and z̃ j is the j th

pole of the empirical filter (see Fig. 5). Figure 7 shows the discrepancy Δn as a function of
n. Minimizing the discrepancy, we would infer that κ̄ ≈ 26.43 which is on the same scale,
although a little smaller than our estimate of 37.75.

6 Multilayer Stochastic Models for the Evaporation of Oil

The asymptotic filter (33) is not autonomous, and building a reduced model using this filter
will similarly give a non-autonomous stochastic parametrization.Wecanuse a standard ‘trick’
to recast time-dependent systems as autonomous systems on a larger phase space [47]. In
particular, by enlarging our “phase-space” to include an additional dynamical variable κ that
tracks n, we have the autonomous stochastic parametrization

Mn −
L∑
1

h(κn)
j Mn− j = σnθn,

κn = κn−1 + 1 + snθ
′
n,

σ 2
n � σ̄ 2 L!

κL+1
n

, (36)

where θn, θ
′
n are i.i.d process of normal variates, the dynamical variable κ tracks the

“microstructure” of the oil composition in terms of its “age,” and the filter coefficients h(κ)
j

are given by (31) with n = κ .
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The reduced model in (36) has the form on a multilayer stochastic model (MSM) [11,
35,41], where the quantity Mn is directly observable and the quantity κn is hidden. To
use this model for stochastic parametrization, we can specify σ̄ and set sn = 0 so that
κn = n. Alternatively, given noisy measurements M̃n , we can estimate the state (Mn, κn)

and a parameter σ̄ 2 jointly by a nonlinear filtering algorithm, for example by the extended
Kalman filter [31]. We will present these results in a later publication.

A crude version of this nonlinear filtering approach is through approximating κn in terms of
Mn−1, Mn−2, . . .. In conjunction with (36) and (31), this will give a stochastic parametriza-
tion for Mn without additional ‘hidden’ variables. Since E[Mk] ≈ M0

kτ , we can define an
“instantaneous age ” μn by

1

μn − 1
≡ 1 − Mn−1

Mn−2
≈ 1 − E[Mn−1]

E[Mn−2] = 1

n − 1
,

so thatμn gives an estimate ofn basedon the “recent past”Mn−1 andMn−2. The instantaneous
age is a fluctuating quantity, and we can estimate the age κn by smoothing μn through
κn = (1− δ)(κn−1 + 1) + δμn , which is the appropriate filtering strategy for the quantity κn
evolving as in (36) (the ‘model’),withfluctuating estimates givenbyμn (the ‘measurements‘).

Using κn in place of for n in (33) gives a nonlinear filtering algorithm for Mn , that we
will call an extended asymptotic filter. It is a nonlinear modification of (33) that makes it
autonomous. Explicitly, the extended asymptotic filter with L-taps is given by κ0 = 0 and

μn = Mn−1

Mn−2 − Mn−1
+ 1,

κn = κn−1 + 1 + δ(μn − κn − 1)

h(κn)
j =

L∏
i �= j

i

i − j

L∏
i=1

2κn − i − j

2κn − i
, j = 1, 2, 3, . . . , L

M̄n =
L∑
j=1

h(κn)
j Mn− j (37)

This filter is non-empirical, nonlinear, autonomous, independent of realization and is not
genie-aided (does not require knowledge of the future). It contains a parameter δ that we can
set, with δ = 0 corresponding to a very stable, but non-responsive filter, while δ = 1 is a
very responsive, but potentially numerically unstable filter. We compare the performance of
the extended asymptotic filter (37) with δ = 1, the universal filter (35) with the empirical
filters from 4.4 and the Padé filter from 4.2, when applied to synthetic data. The results are
shown in Fig. 8.

Outside of an initial transient, the extended asymptotic filter (37) is clearly better than the
competing methods. The one-step prediction error has the optimal scaling εn ∼ n−L−1 and
by the arguments from before, we would expect this to be the smallest possible scale for the
error from a filter with L taps.

To illustrate the practical application of the extended asymptotic filter, we apply it to
empirical evaporation curves for various types of crude oils. Fingas [23] has measured the
evaporation curves for about 200 different oils (crudes, fuel oils, diesels, etc.) under a variety
of conditions and found that the important parameters are the time of evaporation and the
ambient temperature. The time and temperature dependence of the evaporation curves are
best fit by one of the following two equations (Eqs. (10) and (11) in [23]):
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Fig. 8 Comparison between the one-step prediction errors for the the reduced models given by the empirical
and the asymptotic filters. The empirical filter is generated by averaging the squared residuals over 100 real-
izations, and the performance of each filter is assessed by averaging errors over another set of 100 realizations.
For large n, the one-step prediction error of the universal filter (34) is small; nonetheless it is unstable, and
cannot be used without incorporating additional information from measurements. The extended asymptotic
filter is run with δ = 1 and the corresponding curve is indicated as ‘Asymptotic filter’ in the legend

%E = (0.165(%D) + 0.045(T − 15)) log(t) and

%E = (0.0254(%D) + 0.01(T − 15))
√
t

for oils that follow a “logarithmic” (respectively “square-root”) equation where %E is the
percentage of oil evaporated at time t in minutes, %D is the percentage (by weight) of the
crude oil that is distilled at 180◦C and T is the ambient temperature in degrees Celsius. We
can convert the empirical evaporation curve into the total remaining mass M(t) by

M(t) = 1 − %E

100
.

The fitting functions (the logarithmic and square-root equations) are clearly not valid if t is
too small, since %E and/or its time derivative blows up as t → 0. They are also not valid for
very large t as %E cannot be more than a 100%. Finally, they are in arbitrary “empirical”
units. We will non-dimensionalize, as in Sect. 2 by the (unknown!) evaporation rate of the
most volatile component in the oil, and also modify (regularize) the small time behavior
of the functions to ensure that M(0) = 1, d

dt M(0) < ∞. The regularized, nondimensional
functions M(t) are thus in one of two forms:

M(t) = 1 − a log(1 + t/t0) and (38)

M(t) = 1 − a(
√
1 + t/t0 − 1) (39)

where t , t0 (small scale cutoff) and a � 1 are all dimensionless. These equations necessarily
have a limited range of validity since we need M(t) ≥ 0 for all t . Solving Eqs. (38) and (39)
for M(Tmax) = 0, we estimate the ranges of validity by Tmax ∼ t0e1/a for the logarithmic
equation and Tmax ∼ t0/a2 for the square-root equation.

The parameters a and t0 are related by the following argument. Since we nondimensional-
ize time by the evaporation rate αmax of the most volatile species, the evaporation rate should
satisfy
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−Ṁ(t) � αmaxM(t) = M(t).

Using this inequality for (38) and (39) at t = 0 gives a/t0 � 1. We can also compute
d2

dt2
log(M(t)) for the linear evaporation process (4) to obtain

d2

dt2
log(M(t)) =

∫
w2ρ(w, t)dw

∫
ρ(w, t)dw − (∫ wρ(w, t)dw

)2
(∫

ρ(w, t)dw
)2 ≥ 0

by the Cauchy–Schwarz inequality. Note that, this relation has to hold for every realization,
and not just in an averaged sense. This relation does not hold for the logarithmic equation (38)
for t ≥ Tcrit ≈ 1

e Tmax, although by the time it breaks down, we have M(Tcrit) ≈ a � 1.
For the square-root equation (39), the relation fails to hold for t ≥ Tcrit ≈ 1

4Tmax. The
empirical square-root fit should therefore break down well before the total mass hits zero.
Indeed, this should already occur by the time %E ≈ 50%. This is an experimentally testable
prediction, and checking this will help assess the validity of modeling assumptions that
lead to (4). On the other hand, assuming (4) is a good microscopic model, the empirical
fits in (38) and (39) can not good models for the “truth” unless t � Tcrit. Consequently,
the ability of a filter to track/predict these functions accurately is not necessarily a positive
feature. Rather, we would hope that the filters “discover” that beyond a certain point, the
assumed “truth” actually is not.

A final point relates to the role of sampling. In our analysis, Mn is given by Mn = M(nτ)

corresponding to a sampling interval Tsampling = τ/αmax. In practice, the sampling time is
determined by experimental/technical considerations and cannot be freely specified. While
τ ∼ O(1) is the ideal situation, so that the time-series data resolves the dynamics on the
fastest scales in the problem, the practically achievable value of τ can be “large” and will
therefore introduce an additional nondimensional parameter in the discrete time problem.
The extended asymptotic filter (37) and the universal filter (35), however, are independent
of τ . This is a very desirable feature since it allows us to use the same filter independent of
the sampling interval.

To assess the performance of the filters on “real” data, we use the following numerical
procedure:

Algorithm III: Data assimilation and filtering/prediction

1. Pick parameters a and t0 such that a/t0 � 1 and Tmax � 200. The parameter values we
use are listed in Table 2.

2. Generate time series Mn using the various parameter values for a and t0 in (38) and (39)
with 0 ≤ t = nτ ≤ 200, where the sampling interval is τ = 1, 4 or 10. This procedure
corresponds to sampling the curves in Fig. 9 at equally spaced intervals. Depending on
the sampling rate we get between 20 and 200 samples for each curve.

3. For various time series (different functions, parameters and sampling rates), we compute
the one step prediction error for the empirical linear filter (24), the universal filter (35)
and the extended asymptotic filter (37) with δ = 1. These results are shown in Fig. 10.

��
Comparing the vertical scales in Fig. 10, we see that, for sufficiently large number of

samples, the universal and extended asymptotic filters have a smaller one step prediction error
than the empirical filter, but for � 30 samples, the empirical filter has a smaller prediction
error. This reflects an initial transient, and is similar to the behavior in Fig. 8 where we
compared the performance of the filters on synthetic data generated by numerically simulating
the process in (4).
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Table 2 Parameter values, model equations and limits on the range of validity for the numerically generated
evaporation curves

Tmax a/t0 a t0 Tcrit Model equation

Logarithmic evaporation curve

250 0.1 0.2 2 ∼ 107 M(t) = 1 − 1
5 log(1 + t

2 )

500 0.2 0.15 0.75 ∼ 216 M(t) = 1 − 3
20 log(1 + 4t

3 )

200 0.5 0.15 0.3 ∼ 87 M(t) = 1 − 3
20 log(1 + 10t

3 )

Square-root evaporation curve

250 0.2 0.02 0.1 ∼ 65 M(t) = 51
50 − 1

50

√
1 + 10t

500 0.1 0.02 0.2 ∼ 130 M(t) = 51
50 − 1

50

√
1 + 5t

Fig. 9 The evaporation curves generated by the logarithmic and square-root equations (38) and (39). The
parameters/equations for the curves are given in Table 2

The error for the universal filter (Fig. 10b) is monotonically decreasing in n, the number
of samples, roughly as a power law. In contrast, the error has interesting temporal structure
for the empirical filter (Fig. 10a) and the extended asymptotic filter (Fig. 10c). Since we are
plotting the absolute value of the error on a logarithmic scale, the downward spikes in the
error are signatures of the times where the error changes sign.

For the empirical filter, the error decreases until it hits a “floor”, roughly between 10−9

and 10−8. This floor is independent of the time series and the sampling rate, so it is inherent
to the filter. In contrast, the error for the extended asymptotic filter has spikes are fixed times
t = nτ , independent of the sampling interval τ , so these spikes reflect features in the signal,
and not the structure of the filter. Indeed, these spikes correlate well with the critical times
Tcrit beyond which the given time series cannot be realized in any solution of (4). Beyond the
spikes, the one-step prediction error for the extended asymptotic filter increases, in contrast
to the other two filters. These observations support the following conclusions:

1. The universal filter has very small error as n → ∞, but is not very discriminating. It
tracks all functions with slowly decaying correlations, whether or not they come from
solutions of (4).
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Fig. 10 One step prediction errors. The filters are applied to time series obtained from the functions in
Table 2, sampled at intervals τ of 1,4 and 10 time units. a Empirical linear filter. b Universal filter. c Extended
asymptotic filter with δ = 1. Note the difference in the vertical scales
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2. In tracking solutions of (4), the empirical linear filter is very discriminating/nearly optimal
among all linear filters with fixed coefficients and L (a given number of) taps. However,
it has a floor for its error reflecting the fact that we have ignored the L + 1th eigenvalue
of the underlying sloppy model in the construction of this filter. Because of the level
repulsion between the eigenvalues of matrices from sloppy models [62] the resulting
error floor is pretty small when L is moderate.

3. The extended asymptotic filter is (essentially) time varying so it has additional freedom
which can be exploited to make filters that are both discriminating, and circumvent the
above argument for the error floor.

The numerical evidence for this picture is strongmotivation to try and formalize this intuition
into rigorous mathematical statement and proofs.

7 Discussion

In this work, we have developed nonlinear, stochastic, reduced models for the evaporation
process (4), both empirically, i.e. in a data drivenmanner, and reductively fromfirst principles,
using theMori–Zwanzig projection operator formalism, and by solving the appropriate Yule–
Walker equations. The underlying system (4) has slow relaxation, and long memory, so it
is of interest to see what intuition can be gleaned from our results, that might be generally
applicable to other non-equilibrium systems with slow relaxation.

Hamiltonian dynamics naturally supports an invariant measure on phase space, and the
corresponding Liouvillian is skew-symmetric on the L2 space for this invariant measure. In
contrast, our system (4) has no physically relevant invariant measure, is not the Liouvillian
for any dynamical system, and is symmetric rather than skew-symmetric on an appropriate L2

space. However, the evaporation process (4) is representative of systems with long memory
and slow decay of correlations. So, we believe that our results do give some intuition for this
class of non-equilibrium systems.

It is very surprising that a direct application of the Mori–Zwanzig projection operator
formalism yields poor results for this system, considering the fact that the projection oper-
ator formalism is exact and is thus a natural starting point to make approximations. On
the other hand, the MZ projection operator formalism, because it is exact, is constrained
in ways that an empirical approximation is not. In this sense, a MZ decomposition, as
in (12), has lots of parameters (the memory kernel hk) and thus has the potential to over-
fit the training data, i.e. the sequence E[Mn] given by (13). As a consequence of this
overfitting, the resulting model has poor predictive power. This argument suggests that
the projection operator formalism is perhaps best suited for systems with an exponen-
tial decay of correlations, but perhaps not so well suited for systems with long memory
[34].

Another lesson, that is reinforced by our results for themodel process (4), is the importance
of picking the right ansatz and the right parameters for data-driven model reduction. In
particular, both the MSM approach [11,35] and the NARMAX approach [15,39] to model
identification use power series, and they assume that the higher order terms are smaller
than the lower order ones. In our example, the model is homogeneous, so these approaches
will suggest that Mn should be approximated as a linear combination of Mn−1, . . . , Mn−L .
However, our results in Sects. 4.2 and 4.3 indicate that, for situationswith slow relaxation, one
could do better by taking more general nonlinear homogeneous combinations, e.g. harmonic
averages.
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A key contribution of this work is development of the notions of universal and asymptotic
filters. Indeed, the existence of these filters corroborates with theoretical ideas on universality
for systems with slow decay of correlations [7] and experimental observation of universality
in the glass transition [21]. These filters are also applicable in practice. Absent any other
information, the universal filter (34) is the optimal first order predictor [14] for systems
with slow relaxation. However, this filter is unstable, so for particular problems, one has
to go beyond this universal filter and develop asymptotic filters (e.g. (33) and (37)), i.e.
stable, necessarily non-autonomous filters given by solutions of the appropriate Yule–Waler
equations. These filters are asymptotic in that they converge to the universal filter as n → ∞.
We can view the asymptotic filters as analogs of the t-damping equation in [14], albeit for
our case where the memory is not short.

The extended asymptotic filter given by (37) is a practical computational tool. It allows
us to identify a single quantity κn which accounts for the dependence of the evolution of
macroscopic quantity Mn on the microscopic state

∣∣ρn 〉. For this reason, we will interpret κn
as themicroscopic age of an oil distribution ρn(w). This interpretation of κ naturally follows
from

Mn =
∫

e−nwτρ0(w)dw,

Mn−1

κn−1
≈ Mn−1 − Mn =

∫
(1 − e−wτ )e−(n−1)wτ ρ0(w)dw.

Thus κn is determined by the microscopic density distribution ρn through

κn ≈
∫

ρn(w)dw∫
(1 − e−wτ )ρn(w)dx

(40)

This relation can now be used to develop computationally efficient reduced models for the
weathering of oil. For example, (4) models a discrete release where oil is initially released
at time t = 0, and no further oil is added to the spill. In this situation, we can estimate κn to
obtain κn ≈ n which is indeed our motivation for defining the dynamical variable κn in (36).
We can also consider the case of a continuous spill, in which case we have the microscopic
model (cf. (6))

ρn(w) = Λρn(w) + un(w)

where un represents the (deterministic or random) distribution of the oil added between time
n−1 and n. Using the relation (40), we can thus obtain effective equations for κn to describe
a continuous spill. This equation will replace the middle equation in (36).We can now use the
asymptotic filter coefficients in (33) along with the model definition (36) to obtain reduced
stochasticmodels for a variety of oil spill scenarios.Wewill discuss thesemethods elsewhere.

As we have discussed previously, we can interpret our methods as a computational frame-
work to study the evolution of an autonomous, linear, high-dimensional system (Eq. (1)) in
the sloppy-model universality class [62]. There has been considerable work on understanding
the geometry of the parameter landscape in sloppy models, and in identifying robust combi-
nations of parameters that can be extracted from data [56]. In contrast to earlier work, which
is in a static framework (for an autonomous sloppy model, one attempts to model the system
with another autonomous model, albeit one with robust parameters), our work suggests that
the robust parameters (in our case the filter coefficients h(n)

k ) might themselves evolve, even
when the underlying model is autonomous. We hope to explore the consequences of this idea
for other complex/nonlinear sloppy models.
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Another direction we intend to pursue is to develop these ideas in a non-parametric setting
[5], as applied to spatially extended systems with slow relaxation. In particular, we want to
combine our techniques for slow relaxation with the Nonlinear Laplacian spectral analysis
(NLSA) method [18,26] which combines ideas from singular spectral analysis (see [58],
[57]) with the ideas of Coifman and Lafon [17] who introduced Diffusion maps (Laplacian
eigenmaps). Diffusion maps can be thought of as a powerful generalization of the Takens
delay-coordinate embedding [55] to a form that is applicable to extended and high dimen-
sional systems. The NLSAmethods apply to large scale problems, but require short memory.
Conversely, our methods in this work generates low dimensional reduced models from spa-
tially homogeneous systems, but can handle long memory. A deeper comparison between
these methods might reveal ways in which both of these techniques could be improved and
made practical on large scale problems, such as those that arise from processes that are
modeled by evolution equations with spatial dependence.
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from NSF-DMS-1109856 and NSF-OCE-1434198.

Appendix 1: The Memory Kernel for Multiple Observables

One other comment is that we can indeed compute the memory kernel explicitly for the
evaporation process (4), not just for the case with one observable, the mass Mn , but also
more generally if we have a vector-valued linear observableΦ, i.e l scalar-valued observables
Φ = {φ1, φ2, . . . , φl}T . Each scalar linear observable φi is given by an element of H∗, and
we will denote the corresponding bra-vector by 〈φi |. Using the Gram–Schmidt procedure if
necessary, we can assume that the vectors 〈φi | given an orthonormal basis for their span, a
l-dimensional subspace ofH∗. The orthogonal projection P∗ : H∗ → H∗ onto this subspace
is given by

P∗ = ∣∣φ1〉〈φ1| + ∣∣φ2〉〈φ2| + · · · + ∣∣φ2〉〈φ2|.

It follows that 〈φi |P∗ = 〈φi |P = 〈φi | and (11) gives

〈φi |∣∣ξn+1
〉 =

n∑
k=0

l∑
j=1

〈φi |Λ(QΛ)k
∣∣φ j 〉〈φ j |ξn〉 + 〈φi |(ΛQ)n+1|ρ0〉.

Thequantities 〈φi |ξn+1〉 are the entries of the “vector” observableΦn+1.Defining thematrices
Hk by (Hk)i j = 〈φi |Λ(QΛ)k

∣∣φ j
〉
for k = 0, 1, 2, . . . and the (column) vectors βn by the

entries β i
n = 〈φi |(ΛQ)n+1

∣∣ρ0〉, we have the Mori–Zwanzig decomposition

Φn+1 =
n∑

k=0

HkΦn−k + βn . (41)

If
∣∣ρ0〉 is in the span of

∣∣φi
〉
, then Q

∣∣ρ0〉 = 0 so that the noise βn is identically zero. Taking∣∣ρ0〉 = ∣∣φ1
〉
,
∣∣φ2
〉
, . . . ,

∣∣φl
〉
in turn, and collecting the corresponding column vectors Φn into

a l × l matrix Ξn , we have
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(Ξn)i j = 〈φi |Λn
∣∣φ j 〉 =

∫ 1

0
φi (w)e−nwτφ j (w)dw

is a symmetric matrix for each n, and

Ξn+1 =
n∑

k=0

HkΞn−k, for n = 0, 1, 2, . . .

As before, we can determine the memory kernel Hk using the Z-transform. Defining the
matrices

Ξ̂(z) =
∞∑
n=0

z−nΞn, Ĥ(z) =
∞∑
n=0

z−nHn

we get

Ĥ(z) = z(I − Ξ̂(z)−1).

The matrix Ξn is symmetric for all n, so that Hn is also symmetric for all n. We expect that
the norm ‖Ξn‖ typically decays no faster than 1/n. This is true for instance if the constant
functions are in the range of P , or more generally if there are continuous functions ψ with
ψ(0) > 0 in the range of P . In this case, we expect that the norm of Hn decays no faster that
1/(n log2(n)) indicating again that, generically, one expects fat tails in the memory kernel for
the system (4) if we use the Mori–Zwanzig decomposition based on any finite set of linear
observables.

Appendix 2: Orthogonal Dynamics

We will now compute the statistics of the noise process βn in the Mori–Zwanzig decompo-
sition (12) with the usual approach through the study of the projection equation (9) and the
orthogonal dynamics (10). Since the orthogonal dynamics are linear, it suffices to solve the
system

〈F0| = 〈δ(w − x)|Q, 〈Fn+1| = 〈Fn |ΛQ, n = 0, 1, 2, . . .

where x ∈ [0, 1] is fixed. A calculation reveals that, for any continuous function φ,

〈F0|φ〉 = 〈δ(w − x)|φ〉 − 〈δ(w − x)|P∣∣φ〉 = φ(x) −
∫ 1

0
φ(w)dw.

We will thus associate 〈F0| with the “function” F0(w) = δ(w − x) − 1. We can follow this
computation to solve the orthogonal dynamics equations recursively. For example,

〈F1|φ〉 = 〈δ(w − x) − 1|Λ∣∣φ〉− 〈δ(w − x) − 1|ΛP
∣∣φ〉

=
∫ 1

0
(δ(w − x) − 1)e−wτφ(w)dw −

∫ 1

0
(δ(w − x) − 1)e−wτdw

∫ 1

0
φ(w)dw

=
∫ 1

0

[
e−xτ δ(w − x) − e−wτ − e−xτ + 1 − e−τ

τ

]
φ(w)dw,

so that 〈F1| corresponds to the function F1(w) = e−xτ δ(w − x) − e−wτ − e−xτ + 1−e−τ

τ
.

Using the fact that Q and Λ are self-adjoint operators on H, and further 〈ψ |Λ∣∣φ〉 =
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∫
ψ(w)e−wτφ(w)dw so that Λ is diagonal on the “basis” {δ(w − x)}{x∈[0,1]}, an induc-

tive argument shows that Fn(w) = e−nxτ δ(w − x) + Ψn(w; x) where Ψn is a smooth,
symmetric function Ψn(w; x) = Ψn(x;w). We will use these conclusions to verify the full
solution for 〈Fn | that we obtain below by independent means.

Consider the Z-transform ˆ〈F | =∑ z−n〈Fn |. The orthogonal dynamics imply

ˆ〈F |(1 − z−1ΛQ) = ˆ〈F | − z−1 ˆ〈F |Λ + z−1 ˆ〈F |Λ∣∣1〉〈1| = 〈F0|.

Using the ansatz F̂(z, x, w) = Â(z, x)δ(w − x) + Ψ̂ (z, x, w) corresponding to a decompo-
sition of Fn into its singular and regular parts, we get the pair of equations

(1 − z−1e−xτ ) Â = 1,

Ψ̂ − z−1e−xτ Ψ̂ + z−1e−wτ Â + z−1
∫

e−xτ Ψ̂ dx = −1,

where we have suppressed the arguments (z, x, w) for Â and Ψ̂ for clarity. We can solve the
first equation to obtain

Â = 1

1 − z−1e−xτ
.

Using this in the second equation, we obtain

Ψ̂ = − 1

(1 − z−1e−xτ )(1 − z−1e−wτ )
− z−1C(z, w)

1 − z−1e−xτ
,

where C(z, w) = ∫
e−xτ Ψ̂ dx is determined in terms of the required solution Ψ̂ self-

consistently. Multiplying by e−xτ and integrating in x , and solving the resulting equation for
C(z, w), we obtain

C(z, w) = − z (τ − log (1 − eτ z) + log(1 − z))(
1 − z−1e−wτ

)
(log(1 − z) − log (1 − eτ z))

.

Using this result in the computation for Ψ̂ gives

Ψ̂ (z, x, w) = τ(
1 − z−1e−wτ

) (
1 − z−1e−xτ

)
(log(1 − z) − log (1 − eτ z))

.

This gives a complete solution of orthogonal dynamics equation by

F̂(z) = δ(w − x)

1 − z−1e−xτ
+ τ(

1 − z−1e−wτ
) (
1 − z−1e−xτ

)
(log(1 − z) − log (1 − eτ z))

.

The singular part of Fn is therefore e−nτ xδ(w − x) as we noted above. Further, the regular
part Ψ̂ is symmetric in w and x , implying this property for each of the functions Ψn . Finally,
for an observable given by a continuous function g, the solution to the orthogonal dynamics
is given by

∞∑
n=0

z−n〈g|Q(ΛQ)n |φ〉 =
∫ 1

0

∫ 1

0
g(x)F̂(z, w, x)φ(w)dwdx .
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For the observable Mn , the prediction for the total mass at the next time step, we have
〈g| = 〈1|Λ. The Z-transform of the memory kernel is given by

H(z) =
∑
k≥1

z−khk = z−2
∑
k≥1

z−k+2〈1|(ΛQ)k−1Λ|1〉

= z−1〈1|Λ|1〉 + z−2
∑
n≥0

z−n〈1|ΛQ(ΛQ)nΛ|1〉

= z−1 1 − e−τ

τ
+ z−2

∫ 1

0

∫ 1

0
e−xτ F̂(z, w, x)e−wτdwdx

=
[
1 − τ

log(eτ z − 1) − log(z − 1)

]
.

The Z-transform of the expected values of the noise sequence βn is given by

∑
z−n

E[βn] =
∑

z−n
E[〈Fn |ρ0〉] =

∫ 1

0

∫ 1

0
e−xτ F̂(z, w, x)dwdx = 0

and the correlations between the noise βn and the mass Mj are given by E[βnM j ] =
σ̄ 2〈1|(ΛQ)nΛ j |1〉 (see Sect. 5). Taking the (two index) Z-transform, noting that β0 = 0,
we have
∑
n≥1

∑
j≥0

z−nζ− j
E[βnM j ] = σ̄ 2

∑
n≥1

∑
j≥0

z−nζ− j 〈1|(ΛQ)nΛ j |1〉

= σ̄ 2z−1
∑
n≥0

∑
j≥0

z−nζ− j 〈1|ΛQ(ΛQ)nΛ j |1〉

= σ̄ 2z−1
∫ 1

0

∫ 1

0

e−xτ F̂(z, w, x)

1 − ζ−1e−wτ
dwdx

= σ̄ 2

τ
z−1
[

1 − z−1e−τ

(1 − z−1)(1 − z−1e−τ )

+
log
(

1−z−1

1−z−1e−τ

) (
log
(
z log

(
ζ−1

ζeτ −1

)
− ζ log

(
z−1
zeτ −1

)))

(z − ζ ) log
(

z−1
eτ z−1

)
]
.

It is not true that E[βnM j ] = 0 if n > j , as one would expect in the Mori–Zwanzig
decomposition for a system with an invariant measure. In particular,

E[β2M1] = σ̄ 2(1 − e−τ )((τ − 2) + (τ + 2)e−τ )

2τ 2
�= 0

Appendix 3: Sampling Initial Conditions

For any prescribed value 0 < σ̄ 2 < ∞, we can indeed find a family of I -dependent distri-
butions such that

μγ → 1,
σ 2

γ

I
→ σ̄ 2 as I → ∞
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by appropriately truncating and rescaling a distribution that has finite mean but infinite
variance. For example, the function

f (x) =
{

9
10 0 ≤ x ≤ 2

3 ,

9
10

( 3x
2

)5/2
x > 2

3

satisfies f ≥ 0 on (0,∞) and
∫∞
0 f (x)dx = 1, so f is indeed a nonmalized density

on (0,∞). Further
∫∞
0 x f (x)dx = 1 and

∫ L
0 x2 f (x)dx ∼

√
32
75 L for L � 1. We can

therefore define a sequence of I dependent distributions by truncating the support of f and
renormalizing to have unit mass, i.e.

f I (x) =
{
cI f (x) 0 ≤ x ≤ L I

0 x > L I ,

where L I is any sequence satisfying L I ≥ 2/3 for all I , L I ↗ ∞ and
√

32
75I 2

L I → σ̄ 2 as

I → ∞. Given such a sequence L I , the normalization cI is determined by
∫ I
0 f I (x)dx = 1

so that cI → 1.

Appendix 4: Asymptotic Solutions of the Yule–Walker Equations

We seek a solution to (30) as an asymptotic series in n, i.e. solutions of the form

h(n)
j = a0j + 1

n
a j
1 + 1

n2
a j
2 + · · · . (42)

The difficulty in solving this system is evident if we expand the coefficient matrix A as a
power series in n:

A = 1

2n

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎞
⎟⎟⎟⎠+ 1

4n2

⎛
⎜⎜⎜⎝

2 3 · · · L + 1
3 4 · · · L + 2
...

...
. . .

...

L + 1 L + 2 · · · 2L

⎞
⎟⎟⎟⎠+ · · · .

Assuming L ≥ 3, the two matrices displayed in the expansion of A are singular. The first
matrix has rank 1, the second has rank 2. Indeed the first L − 1 matrices in the expansion of
A are all singular and their (row) nullspaces are nested

vT

⎛
⎜⎜⎜⎝

2 3 · · · L + 1
3 4 · · · L + 2
...

...
. . .

...

L + 1 L + 2 · · · 2L

⎞
⎟⎟⎟⎠ = 0 �⇒ vT

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎞
⎟⎟⎟⎠ = 0,

and so on. The determinant of A is thus very close to zero (det {A} ∼ O(n−L2
) as we see

below) so it is not clear that we have solutions for h(n) where the leading order behavior
stays O(1) instead of diverging with n. Proving the boundedness of h(n) and determining the
O(1) solution thus requires consideration of L solvability conditions given by the vectors
that span the common (row)-nullspaces of the initial j terms in the expansion of A for
j = 1, 2, . . . , L − 1. Higher order terms will require even longer expansion of the matrices
and more solvability conditions.
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In the general case of a process with slowly decaying correlations, it is still true that the
matrix of coefficients in the Yule–Walker equation is nearly singular, and one does have to
go through the process described above to find optimal, reduced dimensional, models for
such systems. For the evaporation process (4) however, the coefficient matrix has a special
structure, that we exploit to find the solutions for the optimal filter h(n). The matrix A is a
Cauchy matrix [48] i.e its entries are of the form Ai j = 1/(xi − y j ). In particular, we can
choose xi = 2n − i and y j = j . The determinant of a Cauchy matrix Ai j = 1/(xi − y j ) is
given by [48]

det {A} =
∏

i> j (xi − x j )(y j − yi )∏
i
∏

j (xi − y j )
.

For the particular matrix A from above, the terms in the numerator are all bounded by L and
the terms in the denominator are all ≈ 2n if n � L . Consequently, det A ∼ O(n−L2

). The
matrix Âm obtained by replacing the mth column of A by the vector vi = 1

2n−i is also a

Cauchy matrix Âi j = 1/(xi − ŷ j ), with the same choice xi = 2n − i and

ŷ j =
{
y j j �= m,

0 j = m.

Cramer’s rule now yields,

h(n)
m = det { Â}

det {A} =
∏
i �=m

i

i − m

∏
i

2n − i − m

2n − i
. (43)
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