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Abstract— We consider a sampling scheme where a set
of multiband input signals are passed through a MIMO
liner time-invariant system and the outputs are sampled.
MIMO sampling is a very general scheme that encom-
passes various other schemes, including Papoulis’ gener-
alized sampling and nonuniform sampling as special cases.
We present necessary density conditions for stable MIMO
sampling. These results generalize Landau’s classical den-
sity results for stable sampling and interpolation. Under
the additional assumption of periodic (but possibly non-
uniform) sampling sets, we present necessary and sufficient
conditions on the system and sampling rates for stable
MIMO sampling.

I. Introduction

Given a multiple-input multiple-output (MIMO) chan-
nel with observable outputs, the problem of multichan-
nel deconvolution or multichannel separation of a con-
volutive mixture is to invert or equalize the channel to
recover the channel inputs. Applications include mul-
tiuser or multiaccess wireless communications and space-
time coding with antenna arrays, or telephone digital sub-
scriber loops, multisensor biomedical signals, multi-track
magnetic recording, multiple speaker (or other acoustic
source) separation with microphone arrays, geophysical
data processing, and multichannel image restoration.

To enable digital processing for the inversion of the
channel, its continuous-time outputs are sampled prior to
processing, and the goal is to reconstruct the continuous-
time channel inputs. We assume that the channel char-
acteristics are known (e.g., can be estimated accurately
using known test input signals.) We call this problem
MIMO sampling.

Our problem is formulated as follows. Let xr(t), r =
1, . . . , R, be a collection of complex-valued signals whose
spectral supports are sets Fr ⊆ R of finite measure. We
refer to such signals as multiband signals because in prac-
tice F is a finite union of intervals. These R signals are in-
put to a MIMO channel consisting of linear time-invariant
filters to produce P outputs

yp(t) =
R∑

r=1

gpr(t) ∗ xr(t), p = 1, . . . , P (1)

where ∗ denotes convolution, and {gpr} are square-
integrable impulse responses. Each output yp(t) is sub-
sequently sampled on a discrete set Λp = {λnp : n ∈ Z}

1This work was supported in part by a grant from DARPA under
contract F49620-98-1-0498 administered by AFSOR, and by NSF
Infrastructure Grant CDA-24396.

2This work was performed while R. Venkataramani was at the
University of Illinois.

and these samples are then used to reconstruct the in-
puts. This sampling scheme is very general and subsumes
various other sampling schemes as special cases. For in-
stance Papoulis’ generalized sampling [1] is essentially
a single-input multiple-output (SIMO) sampling scheme,
i.e., MIMO sampling with R = 1. An extension of Pa-
poulis’ sampling expansion to vector valued inputs [2] is
also a special case with all inputs having identical low-
pass spectra, i.e., Fr = [−B,B].

In this paper, we present an overview of our recent re-
sults on MIMO sampling [3–6]. In particular, we present
necessary conditions [4] on {Λp} and the channel for stable
reconstruction of the inputs xr(t) from the MIMO out-
put samples {yp(λnp)}. Similar results are also available
[4](but not reviewed here) for the dual problem of consis-
tent reconstruction: necessary conditions on {Λp}, to en-
sure that ∃xr(t) such that yp(λnp) = cnp for any sequence
{cnp : n ∈ Z, p = 1, . . . , P} ∈ l2. Under the additional
assumption of periodic (but possibly non-uniform) sam-
pling sets, we present conditions that are both necessary
and sufficient [5]. Finally, we review results on optimum
reconstruction under these conditions [6].

Landau [7] proved the following fundamental result for
sampling of multiband signals. Let x ∈ L2(Rd) be a con-
tinuous function whose Fourier transform is supported on
a measurable set F ⊂ Rd. Then, for stable reconstruction
of any such x from its samples, it is necessary that the
density of Λ be no less than the measure of F . We refer
to this problem as classical sampling.

Gröchenig and Razafinjatovo [8] provided a simpler
proof of Landau’s classical result for the case that F
has zero boundary measure. We extended the idea of
[8] (removing the restriction of zero boundary measure)
to derive necessary density results for MIMO sampling
of multiband signals [4]. Our results for single variate
functions (d = 1) easily extend to multivariate functions.

For stable sampling, we prove that a family of 2P − 1
bounds hold—a lower bound on the joint lower density
of each nonempty set of P output sampling sets. These
bounds generalize Landau’s necessary density results for
classical sampling. Since the MIMO sampling scheme
is extremely general, and encompasses various sampling
schemes such as Papoulis’ generalized sampling, and mul-
ticoset or periodic nonuniform sampling as special cases,
we automatically have necessary conditions for all these
sampling schemes as well.
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II. Preliminaries

Let

B(F) = {x ∈ L2(R) ∩ C(R) : X(f) = 0, ∀f /∈ F} (2)

denote the space of continuous L2(R) signals bandlimited
to a measurable F ⊆ R, where X(f) is the Fourier trans-
form of signal x(t). Let χ(·) denote the indicator function,
Let ∅ denote the empty set, Sc, the complement of a set
S, and |S| its cardinality. Let µ(S) denote the Lebesgue
measure and intS and S the interior and closure of a set
S ⊆ R, respectively.

For any complex matrix A, let AH denote its
conjugate-transpose, and AR,C , the submatrix of A
whose rows and columns are indexed by sets R and C
respectively. If all rows (or columns) are chosen, we use
“•” in place of R (or C).
A. Sampling Density

Let ext± denote “sup” and “inf”. Then the follow-
ing definitions generalize the notions of upper and lower
densities [7, 9] to collections of sampling sets.

Definition 1: The joint upper and lower densities of a
collection of discrete sets Λp, p ∈ P are defined as

D±(Λ1, . . . , ΛP ) = lim ext±
γ→∞

ν±γ (Λ1, . . . , ΛP )/(2γ), (3)

where ν±γ (Λ1, . . . , ΛP ) = ext±τ

∑P
p=1 |Λp ∩ [τ − γ, τ + γ]|

are the maximum and minimum number of points of the
collection {Λp : p = 1, . . . , P} found in any interval of
length 2γ.

If the lower and upper densities of {Λ1, . . . , ΛP } co-
incide, then the collection has uniform joint density of
D(Λ1, . . . , ΛP ) = D±(Λ1, . . . , ΛP ). If each Λp has uni-
form density, then so does the collection {Λ1, . . . , ΛP },
i.e., D(Λ1, . . . , ΛP ) =

∑P
p=1 D(Λp).

B. Stable sampling

Expressing (1) in vector form, y(t) = g(t) ∗ x(t), the
components of the input vector x are multiband signals
xr ∈ B(Fr), y is the channel output, and g is a matrix
with entries gpr(t). Denote the corresponding operator

by G. The space of inputs x ∈ H def= B(F1)×· · ·×B(FR)
is a separable Hilbert space with its inner product defined
as 〈x,w〉 =

∫
RwH(t)x(t)dt, x,w ∈ H.

Let R = {1, . . . , R} and P = {1, . . . , P} denote index
sets for the input and output components.

Definition 2: A collection of discrete sampling sets
Λp = {λnp : n ∈ Z}, p ∈ P is said to be stable with
respect to (G,H) if there exist A,B > 0 such that

A‖x‖2 ≤
P∑

p=1

∑

n∈Z
|yp(λnp)|2 ≤ B‖x‖2 (4)

for every x ∈ H, where y = Gx. We sometimes refer to
this as a collection of stable MIMO sampling.

This definition generalizes that for simple multiband
sampling [9], and corresponds to the requirement that
the linear operator mapping signals in H to the samples
of the channel output be a bounded linear operator, and
have a bounded inverse.

III. Necessary Density Conditions

Define the index set of inputs ”active” at frequency f ,

Cf = {r : f ∈ Fr}. (5)

Then it is clear that XCf
(f) contains all the nonzero

elements of X(f). Hence, the channel output can be
expressed in the frequency domain as

Y (f) = G(f)X(f) = G•,Cf
(f)XCf

(f) (6)

where G(f) (the Fourier transform of g(t)) is called the
channel frequency response matrix.

Theorem 1: Suppose that Fr, r ∈ R are real sets of
finite measure, H = B(F1) × · · · × B(FR), and Λp, p ∈
P are discrete sets with D+(Λp) < ∞ that constitute
a collection of stable sampling with respect to (G,H).
Then, for every Π ⊆ P,

D−({Λp : p ∈ Π}) ≥
R∑

r=1

µ(Fr)−
∫

R
rank

(
GΠc,Cf

(f)
)
df

(7)
where Cf = {r : f ∈ Fr} and Πc is the complement of Π
in P. Furthermore, if

ess inf
f∈F

σmin

(
GΠc,Cf

(f)
)

= 0, F =
⋃

r∈R
Fr (8)

for some Π 6= P, then (7) is a strict inequality.
Theorem 1 provides a total of 2P − 1 lower bounds –

one on the joint densities of each sub-collection of {Λp}.
In particular, letting Π = P in (7), we obtain

D−(Λ1, . . . , ΛP ) ≥
R∑

r=1

µ(Fr). (9)

In other words, the combined sampling density on all the
outputs must be no less than the combined bandwidth of
all the input signals, which represents the total number of
degrees of freedom per unit time contained in the inputs.

We can interpret these bounds as follows. Suppose that
the outputs yp(t), p ∈ Πc are completely known for all
t ∈ R, which is the case that demands the weakest con-
ditions from the {Λp : p ∈ Π} for stable sampling. Then,
Y Πc(f) = GΠc,Cf

(f)XCf
(f) is known for all f . There-

fore, rank
(
GΠc,Cf

(f)
)

is the number of independent com-
ponents of X(f) at frequency f that can be determined
from knowledge of Y Πc(f) alone. Consequently,

∫

R
rank

(
GΠc,Cf

(f)
)

is the number of degrees of freedom per unit time in the
inputs that can be resolved by knowing the outputs yp(t),
p ∈ Πc completely (for all t). Therefore, the difference in
right-hand side of (7) is the number of unresolved degrees
of freedom per unit time in the inputs. The left-hand side
of (7) is the joint lower density of {Λp : p ∈ Π}, i.e., the
smallest local sampling density (number of samples per
unit time in a local sense) contained in these sampling
sets. Thus, (7) merely states that we require more sam-
ples than the unresolved degrees of freedom in the inputs
(locally per unit time) for each choice of Π.
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Note that this bound depends only on the submatrix
of G(f) whose rows are indexed by the complement of Π
and columns by Cf because Xr(f) vanishes outside Fr.

Next, if some singular value of GΠc,Cf
(f) takes arbi-

trarily small nonzero values, then we cannot stably invert
Y Πc(f) = GΠc,Cf

(f)XCf
(f) to stably recover the inde-

pendent components of X(f) and the density of Λp must
be strictly larger than the right-hand side of (7).

Theorem 1 leads to the following simple necessary con-
ditions on the admissibility of subsets of the continuous-
time channel outputs for stable recovery of the inputs.
Let F =

⋃
r∈R Fr.

Definition 3: A set of outputs yp, p ∈ Π, Π ⊆ P is said
to be an admissible set of outputs for H if

ess inf
f∈F

λmin

(
GH

Π,Cf
(f)GΠ,Cf

(f)
)

> 0. (10)

It is easily verified that (10), which states that the singu-
lar values of GΠ,Cf

(f) are uniformly bounded away from
zero, is a necessary condition for stable recovery of x ∈ H
from the continuous-time outputs {yp(t) : t ∈ R, p ∈ Π}.

Corollary 1: Under the hypotheses of Theorem 1 Πc is
an admissible output set for H for every Π ⊂ P, Π 6= P
for which D−({Λp : p ∈ Π}) = 0. In particular,

ess inf
f∈F

λmin

(
GH
•,Cf

(f)G•,Cf
(f)

)
> 0. (11)

Equation (11), which states that the entire set P of out-
puts must be admissible for stable MIMO sampling is not
surprising: even if all yp(t) are known for t ∈ R, we can-
not stably recover the channel inputs unless (11) holds.
In fact, (11) yields an even simpler necessary condition:

P ≥ |Cf | a.e.

i.e., the number of outputs must be no less than the num-
ber of overlapping input spectra at any frequency.

Next, suppose that D−({Λp : p ∈ Π}) = 0. Then, the
output samples on the sampling sets {Λp : p ∈ Π} are
too sparse to contain any signal information. Therefore,
we must rely entirely on the outputs samples taken on
{Λp : p ∈ Πc} to achieve stable reconstruction, and an
argument as before provides intuitive justification for the
admissibility of Πc.

The following result provides another necessary condi-
tion for stable sampling.

Theorem 2: Under the hypotheses of Theorem 1,

ess sup
f∈F

σmax

(
GΠ+,Cf

(f)
)

< ∞, (12)

where Π+ = {p ∈ P : D+(Λp) > 0} and F =
⋃

r∈R Fr.
To interpret this result, note that whenever D+(Λp) =

0 for some p ∈ P, the samples of yp on Λp are too sparse to
provide any useful information. Thus, Π+ can be viewed
as the set of outputs whose samples are dense enough to
provide information about the inputs. It follows that (12)
is an implication of the upper stability bound in (4).

Clearly, D−(Λp) = D+(Λp) = 0 for all p /∈ Π+. Thus,
D−({Λp : p ∈ (Π+)c}) = 0 and by Corollary 1, Π+ must
be an admissible set and (10) holds for Π = Π+. In this
case, Condition (10) applied to Π+, and Condition (12)

are necessary bounds on the smallest and largest singular
values of the same matrix. So, if (12) does not hold then
stable reconstruction from the sampled versions outputs
will be impossible even if Π+ is admissible. An example of
this in the single-input single-output case is an integrator
G(f) = 1/(j2πf).

Example 1: Consider a MIMO channel with R = 2
inputs, P = 2 outputs, and frequency response matrix
G(f) =

[
1 K(f)
0 1

]
where K(f) is shown in Figure 1. Let

F1 = [−1, 1) and F2 = [0, 2) be the input spectral sup-
ports. The input and output spectra for a typical set of
channel inputs are illustrated in Figure 2. We interpret
Y1(f) as the sum of the two pieces shown in the figure.

1

1 1.50

K(f)

Fig. 1. K(f)

-1

X2(f)

X1(f)

Y2(f)

-1 0 1 2

210-1 -1 0 1 2

21.510

Y1(f)

Fig. 2. Typical spectra of the channel inputs and outputs.

Let y1(t) and y2(t) be sampled on sets Λ1 and Λ2 re-
spectively. Then, what are necessary conditions on Λ1

and Λ2 for stable MIMO sampling with respect to G?
We have F = F1 ∪ F2 = [−1, 2] and

Cf = {r : f ∈ Fr} =





{1} if f ∈ [−1, 0)
{1, 2} if f ∈ [0, 1)
{2} if f ∈ [1, 2)
∅ otherwise.

It is easy to check that (12) is satisfied regardless of Π+.
Also

σmin

(
G•,Cf

(f)
)

=
[2 + K2(f)]−

√
[2 + K2(f)]2 − 4
2

is positive Hence, (11) is satisfied. Applying Theorem 1,
we obtain the following density conditions:

D−(Λ1,Λ2) ≥ µ(F1) + µ(F2) = 4

D−(Λ1) ≥ µ(F1) + µ(F2)−
∫

R
rank

(
G2,Cf

(f)
)
df

= 4−
∫

[−1,0]

0df −
∫

[0,1]

1df −
∫

[1,2]

1df = 2

D−(Λ2) ≥ µ(F1) + µ(F2)−
∫

R
rank

(
G1,Cf

(f)
)
df

= 1.5.

Now, a simple calculation reveals that

σmin

(
G1,Cf

(f)
)

=





1 if f ∈ [−1, 0)√
1 + K2(f) if f ∈ [0, 1)

|K(f)| if f ∈ [1, 2),
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which takes arbitrarily small values in the vicinity of f =
1.5, where K(f) vanishes. Hence the bound on D−(Λ2)
is a strict inequality. Another calculation yields (recall
that we take σmin(A) = ∞ if A = 0)

σmin

(
G2,Cf

(f)
)

=





∞ if f ∈ [−1, 0),
1 if f ∈ [0, 1),
1 if f ∈ [1, 2).

Hence, the bound on D−(Λ1) is not a strict inequality. In
summary, we obtain the following necessary conditions on
the joint densities:

D−(Λ1, Λ2) ≥ 4, D−(Λ1) ≥ 2, and D−(Λ2) > 1.5.

If Λ1 and Λ2 have uniform densities of d1 and d2 respec-
tively, the resulting outer bounds on the density regions
for stable sampling can be viewed as a region in R2, as il-
lustrated in Figure 3. Also illustrated in the same figure,
are the outer bounds on the density regions for consistent
reconstruction (see the Introduction for a definition) for
an example with the same parameters [4].

0

d2

1 2 3 4

1

2

3

4

Consistent
Reconstruction

Stable Sampling

d1

Fig. 3. Density regions for stable sampling and consistent recon-
struction.

However, it is not immediately clear whether all densi-
ties satisfying the necessary conditions are achievable or
how to achieve them.

IV. Periodic Nonuniform Sampling

For the case of periodic nonuniform MIMO sampling,
we present conditions that are both necessary and suffi-
cient for stable reconstruction. Although these conditions
are not explicitly on the sampling densities, their appli-
cation often leads to sampling rates achieving minimum
densities given by the necessary density conditions.

A. Modeling

We begin by recasting periodic nonuniform MIMO
sampling as a uniform sampling problem with a virtual
MIMO channel. Consider the case where the p-th channel
output yp(t) is sampled at

t ∈ Λp = {nTp + λkp : k = 0, . . . , Kp − 1, n ∈ Z}.
The period of the sampling pattern for the p-th out-
put channel is Tp, and its uniform sampling density is

Kp/Tp. First, consider the case where all the periods
are equal, i.e., Tp = T . Then, we can decompose Λp

into a union of Kp uniform sampling sets of density 1/T ,
Λp = ∪Kp−1

k=0 (TZ+λkp) Consider a virtual MIMO channel
whose frequency response matrix is obtained by perform-
ing the following modification to G(f) of (6). We replace
the p-th row of G(f), namely Gp,•(f), by the following
Kp rows: Gp,•(f)e−j2πfλkp , k = 0, . . . , Kp − 1. The new
channel matrix has

∑
p Kp rows, and the samples of the

new outputs taken at t = nT are precisely equal to the
samples of the old MIMO channel outputs taken on the
periodic nonuniform sampling sets {Λp} and reordered.

Next suppose that the different channels have unequal
but commensurate sampling periods, i.e., that the ra-
tios of sampling periods are rational numbers: Tp =
(mp/np)T , for some mp, np ∈ N, and T ∈ R. In this
case, a common period for all the sampling sets {Λp}
is T

∏
np, and an argument as before allows us to con-

vert this to uniform sampling of the outputs of a vir-
tual MIMO channel. This recasting into uniform MIMO
sampling applies to most periodic nonuniform sampling
schemes, except those with non-commensurate periods.
(In the latter case, the entire sampling scheme is not pe-
riodic). Of course, the price to pay is that the virtual
MIMO channel has many more outputs. Thus, in the
sequel, we present results for uniform MIMO sampling
only, illustrating the application to periodic nonuniform
sampling by examples.

In the discussion that follows, we assume that spectral
support Fr of each of the inputs is a finite union of disjoint
intervals. We call this a multiband structure. Also, for
convenience we index the inputs and outputs by R =
{0, ..., R − 1} and P = {0, ..., P − 1}, respectively. The
channel outputs are sampled at t = nT , n ∈ Z, producing
the vector sequence z[n] def= y(nT ) with Fourier transform
Z[ν] def=

∑
n∈Z z[n] exp{−i2πnν} given by

Z[ν] =
1
T

∑

l∈Z
G

(ν + l

T

)
X

(ν + l

T

)
, ν ∈ [0, 1) . (13)

We model the reconstruction process by

x̃(t) =
∑

n∈Z
h(t− nT )z[n], h(t) ∈ CR×P . (14)

This is the most general linear transformation that allows
invariance of the entire MIMO system (consisting of the
channel, the samplers and the reconstruction block) to a
time-shift by a multiple of T . Taking its Fourier trans-
form yields X̃(f) = H(f)Z[fT ], f ∈ R, where H(f),
the Fourier transform of h(t), is the reconstruction ma-
trix. Owing to the periodicity of Z[ν], we can rewrite
(13) and the reconstruction relationship compactly as

Z[fT ] = G(f)X (f), (15)

X̃ (f) = H(f)Z[fT ], (16)

for f ∈ [0, 1/T ), where X (f) and X̃ (f) are the modulated
input and reconstructed vectors whose entries are

X Rl+r(f) = Xr

(
f +

l

T

)
, (r, l) ∈ R× Z, (17)
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with a similar definition for X̃ Rl+r(f), while G(f) and
H(f) are the modulated channel and reconstruction ma-
trices whose entries are, for (p, r, l) ∈ P ×R× Z,

Gp,Rl+r(f) =
1
T

Gpr

(
f +

l

T

)
, (18)

HRl+r,p(f) = Hrp

(
f +

l

T

)
. (19)

Note that only a finite summation is involved in (15) be-
cause the components of X(f) are bandlimited implying
that only a finite number of entries in X (f) are nonzero.

B. Stable Sampling

Define the following two spectral index sets at frequency
f ∈ [0, 1/T ):

K◦f =
{

(r, l) ∈ R× Z :
(
f +

l

T

)
∈ Fr

}
,

Kf =
{

Rl + r : (r, l) ∈ R× Z and
(
f +

l

T

)
∈ Fr

}
.

(20)

Let Kc
f = Z\Kf denote the complement of Kf . We now

have the following proposition, easily demonstrated by
using an argument similar to the one in [10].

Proposition 1: Suppose that sets Fr, r ∈ R have
multiband structure. Then Kf is piecewise constant on
[0, 1/T ), i.e., there exists a collection of disjoint intervals
Im of the form [α, β), and sets Km, m = 1, . . . , M such
that Kf = Km, for f ∈ Im, and ∪M

m=1Im = [0, 1/T ).
Conditions for stability of uniform MIMO sampling are

established by determining the frame bounds in Defini-
tion 2.

Theorem 3: The best frame bounds for the MIMO
sampling problem are given by

A = T ess inf
f∈[0,1/T ]

λmin

(GH
•,Kf

(f)G•,Kf
(f)

)
, (21)

B = T ess sup
f∈[0,1/T ]

λmax

(GH
•,Kf

(f)G•,Kf
(f)

)
. (22)

In particular, A > 0 and B < ∞ are necessary and suf-
ficient conditions for stable reconstruction of the MIMO
inputs.

The following corollary to Theorem 3 provides a sim-
pler sufficient condition for the stability of the MIMO
sampling scheme.

Corollary 2: Suppose that G(f) is such that Gpr(f) is
continuous for f ∈ Fr, and G•,Km(f) has full column
rank for all m ∈ M, f ∈ Im = [γm, γm+1]. Then the
MIMO sampling scheme is stable.

We illustrate the MIMO sampling result of Theorem 3
for a simple MIMO channel.

Example 2: Consider a MIMO channel with R = 2 in-
puts and P = 4 outputs having the following frequency
response matrix:

G(f) =




1 1
1 1 + e−j2πf

e−j2πf 0.25 + e−j4πf

1 + 0.5e−j2πf 1 + e−j4πf


 .

Let the input spectra X0(f) and X1(f) have supports

F0 = [0, 0.4) ∪ [0.75, 0.9) and F1 = [0.25, 0.5).

Each output is a multiband signal supported on F = F0∪
F1 = [0, 0.5)∪ [0.75, 0.9). A näıve way to reconstruct the
inputs is to first reconstruct the individual outputs and
then invert the channel. This method requires a minimum
sampling rate of µ(F) = 0.65 for each channel output.
However, we demonstrate in this example that we can
jointly reconstruct the inputs from fewer samples.

Let the sampling period be T = 4. It is then easy to
verify that I1 = [0, 0.15) and I2 = [0.15, 0.25). Fur-
thermore, (20) and Proposition 1 imply that

K◦f =

{
{(0, 0), (0, 1), (0, 3), (1, 1)}, if f ∈ I1,
{(0, 0), (1, 1)}, if f ∈ I2.

Therefore K1 = {0, 2, 6, 3} and K2 = {0, 3}. A simple
calculation determines G•,Km(f),m = 1, 2 and it can be
verified numerically that

rank
(G•,K1(f)

)
= 4, ∀f ∈ I1,

rank
(G•,K2(f)

)
= 2, ∀f ∈ I2.

Since G(f) is continuous, we conclude using Corollary 2,
that stable perfect reconstruction of the inputs is pos-
sible from the channel output samples. Hence, it suf-
fices to sample each output at a rate 1/T = 0.25 for
perfect stable reconstruction of the channel inputs, in-
stead of the sampling them at a rate µ(F) = 0.65 which
is required for the näıve approach. Finally, note that
the total combined sampling density of the outputs is
P/T = 1, while the minimum density, as dictated by The-
orem refthm:sampling.density.result is µ(F0) + µ(F1) =
0.8.
In Example 2, we showed that the combined sampling
density of 1 is achievable, but the lower bound on this
density is 0.8. In the next example we find a nonuniform
MIMO sampling scheme that closes the gap.

Example 3: Let the inputs signal characteristics and
the channel transfer function matrix be the same as in
Example 2. Let the channel outputs be sampled on
the sets Λp = {20n + λkp : k = 0, . . . ,Kp − 1}, where
(K1, K2,K3,K4) = (0, 3, 5, 8) and

{λkp : 0 ≤ k < Kp} =





∅ p = 0,

{1, 8, 14} p = 1
{2, 5, 8, 13, 18} p = 2
{0, 2, 4, 5, 7, 8, 14, 17} p = 3

These are all periodic nonuniform sampling sets with
common period of T = 20, and consisting of 16 cosets
in all. Hence, the virtual MIMO channel has a 16 × 2
frequency response matrix G̃(f). Since the band edges
of F0 and F1 are all multiples of 0.05, we trivially obtain
M = 1, I1 = [0, 0.05), and

K1 = {0, 2, 4, 6, 8, 10, 12, 14, 30, 32, 34}∪{11, 13, 15, 17, 19}.
Now, G̃•,K1(f) is a continuous 16 × 16 matrix, whose
rank is verifiable to be 16 for all f . By Corollary 2,
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we conclude that stable and perfect reconstruction of the
channel inputs is possible from these periodic nonuni-
form MIMO samples. In fact, the stability bounds are
A = 8.0724 × 10−4 and B = 3.6833. The sampling den-
sity of Λp is dp = Kp/T , so that

(d0, d1, d2, d3) = (0, 0.15, 0.25, 0.5)

is an achievable point in density region for stable sam-
pling. Obviously, the densities (d0, d1, d2, d3) must meet
all the necessary conditions for stable sampling in The-
orem 1. In particular, the total combined sampling rate
of all the outputs is 16/T = 0.8, which is precisely equal
to the minimum joint sampling density required, namely
µ(F0) + µ(F1). Finally, we learn from this example that
we need not sample the different outputs at the same rate.
In fact, one of the channels is not sampled at all, unlike in
Example 2 where, due to uniform sampling, we required
samples from all channel outputs.

C. Existence of Continuous Reconstruction Filters

In practice, one would reconstruct only a version of the
set of inputs that is uniformly sampled at a sufficiently
high rate, and implement H(f) using finite impulse re-
sponse (FIR) digital filters. The continuous-time version
could then be reconstructed by a bank of conventional
D/A converters on the reconstructed discrete-time sig-
nals. In particular, it is desirable to use a reconstruction
filter matrix H(f) that is continuous in f . Then H(f)
can be approximated arbitrarily closely in the H∞ sense
(and thus ensure an arbitrarily small worst-case L2 recon-
struction error) by choosing sufficiently long FIR filters
[6]. The existence of a continuous H(f) is guaranteed
under a stronger set of conditions than in Theorem 3.

Theorem 4: Suppose that the MIMO frequency re-
sponse matrix G(f) is such that Gpr(f) is continuous for
f ∈ Fr. Then there exists a reconstruction filter matrix
H(f) continuous in f , that achieves stable reconstruction
of the MIMO channel inputs if and only if

rank
(G•,Km(f)

)
= |Km|, ∀f ∈ int Im = (γm, γm+1),

(23)

rank
(G•,Jm(γm)

)
= |Jm|, m ∈M. (24)

where
Jm = Km ∪ Km−1, m = 2, . . . , M,

J1 = K1 ∪ (KM ⊕R).
(25)

Remark 1: A simple necessary condition for perfect
reconstruction using continuous reconstruction filters is
that P ≥ maxm |Jm|.

Example 4: Continuing Example 2, let R = 2, T = 4
Then the index sets defined in (25) are J1 = K1 ∪ (K2 ⊕
2) = {0, 2, 6, 3, 5}, and J2 = K2 ∪K1 = {0, 2, 3, 6}.Hence,
P ≥ maxm |Jm| = 5 is necessary for the existence of
a continuous H(f), and clearly, the G(f) of Exam-
ple 2 does not suffice. So let us append a new row,
[0.25 + e−j4πf , e−j2πf ], beneath the last row of G(f),
thereby making the MIMO channel a two-input five-
output channel. The rank condition in (23) holds because
the matrix G•,Km(f) of Example 2 has full column rank,

and adding an extra row to G(f) (and hence to G(f) also)
does not lower the column rank of G•,Km(f). A numerical
calculation yields the frame bounds for the MIMO sam-
pling scheme: A = ess inff∈[0, 1

T ] λmin(TS(f)) = 0.1251,
B = ess supf∈[0, 1

T ] λmax(TS(f)) = 1.1105. The other
rank condition in (24), which needs to be verified at cell
boundaries, also holds. Now, Theorem 4 guarantees the
existence of a continuous filter matrix H(f) that achieves
stable reconstruction of the MIMO channel inputs.

D. Optimal Reconstruction

When the conditions for its existence are satisfied, the
continuous reconstruction filter matrix H(f) is in gen-
eral nonunique, and a particular solution can be selected
using additional criteria (for examples of such designs in
the single channel case, see [11]). Necessary and sufficient
conditions for the existence of FIR perfect reconstruction
filters when the channel itself is FIR are presented in [6].
These conditions depend on the channel, input multiband
structures, and sampling rate, and generalize previous
results on multichannel deconvolution and filter banks.
However, in general, perfect reconstruction FIR filters do
not exist for the MIMO sampling problem. Formulat-
ing the reconstruction filter design problem as a minimax
optimization, it can be recast as a standard semi-infinite
linear program admitting efficient numerical solutions [6].
The generality of the MIMO setting allows this algorithm
to be used for various other sampling schemes that fit into
the MIMO framework as special cases.
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