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Abstract—We consider the problem of multiple-input multiple-
output (MIMO) sampling of multiband signals. In this problem, a
set of input signals is passed through a MIMO channel modeled
as a known linear time-invariant system. The inputs are modeled
as multiband signals whose spectral supports are sets of finite mea-
sure and the channel outputs are sampled on nonuniform sampling
sets. The aim is to reconstruct the inputs from the output samples.
This sampling scheme is quite general and it encompasses various
others including Papoulis’ generalized sampling and nonuniform
sampling as special cases. We introduce notions of joint upper and
lower densities for collections of sampling sets and then derive nec-
essary conditions on these densities for stable sampling and consis-
tent reconstruction of the channel inputs from the sampled outputs.
These results generalize classical density results for stable sampling
and interpolation due to Landau.

Index Terms—Frames, interpolation, multiband signals, mul-
tiple-input multiple-output (MIMO) systems, necessary density
conditions, reconstruction, stable sampling.

I. INTRODUCTION

MULTICHANNEL deconvolution or multichannel sepa-
ration of a convolutive mixture is an important problem

arising in several applications and has recently attracted sub-
stantial interest. In essence, the problem deals with a multiple-
input multiple-output (MIMO) channel with observable outputs
and the aim is to invert or equalize the channel to recover the
channel inputs. In general, the channel inputs have overlap-
ping spectra. Some example applications where MIMO chan-
nels arise are multiuser or multiaccess wireless communica-
tions and space–time coding with antenna arrays, or telephone
digital subscriber loops [1]–[4], multisensor biomedical signals
[5], [6], multitrack magnetic recording [7], multiple speaker (or
other acoustic source) separation with microphone arrays [8],
[9], geophysical data processing [10], and multichannel image
restoration [11], [12].

In practice, digital processing is used to perform the channel
inversion, whereas the channel inputs and outputs are contin-
uous-time signals. Consequently, the channel outputs are sam-
pled prior to processing. Thus, our aim is to reconstruct the
channel inputs from the sampled outputs. This channel inver-
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Fig. 1. MIMO sampling.

sion problem can be restated as one in sampling theory, which
we call MIMO sampling. We study this problem entirely from
the perspective of sampling theory, although the problem could,
equally well, be viewed as one of channel equalization.

While much of the recent work on MIMO equalization has
been on the so-called blind problem, we consider the simpler
nonblind problem and assume that the channel characteristics
are either known or that they can be estimated accurately using
known test input signals. We seek necessary conditions on the
sampling sets and the channel for reconstruction of the inputs.
These necessary conditions must also apply to the harder
problem of blind MIMO equalization with sampling.

Our problem is formulated as follows. Let ,
, be a collection of complex-valued signals whose spec-

tral supports are sets of finite measure. We refer to such
signals as multiband signals because, in practice, is a finite
union of intervals. These signals are input to a MIMO channel
consisting of linear time-invariant filters (see Fig. 1) to produce

outputs , , which may be expressed as

where denotes convolution and are square-integrable
impulse responses. Each output is subsequently sampled
on a discrete set and these samples
are then used to reconstruct the inputs. This sampling scheme
is very general and subsumes various other sampling schemes
as special cases. For instance, Papoulis’ generalized sampling
[13] is essentially a single-input multiple-output (SIMO) sam-
pling scheme, i.e., MIMO sampling with . An extension
of Papoulis’ sampling expansion to vector-valued inputs [14]
is also a special case with all inputs having identical low-pass
spectra, i.e., .

Let , , denote a complex-valued and square-in-
tegrable continuous function whose Fourier transform is
supported on a measurable set where is a positive
integer. Landau [15], [16] proved the following fundamental re-
sult for sampling and interpolation of multiband signals. Sup-
pose that a function is sampled on a discrete set

0018-9448/04$20.00 © 2004 IEEE



VENKATARAMANI AND BRESLER: MIMO SAMPLING: NECESSARY DENSITY CONDITIONS 1755

. Then, for stable reconstruction1 of from
its samples , it is necessary that the sampling density2 of

be no less than the measure of , i.e., must be sufficiently
dense in order to stably reconstruct the input. The precise def-
initions of stable sampling and sampling density are presented
in Section II.

A dual problem is that of interpolation: given a discrete set
and a square-summable sequence , we ask if there

exists a function with spectral support that interpolates
through the values at the sampling point , i.e.,

. A necessary condition for interpolation is that
the density of be no more than the measure of . Roughly
speaking, must be sufficiently sparse in order to assign
arbitrary values to the samples of on the set .

We refer to the above problems as classical sampling and in-
terpolation. Gröchenig and Razafinjatovo [17] provided a sim-
pler proof of Landau’s classical result for the case that has
zero boundary measure. Their technique also allowed them to
prove necessary density conditions for some derivative sam-
pling schemes. In this paper, we extend the idea of [17] to de-
rive necessary density results for MIMO sampling. We consider
only single variate functions in our analysis , and the re-
sults easily extend to multivariate functions. More specifically,
we address the following questions. a) What are necessary con-
ditions on for stable reconstruction of the MIMO inputs

from the output samples ? b) What are
necessary conditions on such that for any square-sum-
mable sequence there exists a set of inputs to the channel
whose th output interpolates through the values at the
sampling points ? We refer to this as consistent recon-
struction. Problem b) is analogous to the classical interpolation
problem. As in the case of classical sampling, our goal is to find
necessary conditions on the sampling sets for stable sampling
and consistent reconstruction.

In [18], we derived sufficient conditions for reconstruction
from MIMO samples assuming that the outputs are sampled
uniformly. The related filter design issues were studied in [19].
Sampling theorems for special cases of MIMO sampling are
also considered in [13], [14]. These results are sufficient den-
sity conditions for uniform or periodic sampling, and are not
shown to be necessary for arbitrary, nonuniform sampling of
the channel outputs. An interesting SIMO sampling scheme ap-
plicable to general signal spaces including wavelet and spline
spaces can be found in [20]. However, we restrict our attention
to multiband signal spaces alone.

This paper is organized as follows. In Section II, we introduce
some notation and review some mathematical background. In
Section III, we present our main results: necessary conditions
on for stable MIMO sampling and consistent MIMO re-
construction. For stable reconstruction, we prove that the sum
of densities of is lower-bounded by the sum of the measures
of . Similarly, for the consistency problem, the sum of den-
sities of is upper-bounded by the sum of the measures of

. Apart from these natural generalizations of the classical re-
sults, we also derive necessary conditions on the joint density

1The property that any errors in the sample values cause a controlled amount
of error in the reconstruction.

2Interpreted as the average number of samples per unit time.

for each subcollection of sampling sets, as well as conditions
on the channel transfer function. These bounds provide an outer
bound on the region of achievable densities. We provide exam-
ples to illustrate the results. Finally, we provide proofs of these
results in Section IV.

II. PRELIMINARIES

A. Definitions and Notation

Let denote the set of square-summable sequences and
and , the spaces of square-integrable and contin-

uous functions, respectively, on . Then

(1)

is the space of continuous signals bandlimited to a mea-
surable set , where is the Fourier transform of a
signal

Let denote the indicator function. Thus, takes
the value on the set , and elsewhere. Let denote the
inverse Fourier transform of

Let denote the time-shift operator: . Let
denote the empty set and , the complement of a set in the

appropriate universal set. Let denote the Lebesgue measure
of real sets.

The space of complex-valued matrices of size is
denoted by . Let denote the th standard
basis vector, i.e., has a at the th position, and zeros
elsewhere. For a given matrix , let denote its conjugate-
transpose , its submatrix corresponding to rows indexed
by the set and columns by the set . Also, let denote the
submatrix formed by keeping all rows of , but only columns
indexed by , and , the submatrix formed by retaining
rows indexed by , and all columns. We use a similar notation
for vectors. Thus, is the subvector of corresponding to
rows indexed by . When dealing with singleton index sets:

or , we omit the curly braces for readability.
Therefore, and are the th row and the th column of

, respectively. Let and denote the largest
and smallest eigenvalues of . Recall that the singular values
of a matrix are the nonzero eigenvalues of . Let

denote the largest singular value of matrix , and
, the smallest nonzero singular value of if .

If , we take .

B. Sampling Density

A discrete set is called uniformly
discrete with separation if
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Let the maximum and minimum number of sampling points of
found in any interval of length be denoted by

(2)

respectively, where denotes the cardinality of a set , and

is a closed interval of length centered at . For a discrete set
, the upper and lower densities are defined as

(3)

respectively. Although traditionally written as “ ” and
“ ,” the limits in (3) can be replaced by simple limits
[21]. Several other notions of density for nonuniform sampling
can be found in [21].

If the lower and upper densities coincide, this density is called
the uniform density3 and is denoted by . Any large interval
of length contains approximately points of . If is
uniformly discrete, then is finite but the converse state-
ment is not true. However, implies that can be
expressed as a union of finitely many uniformly discrete sets
[22].

When dealing with a collection of sampling sets, as in the
MIMO setting, it is useful to define joint densities for the col-
lection. In [22], we introduced the following generalizations of
sampling density.

Definition 1: Given a finite collection of discrete sets ,
, their joint upper and lower densities are defined

as

(4)

(5)

respectively, where

are the maximum and minimum number of sampling points of
the collection found in any interval of
length .

Once again, the limits in (4) and (5) can be replaced with
simple limits. In fact, this can be inferred from the following
stronger result.

Proposition 1: For all

(6)

(7)

3The sampling points in � need not be uniformly spaced.

Proof: Suppose that . Let
and be arbitrary. Then (4) guarantees the existence

of and such that

Let be such that . Suppose we
divide the interval into equal intervals of width

, then it is clear that for at least one interval, say , we
have

Therefore, by choice of and

Since , it follows that

for all , and we obtain (6) because is arbitrary. If
, then for every , we can find such that

Proceeding as before, we find that there exists an interval
such that and

Since is arbitrary, we obtain . The
proof of (7) is very similar.

Proposition 1 implies that

Thus, the limits in (4) and (5) can be replaced by simple limits.

C. Stable Sampling

In classical sampling, samples of a signal on a
discrete set are used to reconstruct . The input space is the
Hilbert space with the following inner product:

The norm on is defined as . Thus, the sam-
pling operation can be expressed as an inner product
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The set is called a set of stable sampling for
if there exist such that

(8)

This condition implies that is a frame for
with frame bounds and and the condition number

. The theory of frames thus provides a con-
venient tool to study sampling [21]. We present more details on
frames in Section IV.

We extend the above definition of stable sampling to the
MIMO problem as follows. Recall that the channel inputs and
outputs are related to each other as

where is the input vector whose components are multiband
signals , and is the channel output in vector form,
and is a matrix whose entries are . Thus, the space of
inputs is

Suppose that

(9)

Then it is clear that contains all the nonzero elements
of . Hence, the channel output can be expressed in the
frequency domain as

(10)

where (the Fourier transform of ) is called the channel
transfer function matrix. We use the shorthand notation
to denote the input–output relation of the channel, where is
the operator denoting the channel.

In the rest of this paper let

and

denote index sets for the channel inputs and outputs, respec-
tively.

Definition 2: A collection of discrete sampling sets
, is said to be stable with respect to

if there exist such that

(11)

for every , where . We sometimes refer to this as
a collection of stable MIMO sampling.

As we will see later, the implication of this definition is that
the inputs to the channel can be reconstructed from the samples
of the outputs on these discrete sets in a stable way, i.e., any
error in the sampled values produces a controlled error in the
reconstruction.

D. Interpolation and Consistency

In the context of classical multiband sampling, a sampling set
is called a set of interpolation if for every there ex-

ists such that , i.e., the sampling operator

Fig. 2. K(f).

Fig. 3. Typical spectra of the channel inputs and outputs.

corresponding to from to is onto if is a set of in-
terpolation. There are several practical implications to being
a set of interpolation. First, it implies that any square-summable
data sequence can be interpolated to a signal
whose samples on agree with the data sequence. Second, it
implies that the samples of on are nonredundant
because each sample is completely independent of all the others.
If is not a set of interpolation, then the samples of
live in a strict subspace of , and are linearly dependent with
some samples completely determined by the others. We extend
this notion to MIMO sampling as follows.

Definition 3: A collection of discrete sets
, is said to be consistent with respect to if for

every , there exists a solution to the problem
, where . We sometimes refer to this as

a collection of consistent MIMO reconstruction.

In the preceding definition, we seek an input signal that, when
passed through the MIMO channel and sampled, produces the
desired observations. We refer to this property as consistent re-
construction (as opposed to interpolation) because the observa-
tions are samples of the channel output (as opposed to the in-
puts).

III. NECESSARY DENSITY CONDITIONS

In this section we present our main results namely, neces-
sary conditions for stable sampling and consistent reconstruc-
tion. We begin with an example for illustration.

Example 1: Consider a MIMO channel with inputs,
outputs, and the following transfer function matrix:

(12)

where is shown in Fig. 2.
Let and be the input spectral supports.
Thus,

(13)

(14)

The input and output spectra for a typical set of channel inputs
are illustrated in Fig. 3. We interpret as the sum of the
two pieces shown in the figure.



1758 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 8, AUGUST 2004

Let and be sampled on sets and , respec-
tively. Then, what are necessary conditions on and for
stable reconstruction of the inputs?

We shall first find a necessary condition on assuming that
is known for all instead of . This is allowed

because the resulting condition will also be necessary for the
original problem. Thus, by (14). Using (13) we
have

(15)

Since is known for all , the second term on the right-hand
side can be computed and subtracted off from the left-hand side
(known samples) to yield the samples of on

(16)

Given , the data contained in the sequences (15) and (16)
are equivalent in the sense that one can be used to find the
other. Therefore, we must be able to reconstruct from

and . Since and are independent of
each other, must be reconstructed from the sequence (16)
alone. Using Landau’s result, we obtain the following necessary
condition on :

Next, we determine a necessary condition on . Note that
if we can reconstruct and , then outputs and

are also trivially reconstructible. This time, we assume
that is known for all and any resulting necessary
condition on for stable reconstruction of from
and will also be necessary for the original
problem.

Let . From Fig. 3 it is clear that for

Therefore, the part of the spectrum of , can be
recovered (although not stably because approaches zero
at ) from . However, no part of ,
can be recovered from . This observation motivates us to
decompose the signal as

where and .
Then, can be recovered from . Having determined

, we compute the samples of on as follows:

Using a similar argument as before, we obtain the following
condition for stable reconstruction of (and hence ):

Finally, we expect the total sampling density of the outputs to
be larger than the total spectral measure of the inputs, i.e.,

In the above example, we used a series of steps to deduce nec-
essary conditions on the sampling densities. However, our argu-
ments were not very rigorous but specific to the given transfer
function . The necessary density conditions for the general

problem can be stated in a very simple form. We postpone their
proofs to Section IV since they are technically involved.

A. Density Conditions for Stable Sampling

Let the essential supremum and infimum of a real function
be defined as

a.e.

a.e.

where a.e. stands for almost everywhere.

Theorem 1: Suppose that , , are real sets of finite
measure, , and , , are
discrete sets with that constitute a collection of
stable sampling with respect to . Then, for every

(17)
where and is the complement of in .
Furthermore, if

(18)

for some , then (17) is a strict inequality.

Theorem 1, which is proved in Section IV, provides lower
bounds on the joint densities of all subcollections of . In
particular, letting in (17), we obtain

(19)

In other words, the combined sampling density on all the output
channels must be no less than the combined bandwidth of all
the input signals, which represents the total number of degrees
of freedom per unit time contained in the inputs.

Intuitively, we can explain these bounds as follows. Sup-
pose that the outputs , are completely known
for all , which is the case that demands the weakest
conditions from the for stable sampling. Then,

is known for all . Therefore,
is the number of independent components of

at frequency that can be determined from knowledge
of alone. Consequently

is the number of degrees of freedom per unit time in the inputs
that can be resolved by knowing the outputs , com-
pletely (for all ). Therefore, the difference in right-hand side of
(17) is the number of unresolved degrees of freedom per unit
time in the inputs. The left-hand side of (17) is the joint lower
density of , i.e., the smallest local sampling den-
sity (number of samples per unit time in a local sense) contained
in these sampling sets. Thus, (17) merely states that we require
more samples than the unresolved degrees of freedom in the in-
puts (locally per unit time) for each choice of .

Note that this bound depends only on the submatrix of
whose rows are indexed by the complement of and columns
by because vanishes outside .
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Next, if some singular value of takes arbitrarily
small nonzero values, then we cannot stably invert

to stably recover the independent compo-
nents of and the density of must be strictly larger than
the right-hand side of (17).

Theorem 1 leads to the following simple necessary conditions
on the admissibility of subsets of the continuous-time channel
outputs for stable recovery of the inputs. Let .

Definition 4: A set of outputs , , is said to
be an admissible set of outputs for if

(20)

It is easily verified that (20), which states that the singular
values of are uniformly bounded away from zero, is
a necessary condition for stable recovery of from the
continuous-time outputs .

Corollary 1: Under the hypotheses of Theorem 1, is an
admissible output set for for every , , for which

. In particular

(21)

Proof: From Theorem 1, (42), and (43) we have

If , then all inequalities above must be
equalities. Thus, (17) holds with an equality, implying that

by Theorem 1. We also have a.e.,
implying that

Now, the admissibility of follows by combining the last two
observations. Applying this result to , we obtain (21).

Equation (21), which states that the entire set of outputs
must be admissible for stable MIMO sampling is not surprising:
even if all are known for , we cannot stably recover
the channel inputs unless (21) holds. In fact, an even simpler
necessary condition emerges from (21)

a.e.

i.e., the number of outputs must be no less than the number of
overlapping input spectra at any frequency.

Next, suppose that . Then, the output
samples on the sampling sets are too sparse to
contain any signal information. Therefore, we must rely entirely
on the output samples taken on to achieve stable
reconstruction, and an argument as before provides intuitive jus-
tification for the admissibility of .

The following result provides another necessary condition for
stable sampling.

Theorem 2: Under the hypotheses of Theorem 1, we require

(22)

where and .

Theorem 2 is proved in Section IV. Whenever
for some , the samples of on are too sparse

to provide any useful information. Thus, can be viewed as
the set of outputs whose samples are dense enough to provide
information about the inputs. In view of this interpretation, we
see that (22) is an implication of the upper stability bound in
(11).

Clearly, for all . Thus,
and by Corollary 1, must be

an admissible set and (20) holds for . In this case, the
condition (20) applied to and condition (22) are necessary
bounds on the smallest and largest singular values of the same
matrix. So, if (22) does not hold, then stable reconstruction from
the sampled versions outputs will be impossible even if is
admissible. An example of this in the single-input single-output
case is an integrator .

We now present a simple example to illustrate the necessary
conditions for stable MIMO sampling.

Example 2: Consider the MIMO channel and inputs as de-
scribed in Example 1. We seek conditions on the sampling sets

and for stable MIMO sampling with respect to . We
have and

if
if
if
otherwise.

It is easy to check that (22) is satisfied regardless of . Also,

This quantity is positive and uniformly bounded away from zero
because is a bounded function. Hence, (21) is satisfied.
Applying Theorem 1, we obtain the following density condi-
tions:

Now, a simple calculation reveals that

if
if
if .
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Clearly, this quantity takes arbitrarily small values in the vicinity
of , where vanishes. Hence, the bound on
is a strict inequality. Another calculation yields4

if
if
if .

Hence, the bound on is not a strict inequality. In sum-
mary, we obtain the following necessary conditions on the joint
densities:

and

These results agree with our predictions in Example 1.

Finally, note that we can have undersampling at each output
and yet be able to reconstruct all the inputs jointly from the
available information. For instance, we do not need

, even though has a bandwidth of . To see this, we
construct a sampling scheme for which the densities

are achievable, where , i.e., has a uniform
density of . Let and be uniform sampling lattices

Clearly, can be reconstructed stably. Now, the
samples of on can be computed as follows:

because is known for all . Thus, can also be recon-
structed stably. However, it is not immediately clear whether all
densities satisfying the necessary conditions are achievable or
how to achieve them.

B. Density Conditions for Consistent Reconstruction

We now present the necessary condition for consistent MIMO
reconstruction, which is dual to the problem of stable sampling.

Theorem 3: Suppose that , are real sets of finite
measure, , and , are discrete
sets that constitute a collection of consistent reconstruction with
respect to . Then, for every

(23)

where . Furthermore, if

(24)

for some , then (23) is a strict inequality.

Theorem 3 is proved in Section IV. Suppose satisfies
(21), then

Under this condition, in (23) implies that

(25)

i.e., the joint density of does not exceed the combined band-
width of the input signals. Note that (21) need not hold for con-
sistent reconstruction.

4Recall that we take � (AAA) = 1 if AAA = 0.

Theorem 3 provides conditions on the joint upper densities
of all subcollections of . The density bounds can be inter-
preted as follows. The right-hand side of (23) is the joint upper
density of the sampling sets , i.e., the largest
local sampling density (number of samples per unit time in a
local sense) in these sampling sets. We have already seen that
the quantity

is the number of degrees of freedom per unit time contained in
the outputs . Thus, (23) states that in order to
interpolate the outputs through its given sample values, the local
density of samples must be less than the number of degrees of
freedom per unit time in these outputs. The following corollary
is dual to Corollary 1.

Corollary 2: Under the hypotheses of Theorem 3, is an
admissible output set for , i.e.,

(26)

for every , , such that

(27)

Proof: From Theorem 3 and (42), we have

If (27) holds, then both the above inequalities are, in fact, equal-
ities. Then, (23) is satisfied with an equality, implying that (24)
fails to hold. Also, , so that

Now (26) follows by combining the last two observations.

Corollary 2 can be interpreted as follows. Suppose that the
smallest singular value of takes arbitrarily small
values, then there are unit energy inputs that produce outputs

, , of arbitrarily small energies. Roughly speaking,
we can find sequences for which the consistency
problem does not have a finite-energy solution if we are
operating at the critical sampling density, i.e., with an equality
in (23).

Example 3: Let the MIMO channel and the input spectral
supports be as defined in Example 1. What are the necessary
conditions on the sampling sets and for consistent recon-
struction? Fortunately, we have already performed the necessary
calculations in Example 2. Applying Theorem 3, we obtain the
following bounds on the joint densities:
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Fig. 4. Density regions for stable sampling and consistent reconstruction.

These inequalities can be explained intuitively as follows. If
consistent reconstructions of and are possible, then
we must also have consistent reconstruction (or interpolation)
of and from their respective samples. Looking at
Fig. 3, we see that is bandlimited to .
Therefore, we require for consistent reconstruc-
tion of . Next, is bandlimited to , thereby
requiring . However, is not al-
lowed for stability reasons because is arbitrarily small in
the vicinity of . Finally, the combined bandwidth of the
inputs is , so that is needed for consistency.

We now show that the densities for
sampling sets of uniform density. Let and be
defined as in Example 2. Let and be sequences.
Then, the problem clearly has a solution

. Now, the sequence
is square-summable because is a bounded function,
implying that

also has a solution . This proves that
is achievable.

If and have uniform densities of and , respec-
tively, the resulting outer bounds on the density regions for
stable sampling (Example 2) and consistent reconstruction
(Example 3) can be viewed as regions in . These regions are
illustrated in Fig. 4.

IV. PROOFS OF MAIN RESULTS

This section is devoted to the proofs of the results of Sec-
tion III. We begin with a review of background material on
frames and bases (cf. [23], [24]). Let be a separable Hilbert
space equipped with an inner product .

Definition 5: A sequence is called a frame if there
exist such that

(28)

for all . The constants and are called the lower and
upper frame bounds. If , the frame is a tight frame.

The frame operator defined by

is a bounded linear operator satisfying , where
is the identity operator. Let . Then, is also a
frame (the dual frame) for with frame bounds and .
Any can be expanded as

(29)

Also, for any sequence , we have

(30)

Definition 6: A sequence is called a Riesz basis if
it is fully equivalent to an orthonormal basis for , i.e., if there
exists a bounded invertible operator and an orthonormal basis

such that .

A Riesz basis is a frame, and hence (29) and (30) hold. In
fact, if is a Riesz basis, we can replace (30) by the stronger
condition

(31)

Conversely, if is a complete sequence in , it is a Riesz
basis for whenever (31) holds for finite sequences [23]. The
dual frame of a Riesz basis is also a Riesz basis for

and is called the biorthogonal basis of .

Definition 7: A sequence is called a Riesz–Fis-
cher sequence if the moment problem:

(32)

has a solution for all . If is a Riesz–
Fischer sequence, there exists a solution to (32) such that

for some called the bound of the Riesz–Fischer sequence.

A necessary and sufficient condition for to be a
Riesz–Fischer sequence with bound is that

(33)

for every finite sequence . Finally, note that the moment
problem in (32) has a unique solution if is a complete
Riesz–Fischer sequence in . Every Riesz basis is a Riesz–Fis-
cher sequence, but the converse is not true. However, if a
Riesz–Fischer sequence is also a frame, then it is a Riesz basis.
We use the notions of frames and Riesz–Fischer sequences in
our analysis in this section.

The space of input signals in the MIMO channel is the Hilbert
space

(34)

equipped with the inner product

(35)
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where . The norm on is . It is clear
that we can write where is
given by

(36)

and is the th standard basis vector.
Thus, (11) is equivalent to the condition that

is a frame for . This implies that the channel inputs can be
reconstructed from the output samples using the dual frame as
the set of interpolating functions. Furthermore, any errors in the
sampled signal or its samples produce a controlled amount of
error in the reconstructed signals. The condition number for the
MIMO sampling scheme is .

Next, Definition 3 implies that is a collection
of consistent reconstructions with respect to if

is a Riesz–Fischer sequence in . Note that for any finite se-
quence

where is the unit ball in . From
(33) and the above observation we conclude that

is a Riesz–Fischer sequence in if and only if

(37)

for every finite sequence . This characterization (37) is
more convenient to use than Definition 3.

Finally, we point out that if a collection of discrete sets
, is a collection of both stable sampling

and consistent reconstruction, then
is a Riesz basis for .

A. Preliminary Results

Our aim is to prove necessary density conditions for
stable sampling and consistent reconstruction stated in Sec-
tion III. These results are analogous to Landau’s density
result for nonuniform sampling of multiband signals [15],
[16]. Gröchenig and Razafinjatovo [17] provided a simpler
proof of Landau’s result for signals with spectral sets having
zero boundary measure. We extend their idea to prove our
density results for the MIMO problem. However, we drop the
restriction on the boundary measures.

We begin with a few relevant definitions. Let

be Hilbert spaces with inner product defined as in (35). The ele-
ments of are vectors whose components are bandlimited to

the frequencies . Let denote the orthog-
onal projection operator onto a closed subspace .

Definition 8: A subspace is called shift-invariant
if for all , .

Evidently and are shift-invariant spaces. We write
if for all . The following properties of a

closed shift-invariant subspace can be verified easily.

Proposition 2: Suppose that , , and is
a closed shift-invariant subspace. Then (a)

, and (b) , i.e., translation commutes with
orthogonal projection onto .

Proof: (a) Suppose that . Then
for all , because . Hence,

. To prove (b), note that . For
an arbitrary , we have

Thus, .

The following theorem is a stronger version of the main re-
sult in [17]. This result allows us to compute necessary density
conditions for the stable MIMO sampling and consistent recon-
struction.

Theorem 4 (Comparison Theorem): Let and be
closed subspaces of , and let and
be discrete subsets of such that all . Suppose
that and are elements of such that

is a Riesz–Fischer sequence in , and that

is a frame for . Then

(38)

where

Furthermore, is automatically implied whenever
all .

Theorem 4 is proved in [22]. Note that and are ar-
bitrary subspaces in . However, the comparison theorem is
most useful when the spaces are nearly the same. In this case, the
coefficients would be small, thereby yielding the following
density bound:

where is a small quantity representing the summation in
(38) involving the terms . By using an appropriate limiting
argument, we would need to show that can be made arbitrarily
small. The import of this statement is roughly that a frame, being
an overcomplete sequence in a Hilbert space , is denser (con-
tains more vectors) than a Riesz–Fischer sequence .
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Note that Theorem 4 is very general, involving arbitrary
signal spaces, and can potentially be used for proving necessary
density conditions for sampling problems in other spaces such
as wavelet or spline spaces. We use this theorem in the next
section, where we derive necessary density conditions for the
MIMO sampling problem. Finally, we state a useful result
proved in [22].

Lemma 1: Let . Then

satisfies and for some
that depends only on the difference .

Moreover, if is a discrete set with
, then

(39)

for all , , and some . In particular

Lemma 1 says that the samples of a unit-energy bandlimited
signal on a sampling set of finite upper density cannot have ar-
bitrarily large energy.

B. Proof of Theorem 1

Let be a fixed subset. Consider two cases: first sup-
pose that and (18) holds. Then, we define

(40)

where and are quantities defined in Lemma 1. Let
be such that , where is the lower stability bound
in (11). Since (18) is satisfied, there exists a set such that

and

(41)

Without loss of generality, assume that for some
. In the second case (either or (18) does not hold),

we take . Thus, (41) is satisfied in both cases. Let the
cardinality of the set be denoted by , i.e.,

(42)

Let the dimension of the null space of be denoted by

(43)

and let the columns of form an orthonormal
basis for this space. For , let be
a unit-norm right singular vector of corresponding
to its smallest nonzero singular value. We can always choose

and to be measurable functions. Clearly,
is orthogonal to the columns of for . Therefore,

if
otherwise

has orthonormal columns for all . Let be the set where
contains columns, i.e.,

(44)

The sets are clearly disjoint sets of finite measure. There-
fore, for any , there exists a finite collection of disjoint
intervals such that the sets

(45)

approximate in the sense that and
. It follows that

(46)

It is also clear that . Consequently

(47)

Now, define on for each as follows:

if
if

(48)

where is the identity matrix. Note that the columns of
form an orthonormal set of vectors for each . For

each , let and be indexes such that and
. For convenience, let denote an invertible

mapping from the triplet to a single index

where and

In the rest of the proof, assume that , , , and are related
to each other by . We shall now define several
quantities with the intention of finally using Theorem 4 to derive
the necessary density conditions. Let be defined in
terms of their Fourier transforms as follows:

if
otherwise

(49)

where is the th column of . The sampling set

(50)

has uniform density of . Since the intervals are dis-
joint and is a set of orthonormal
vectors for each and , it follows that

is an orthonormal sequence. Let be the closure of the span
of this sequence

(51)
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Then is an orthonormal Riesz basis
for with lower frame bound . In particular, it is a
Riesz–Fischer sequence with bound .

Now define

a.e. (52)

Clearly, is a shift-invariant subspace. To see that is
closed, consider the following argument. Let be
a sequence converging to . Then

a.e.

and converges to in the sense. Hence, there
exists a subsequence such that a.e. as

. Therefore,

a.e.

or, equivalently, , proving that is closed.
Suppose that . Then, using (10) and (52) we see that

Next, using the definitions of and , we obtain

(53)

(54)

Equations (53) and (54) imply that for
all . Hence,

(55)

Equation (53) states that is supported on
for each . Applying Lemma 1 to , and using
(55) we get

(56)
where is the constant defined in (40). Combining (56) with
the first inequality in the sampling stability condition in (11),
we obtain

(57)

where the second inequality in (57) follows from the choice of
. From (11), we obviously also have

(58)

because . Equations (57) and (58) yield

(59)

Let , where is defined in (36). Since is
shift-invariant, we obtain the following using Proposition 2:

(60)

Also,

(61)

From (59)–(61) we conclude that
is a frame for . Having verified all the required hypotheses,
we can now apply Theorem 4 to obtain the following inequality
relating the densities of and :

(62)
where

Since is shift-invariant, we use Proposition 2 to obtain

where the last equality holds because . In order to estimate
, we define as follows:

if
otherwise.

(63)

For all , we use (48), (49), and (63) to conclude
that

This proves that . Therefore, . Using
Parseval’s theorem, (49), and (63) we obtain

Since is a vector of unit norm, we have

(64)

Combining (62) and (64) and using the fact that
, we obtain
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Using the Cauchy–Schwarz inequality, we obtain

(65)

(66)

Now, (46), (47), and (66) imply that

(67)

Meanwhile, using (42)–(44), and the definition of the Lebesgue
integral, we obtain

(68)

Putting together (67) and (68), and letting yields

This proves (17). Finally, recall that if (18) holds and ,
then . Thus, the inequality in (17) is strict in this
case.

C. Proof of Theorem 2

Suppose that (22) fails to hold. Then, some entry of
is necessarily unbounded on . So, let

and be indexes such that for every there exists

satisfying . Let be a finite
collection of disjoint intervals such that

satisfies and , where
. Therefore, . Now at least one

interval must satisfy

(69)

Otherwise, we would have

violating our assumption that . So, let denote
an interval that satisfies (69). Define . Since

, by Proposition 1 and (2), there exists
such that

(70)

Define
if
otherwise

and for all . Then, we clearly have

(71)

Using (10), we conclude that

whose inverse Fourier transform is

(72)

where and is the midpoint of .
Note that

(73)

Then, for all such that , (72) and
(73) imply that

(74)

Using (70) and (74), we obtain

Combining this result with (71), we obtain

Since is arbitrary and is nonzero, the above obser-
vation violates the second inequality of the stability condition
(11), proving the necessity of (22).

D. Proof of Theorem 3

First note that the consistency condition implies that

(75)

is a Riesz–Fischer sequence in , where is defined in (36).
Let be a fixed subset. Consider the following two cases.
First suppose that , for all , and
that (24) holds. Then, we can define

(76)

where and are quantities defined in Lemma 1. Since (24)
holds, we can find a set such that , and

(77)

where is such that and is the bound
for the Riesz–Fischer sequence in (75). Assume without loss of
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generality that for some . In the second
case (either or for some , or (24)
does not hold), take . Thus, (77) is satisfied in both cases.
Let the rank of be denoted by

(78)

and let the columns of form an orthonormal
basis for the range space of . Note that is defined
differently from in the proof of Theorem 1. For ,
let be a unit-norm right singular vector of

corresponding to its smallest nonzero singular value.
There is no loss of generality in assuming that the first column
of equals for all . Hence, for , we
can write

for some . For , let . The columns of
are clearly orthonormal. Note that and can

be assumed to be measurable functions. The matrix has
columns for , where

(79)

Each has finite measure. Since the sets are disjoint, we
can find, as in the proof of Theorem 1, a collection of disjoint
intervals and sets as in (45)
such that (46) and (47) hold. In the rest of the proof, assume
that for some invertible index-mapping as in the
proof of Theorem 1.

Define , , and exactly as in (48)–
(50), respectively. Also let be the closed subspace of de-
fined as in (51). Using arguments similar to those in Theorem 1,
we see that

is an orthonormal Riesz basis for . In particular, it is a frame
for . It is also easy to verify that is a shift-invariant sub-
space of .

Now, , being a subcollection of
the set in (75), is also a Riesz–Fischer sequence in . Let ,

be some finite sequences. Then, (37) implies that

(80)

Let be the maximizer of the left-hand side of (80),
and , its corresponding MIMO channel
output. Then

(81)

Next, the subspace

a.e. (82)

is closed and shift-invariant by the same argument as in the proof
of Theorem 1. Note that

(83)

is an equivalent way of stating that because
contains all the nonzero elements of for every .
Define as follows:

Evidently and because has orthonormal
columns. Let and ,
and recall that, for all , we have . Hence,
using the definition of , we conclude that

(84)

For , we have

Hence,

(85)

Combining (84) and (85), and using , we obtain

if
if .

(86)

Recall that is supported on for all .
Also, implies that . Thus, we invoke
Lemma 1 to get

(87)

where is the constant defined in (76). However, if
, then from (86), and hence (87) holds trivially.

In other words, (87) always holds. Using this and the Cauchy–
Schwarz inequality, we conclude that

(88)

Recall that is chosen so that . Thus, combining
(81) and (88) and noting that , we obtain

Since the quantities are the channel outputs corresponding
to an input satisfying , we have

(89)

Define . Since is shift-invariant, we obtain
and using the same ar-

gument as in (60) and (61). Therefore, (89) implies that

for all finite sequences , . Using (33), we conclude
that is a Riesz–Fischer sequence in

with bound .
To avoid confusion, we point out that the quantities associated

with the frame are , , , etc., while those associated with
the Riesz–Fischer sequence are , , , etc. This is opposite
from the convention adopted in the proof of Theorem 1. In order
to estimate the coefficients
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of Theorem 4, we define for as follows:

if , for some
otherwise.

(90)

Since , (83) implies that

Therefore, whenever , we have

Combining this result with (45), (49), we can express as

Since is square-integrable and is
shift-invariant, the time-domain expression for is obtained
by first convolving each with a square-integrable function
and then adding them together. Thus, , and using
Proposition 2 we obtain

Using Parseval’s theorem and (90), we obtain the following es-
timate for :

This quantity can be made arbitrarily small for sufficiently small
, because each is square-integrable, and

. Hence, for any and sufficiently small , we
can guarantee that . Applying Theorem 4, we obtain

for and

(91)
Using the estimate for and the fact that has a uniform
density of in (91), we obtain

(92)

Next, (78), (79), and the definition of the Lebesgue integral yield

(93)

Combining (92) and (93), and letting , we obtain

This proves (23). We have already demonstrated that
. Therefore, if (24) holds and , we have ,

implying that the inequality in (23) is strict.

V. SUMMARY

We formulated the MIMO sampling scheme, and defined
stable sampling and consistent reconstruction. These are gen-
eralizations of stable sampling and interpolation for classical
sampling. We also introduced notions of upper and lower
sampling densities applicable to collections of sampling sets.
We derived necessary density conditions for stable sampling
and consistent reconstruction in the MIMO setting. For stable
sampling, we find that a family of bounds hold—a
lower bound on the joint lower density of each nonempty set
of output sampling sets. Similarly, we find that a family of

bounds hold for the consistency problem which are
upper bounds on the joint upper densities of the sampling sets.
These bounds generalize Landau’s necessary density results
for classical sampling. Since the MIMO sampling scheme is
extremely general, and encompasses various sampling schemes
such as Papoulis’ generalized sampling, and multicoset or pe-
riodic nonuniform sampling as special cases, we automatically
have necessary conditions for all these sampling schemes as
well.

REFERENCES

[1] B. R. Petersen and D. D. Falconer, “Supression of adjacent-channel,
co-channel, and intersimbol interference by equalizers and linear com-
biners,” IEEE Trans. Commun., vol. 42, pp. 3109–3118, Dec. 1994.

[2] J. Yang and S. Roy, “On joint receiver and transmitted optimization for
multiple-input–multiple-output (MIMO) transmission systems,” IEEE
Trans. Commun., vol. 42, pp. 3221–3231, Dec. 1994.

[3] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless
communication,” IEEE Trans. Commun., vol. 46, pp. 357–366, Mar.
1998.

[4] L. Ye and K. J. R. Liu, “Adaptive blind source separation and equaliza-
tion for multiple-input/multiple-output systems,” IEEE Trans. Inform.
Theory, vol. 44, pp. 2864–2876, Nov. 1998.

[5] W. Zishun and J. D. Z. Chen, “Blind separation of slow waves and spikes
from gastrointestinal myoelectrical recordings,” IEEE Trans. Inform.
Technol. Biomed., vol. 5, no. 2, pp. 133–137, June 2001.

[6] V. Zarzoso and A. K. Nandi, “Noninvasive fetal electrocardiogram
extraction: Blind separation versus adaptive noise cancellation,” IEEE
Trans. Biomed. Eng., vol. 48, pp. 12–18, Jan. 2001.

[7] P. a. Voois and J. M. Cioffi, “Multichannel signal processing for mul-
tiple-head digital magnetic recording,” IEEE Trans. Magn., vol. 30, no.
6, pp. 5100–5114, Nov. 1994.

[8] K.-C. Yen and Y. Zhao, “Adaptive co-channel speech separation
and recognition,” IEEE Trans. Speech Audio Processing, vol. 7, pp.
138–151, Mar. 1999.

[9] A. González and J. J. Lopéz, “Fast transversal filters for deconvolution
in multichannel sound reproduction,” IEEE Trans. Speech Audio Pro-
cessing, vol. 9, pp. 429–440, May 2001.



1768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 8, AUGUST 2004

[10] J. Idier and Y. Goussard, “Multichannel seismic deconvolution,” IEEE
Trans. Geosci. Remote Sensing, vol. 31, pp. 961–979, Sept. 1993.

[11] G. Harikumar and Y. Bresler, “Exact image deconvolution from multiple
FIR blurs,” IEEE Trans. Image Processing, vol. 8, pp. 846–862, June
1999.

[12] G. B. Giannakis and R. W. Heath Jr., “Blind identification of multi-
channel FIR blurs and perfect image restoration,” IEEE Trans. Image
Processing, vol. 9, pp. 1877–1896, Nov. 2000.

[13] R. J. Papoulis, “Generalized sampling expansions,” IEEE Trans. Cir-
cuits Syst., vol. CAS-24, pp. 652–654, Nov. 1977.

[14] D. Seidner and M. Feder, “Vector sampling expansions,” IEEE Trans.
Signal Processing, vol. 48, pp. 1401–1416, May 2000.

[15] H. Landau, “Necessary density conditions for sampling and interpola-
tion of certain entire functions,” Acta Math., vol. 117, pp. 37–52, 1967.

[16] H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” Proc.
IEEE, vol. 55, pp. 1701–1706, Oct. 1967.

[17] K. Gröchenig and H. Razafinjatovo, “On Landau’s necessary density
conditions for sampling and interpolation of bandlimited functions,” J.
London Math. Soc., vol. 2, no. 54, pp. 557–565, 1996.

[18] R. Venkataramani and Y. Bresler, “Sampling theorems for uniform and
periodic nonuniform MIMO sampling of multiband signals,” IEEE
Trans. Signal Processing, vol. 51, pp. 3152–3163, Dec. 2003.

[19] , “Filter design for MIMO sampling and reconstruction,” IEEE
Trans. Signal Processing, vol. 51, pp. 3164–3176, Dec. 2003.

[20] M. Unser and J. Zerubia, “Generalized sampling: Stability and analysis,”
IEEE Trans. Signal Processing, vol. 45, pp. 2941–2950, Dec. 1997.

[21] J. Benedetto and P. J. S. G. Ferreira, Eds., Modern Sampling Theory:
Mathematics and Applications. Boston, MA: Birkhäuser, 2001.

[22] R. Venkataramani, “Sub-Nyquist multicoset and MIMO sampling: Per-
fect reconstruction, performance analysis, and necessary density condi-
tions,” Ph.D. dissertation, Univ. Illinois at Urbana-Champaign, Urbana,
2001.

[23] R. M. Young, An Introduction to Nonharmonic Fourier Analysis. San
Diego, CA: Academic, 2001.

[24] J. R. Higgins, Sampling Theory in Fourier and Signals Analysis Foun-
dations. New York: Oxford Science Pub., 1996.


