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Abstract—We derive the capacities of a class of channels,
either memoryless or indecomposable finite-state, that also suffer
from bursts of erasures. For such channels, we analyze the
performances of low-density parity-check (LDPC) codes and code
ensembles under belief propagation (BP) decoding, using density
evolution (DE) techniques. Although known LDPC codes perform
well in non-erasure-affected channels, their performances arefar
from the capacities when both random errors and erasures are
present. We show that enhancing the codes’ erasure handling
using published methods beats, in some instances, the BP thresh-
olds. However, to achieve capacity, codes must be constructed to
tackle both effects simultaneously.

I. I NTRODUCTION

Aside from the primary impairment by random noise, a
secondary effect in the magnetic data storage channel is the
occasional occurrence of intense transient noise in the read-
back signal, when the read-back head collides with disk
surface contaminants (e.g., dust particles) and heats up for a
short period of time. This friction-induced thermal effectcan
be modeled, information-theoretically, as a burst of erasures.

In this paper we consider a channel that can be represented
as a concatenation of two channels:

1) The first channel is either a memoryless channel or an
indecomposable finite-state channel (IFSC), and

2) the second channel is a burst erasure channel (BuEC).
We call the resulting channel the IFSC-BuEC concatenation.
We derive the capacity for such a concatenation to be the
product of the capacities of each channel.

In the second part of the paper, we consider the perfor-
mances of low-density parity-check (LDPC) codes for the
IFSC-BuEC concatenated channel. LDPC codes were first
introduced by Gallager [1] and have been shown either by
code construction [2] or density evolution [3] to approach the
capacities of many memoryless and finite-state channels [2]-
[4]. In separate developments, several researchers [5]-[7] have
shown how to construct LDPC codes that enhance their burst-
erasure correcting capabilities under belief propagation(BP)
decoding. However, we are not aware of any studies of LDPC
codes conducted for an IFSC-BuEC concatenation, and we
conduct such a study here.

First we develop the density evolution (DE) algorithm
to compute noise tolerance thresholds for the IFSC-BuEC
concatenation, and then we compare the performances of

existing LDPC codes to the thresholds. We show that LDPC
codes constructed specifically for the IFSC are not necessarily
good for the IFSC-BuEC concatenation. Next, we demonstrate
that the methods in [5]-[7] for enhancing LDPC codes over
BuECs are also effective for the IFSC-BuEC concatenation,
and that, in some instances, they result in codes that beat
the DE thresholds. However, we demonstrate that despite this
enhancement, the performances of existing methods are still
far from the capacities of the IFSC-BuEC concatenations.
This suggests that to achieve the capacities of the IFSC-BuEC
concatenation, we must construct LDPC codes specifically for
the IFSC-BuEC concatenation.

Organization: Section II defines the channels under con-
sideration and presents their capacities with proofs. Section
III introduces the density evolution algorithm and thresholds
computation for LDPC codes over this class of channels. In
Section IV, we compare the performances of two types of
LDPC codes, designed with random error and erasure handling
separately. Section V concludes the paper.

II. CHANNELS AND CAPACITIES

First we define the channel under consideration. The channel
(X → Y ) is a concatenation of the channels(X → Z) and
(Z → Y ). The channel(X → Z) is assumed to be either a
memoryless or an indecomposable finite-state machine chan-
nel. The channel(Z → Y ) is considered to be a burst erasure
channel with parameterq. The BuEC(Z → Y ) behaves as
follows: whenn symbolsZn

1 = [Z1, · · · , Zn] are transmitted
through the channel (here we can letn → ∞), exactly
n · q consecutive symbolsZi+nq−1

i = [Zi, · · · , Zi+nq−1] are
erased, wherei is a variable denoting the start of the burst.
The start positioni could be deterministic or random. We shall
prove that the capacity of the channel(X → Y ), denoted by
CX→Y , equals

CX→Y = (1 − q)CX→Z (1)

whereCX→Z is the capacity of the channel(X → Z).
We shall first considern to be finite, andq to be a rational

numberq = ℓ
n

, and prove (1) for the case that(X → Z) is a
memoryless channel. The proof for the general case0 ≤ q ≤ 1
and(X → Y ) an indecomposable channel is a simple (though



Fig. 1. Model of Memoryless Channel with Burst Erasure

tedious) modification of this basic proof, and we give its sketch
in the Appendix.

A. Capacity of a Memoryless Channel with Burst Erasure

Let the channel(X → Z) be memoryless. The channel
(Z → Y ) is a burst erasure channel with input-output law

Yi =

{
e i ∈ [M, M + ℓ)
Zi i /∈ [M, M + ℓ)

(2)

where M ∈ {1, 2, · · · , n − ℓ + 1} is a random variable,
independent of X or Z, indicating the starting index of the
burst erasure of lengthℓ. Here, ℓ

n
= q. Fig. 1 depicts the

channel(X → Y ).
Theorem 1: The capacity for the channel described by Fig.

1 and the channel law (2) is

CX→Y = (1 − q)CX→Z . (3)

Proof: The proof proceeds as follows. First we will show
that 1

n
I(Xn

1 ;Y n
1 ,M) ≤ (1 − q)CX→Z . Then we will show

that the upper bound is attainable, i.e. that there exists a
distributionp(xn

1 ) = p∗(xn
1 ) that induces the information rate

1
n
I(Xn

1 ;Y n
1 ,M)|p(xn

1
)=p∗(xn

1
) = (1 − q)CX→Z .

Let us first prove1
n
I(Xn

1 ;Y n
1 ,M) ≤ (1 − q)CX→Z . Since

M andXn
1 are independent, we have

I (Xn
1 ; Y n

1 , M)

= H(Y n
1 , M) − H(Y n

1 , M |Xn
1 )

= [H(Y n
1 |M) + H(M)] − [H(M |Xn

1 ) + H(Y n
1 |M, Xn

1 )]

= H(Y n
1 |M) − H(Y n

1 |Xn
1 , M) (4)

= I(Xn
1 ; Y n

1 |M). (5)

The first term in (4) is upperbounded as follows:

H(Y n
1 |M) ≤

n∑

i=1

H(Yi|M)

=

n∑

i=1

n−ℓ+1∑

m=1

Pr(M = m) · H(Yi|M = m). (6)

Notice
H(Yi|M = m) =

{
0 i ∈ [m, m + ℓ)
H(Zi) i /∈ [m, m + ℓ)

(7)

=

{
0 m ∈ (i − ℓ, i]
H(Zi) m /∈ (i − ℓ, i]

. (8)

Using (7) and (8), we further manipulate (6) as

H(Y n
1 |M) ≤

n∑

i=1

H(Yi|M) =

n−ℓ+1∑

m=1

Pr(M = m)
∑

i/∈[m,m+l)

H(Zi)

=

n∑

i=1

H(Zi)
∑

m/∈(i−ℓ,i]

Pr(M = m) =

n∑

i=1

b(i) · H(Zi) (9)

where
b(i) =

∑

m/∈(i−ℓ,i]

Pr(M = m) (10)

and
n∑

i=1

b(i) = n − ℓ. (11)

Similarly, the second term on the right-hand side of (4) can
be expanded as follows:

H(Y n
1 |Xn

1 , M) =

n∑

i=1

H(Yi|X
n
1 , M, Y i−1

1 )

(a)
=

n∑

i=1

H(Yi|Xi, M) =

n∑

i=1

b(i) · H(Zi|Xi) (12)

where equality(a) follows from the memorylessness of the
channel (X → Z). Now, combine (4), (9), and (12) to get

1

n
I(Xn

1 ; Y n
1 , M) ≤

1

n

n∑

i=1

b(i) [H(Zi) − H(Zi|Xi)]

=
1

n

n∑

i=1

b(i) · I(Xi; Zi)

≤
1

n
max
p(xn

1
)

n∑

i=1

b(i) · I(Xi; Zi)

(b)
=

1

n

n∑

i=1

b(i) ·

[

max
p(xi)

I(Xi; Zi)

]

(c)
=

1

n

n∑

i=1

b(i) ·
[

I(Xi; Zi)|p(xi)=p∗(xi)

]

=
1

n

n∑

i=1

b(i) · CX→Z
(d)
= (1 −

ℓ

n
)CX→Z . (13)

Here, equality (b) follows from the memorylessness of
the channel (X → Z), equality (c) uses p∗(xi) =
arg maxp(xi) I(Xi;Zi), and(d) follows from (11).

Now, we will prove that there exists a distributionp(xn
1 ) =

p∗(xn
1 ) for which 1

n
I(Xn

1 ;Y n
1 ,M) meets (13) with equality.

Let p∗(xn
1 ) =

∏n
i=1 p∗(xi) be the distribution that achieves

the capacityCX→Z , i.e., p∗(·) is the distribution of the inde-
pendent and identically-distributed (i.i.d.) capacity-achieving
input for the memoryless channel (X → Z). Sincep∗(xn

1 ) =
∏n

i=1 p∗(xi), we have

pY n

1
|M (yn

1 |m) =
∑

xn

1

pY n

1
|Xn

1
,M (yn

1 |x
n
1 , m) · pXn

1
|M (xn

1 |m)

(e)
=

∑

xn

1

pY n

1
|Xn

1
,M (yn

1 |x
n
1 , m) · p∗(xn

1 )

(f)
=

∑

xn

1

pY n

1
|Xn

1
,M (yn

1 |x
n
1 , m) ·

n∏

i

p∗(xi)

(g)
=

∑

xn

1

n∏

i=1

pYi|Xi,M (yi|xi, m) · p∗(xi)

=

n∏

i=1

pYi|M
(yi|m) (14)
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where equality(e) follows from the fact thatXn
1 and M

are independent; equality(f) uses p∗(xn
1 ) =

∏n
i p∗(xi);

and equality(g) follows from the memorylessness of the
channel (X → Z). From (14) we conclude that ifp(xn

1 ) =
∏n

i=1 p∗(xi), then H(Y n
1 |M) =

∑n
i=1 H(Yi|M). It follows

that if p(xn
1 ) =

∏n
i=1 p∗(xi), we get

1

n
I(Xn

1 ; Y n
1 , M)|p(xn

i
)=p∗(xn

i
) =

1

n

n∑

i=1

I(Xi; Yi, M)|p(xi)=p∗(xi)

=
1

n

n∑

i=1

b(i)I(Xi; Zi)|p(xi)=p∗(xi)

= (1 − q)CX→Z

which ends the proof. �

B. Capacity of a Channel with Memory and Burst Erasure

Here, we shall consider only discrete indecomposable finite-
state channels as defined by Gallager [8]. The overall channel
under consideration is a concatenation of an IFSC (X → Z)
and a burst erasure channel (Z → Y ) whose channel input-
output law is

Yi =

{
e i ∈ [M, M + ℓ)
Zi i /∈ [M, M + ℓ)

(15)

where M ∈ {1, 2, · · · , n − ℓ + 1} is a random variable,
independent of X or Z, indicating the starting index of the burst
erasure of lengthℓ. The burst erasure channel is parametrized
by the factorq, where exactlyq·n symbols of the IFSC outputs
are erased andn → ∞. Fig. 2 depicts the channel (X → Y ).

Theorem 2: The capacity for the channel described by Fig.
2 and the channel law (15) is

CX→Y = (1 − q)CX→Z . (16)

A sketch of the proof is given in the Appendix.

III. LDPC CODES AND DENSITY EVOLUTION

THRESHOLDS

The asymptotic belief propagation (BP) decoding perfor-
mance for an ensemble of random LDPC codes with a
given degree distribution can be computed using a technique
called density evolution (DE) [9]. Specifically, the average
asymptotic behavior for a given class of LDPC codes can
be evaluated from the probability density functions (pdfs)of
the messages in the iterative decoding process. Denote the
decoding error probability in theℓ-th iteration by p

(ℓ)
e . In

the limit as the code lengthn → ∞ and decoding iteration
ℓ → ∞, the “zero-error” noise standard deviationthreshold
σ∗ is defined as

σ∗ = sup σ (17)

where the supremum is taken over all noise standard deviations
σ for which

lim
ℓ→∞

p
(ℓ)
e = 0. (18)

For memoryless binary-input symmetric-output channels, nu-
merical evaluation of the thresholds can be easily obtained
from the discretized density evolution introduced in [10].For
IFSCs, specifically intersymbol interference (ISI) channels,
thresholds can be computed using the method outlined in [4].

When random errors are combined with burst erasures in the
channel, the density evolution algorithm remains unchanged
except for the pdf of the channel output. It was shown in [11]
for memoryless additive white Gaussian noise (AWGN) chan-
nels with erasures and in [12] for partial response channels
with erasures that the pdf of the log-likelihood ratio (LLR)of
the channel outputO is

f ′
O(ξ) = (1 − q) · fO(ξ) + q · δ(ξ) (19)

wherefO(ξ) is the output message pdf of the noise-only chan-
nel andδ(·) is the Dirac delta function. If we utilizef ′

O
(ξ) as

the density of the message from the channel to the decoder, we
can conduct the DE algorithm for either memoryless channels
or IFSCs with burst erasures. The threshold computation then
follows [10] or [4], respectively.

IV. LDPC CODE PERFORMANCE

On one hand, the degree distribution of a given LDPC
code determines its performance threshold in the presence of
random errors. On the other hand, the burst erasure perfor-
mance under BP decoding is characterized by the burst erasure
capability or efficiency, as defined in [5]. However, it is not
clear how a code performs if the channel hasboth random
errors and erasure bursts. Here, we examine such a scenario.
In particular, we want to examine 2 types of codes.

1) LDPC codes and code ensembles that perform well
in memoryless or finite-state channels are well known
[9],[4]. We want to examine how such codes perform
when the channel also has burst erasures.

2) There exist several methods in the literature to construct
LDPC codes that handle well bursts of erasures when
no other channel impairment (such as additive noise) is
present in the channel [5]-[7].

The simulation results presented in this section will demon-
strate that applying methods to construct codes of type 2)
can produce codes that beat the thresholds for codes of type
1), i.e., the methods in [5]-[7] can enhance the performances
of LDPC codes over channels with both random errors and
burst erasures. However, we will also see that while in some
instances the BP thresholds are beaten, the performances of
either codes of type 1) or those enhanced by methods in 2) are
far from the capacities given by Theorem 1 and Theorem 2.
Hence, we will conclude that in order to achieve the capacity
of a channel that has both random errors and erasures, we
must construct codes that tackle both effectssimultaneously.

Here we generate several common codes of regular degrees
and compare their bit-error rate (BER) performances with
the capacities and threshold bounds, SNRc(q) and SNRσ∗(q)
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Fig. 3. Comparison of finite-length LDPC codes to capacity SNRc(q) and BP threshold SNRσ∗ (q) for AWGN-BuEC concatenations with erasure ratioq
equaling 0, 0.07, 0.0827, and 0.009.

respectively, for the AWGN channel and BuEC concatenation.
The parity-check matrices used are for a rater = 0.9, length
n = 4560, (3, 30) regular quasi-cyclic (QC) LDPC code.
Our goal is to manipulate the original finite-length QC code
(denoted by Orig in Fig. 3) using simple column swaps or
variable-node permutations (swaps) to achieve or approach
the concatenated channel capacity or threshold bounds. The
enhanced codes are constructed from the following permuta-
tion methods: the greedy search and swap (GSS) algorithm [5],
the pivot searching and swapping (PSS) method in [6], and the
simulated annealing (SA) approach in [7]. We plot the codes
performances on the concatenated channels with increasingq

values.

We see from Fig. 3a that for short bursts (q ≈ 0), the
BP thresholds are reasonably close to capacity. However,
as the burst ratiosq get larger (Fig. 3b-d), the thresholds
diverge from capacity by an increasingly large margin. It is
clear that existing LDPC codes are not adequate solutions
for achieving capacity. Construction of special codes that
simultaneously addresses erasure bursts and random errorsis
necessary. However, permuted suboptimal codes do perform
better than non-permuted ones. In some scenarios, judiciously
permuted finite-length LDPC codes beat the random LDPC
code thresholds. For example, in Fig. 3c,d, asq rises, the code
produced by GSS [5] consistently beats the corresponding
threshold values SNRσ∗(q). Since for a moderate length code
with regular (i.e. suboptimal) degree distribution, the capacity
SNRc(q) is not within reach using simple permutations, to
achieve capacity, a combination of two techniques is needed.
First, degree distribution optimization to guide finite-length
code construction. Second, judicious permutation of a finite
length code to enhance performance.

V. CONCLUSION

We presented and proved the capacities of a class of
channels, either memoryless or indecomposable finite-state,
with both random errors and burst erasures. Enhancing the
erasure handling of LDPC codes over these channels using
published methods beats, in some cases, the BP thresholds.
However, to achieve capacity, codes must be constructed to
tackle both effects simultaneously.

APPENDIX

SKETCH OF THEPROOF OFTHEOREM 2
A sketch of the proof proceeds as follows. We consider

using the channel in blocks ofρ symbols. Let us introduce
the following notation:

ρ − block size
n′ − number of blocks
M − index of the first erased symbol

wheren = n′ · ρ.
Let the i-th block be defined as
Xi

∆
=

[
X(i−1)ρ+1,X(i−1)ρ+2, · · · ,Xiρ

]
= X

iρ

(i−1)ρ+1.

We denote contiguous blocks byXj
i = [Xi, Xi+1, ..., Xj ].

We emulate the proof used for Theorem 1 (the memoryless
channelX → Z). First we show that the IFSC (X → Z)
behaves asymptotically as a block-memoryless channel and as
a consequence the capacity of the channel (X → Y ) is upper
bounded by(1 − q)CX→Z . Then we will show that there
exists a block distributionp(xn′

1 ) = p∗(xn′

1 ) that induces
the information ratelimn→∞

1
n
I(Xn

1 ;Y n
1 ,M)|p(xn

1
)=p∗(xn

1
) =

(1 − q)CX→Z .

Let e
∆
= [e, · · · , e]

︸ ︷︷ ︸

ρ

be a block of erasures. We define a new

block-channel whose channel input-output law is

Y i =

{
e if any symbol inZi equalse
Ziρ

(i−1)ρ+1
otherwise. (20)



Let ℓ′, where
⌈

ℓ
ρ

⌉

≤ ℓ′ ≤
⌈

ℓ
ρ

⌉

+ 1, be the number of erased

blocks and letM ′ be the index of the first erased block,M ′ =
min {i|Y i = e}. Clearly, the number of erased symbols in the
sequenceY n′

1 = [Y 1, Y 2, · · · , Y n′ ] is ℓ′ ·ρ, while the number
of erased symbols in the sequenceY n

1 = [Y1, Y2, · · · , Yn] is

ℓ ≤ ℓ′ ·ρ. Notice, however, thatlim
n′→∞
ρ→∞

ℓ′

n′
= lim

n→∞

ℓ

n
= q. Denote

by n′
e = ℓ′ · ρ − ℓ the extra erased symbols introduced by

(20). The numbern′
e cannot be higher than2ρ. So, the ratio

of number of extra erased symbolsn′
e to the total number of

symbolsn satisfies
n′

e

n
=

ℓ′ · ρ − ℓ

n′ · ρ
<

2ρ

n′ρ
=

2

n′
. (21)

When bothn′ → ∞ andρ → ∞, the fraction of extra erased
symbols goes to zero, i.e.lim

n′→∞
ρ→∞

n′
e

n
→ 0.

Since the fraction of erased symobls goes to 0 asn′ → ∞,

lim
n′→∞
ρ→∞

1

n
I(Xn

1 ; Y n
1 , M |S0) = lim

n′→∞

[

lim
ρ→∞

1

n′ρ
I(Xn′

1 ; Y n′

1 , M ′|S0)

]

= lim
n′→∞

1

n′

[

lim
ρ→∞

1

ρ
I(Xn′

1 ; Y n′

1 , M ′)

]

(22)

whereS0 is the state of the IFSC(X → Z) at time 0. Note that
(22) is valid because the channel(X → Z) is indecomposable
so that the information rate does not depend on the initial state.

Let

b′(i) =

n′

∑

m=1
m/∈(i−ℓ′,i]

Pr(M ′ = m) (23)

and
n′

∑

i=1

b′(i) = (n′ − ℓ′). Next, we manipulate (22).

lim
n′→∞
ρ→∞

1

n′ρ
I(Xn′

1 ; Y n′

1 , M ′)

(i)
= lim

n′→∞
ρ→∞

1

n′ρ

{[
H(Y n′

1 |M ′) + H(M ′)
]

−
[
H(Y n′

1 |Xn′

1 , M ′) + H(M ′|Xn′

1 )
]}

(ii)
= lim

n′→∞
ρ→∞

1

n′ρ

[
H(Y n′

1 |M ′) − H(Y n′

1 |Xn′

1 , M ′)
]

(iii)
= lim

n′→∞
ρ→∞

1

n′ρ

{ n′

∑

i=1

[

H(Y i|Y
i−1
1 , M ′) − H(Y i|X

n′

1 , Y i−1
1 , M ′)

]}

(iv)
= lim

n′→∞
ρ→∞

1

n′ρ

{ n′

∑

i=1

[

H(Y i|Y
i−1
1 , M ′) − H(Y i|X

i
1, Y i−1

1 , M ′)

]}

(v)

≤ lim
n′→∞
ρ→∞

1

n′ρ

{ n′

∑

i=1

[

H(Y i|M
′) − H(Y i|X

i
1, Y i−1

1 , M ′, S(i−1)ρ)

]}

(vi)
= lim

n′→∞
ρ→∞

1

n′ρ

{ n′

∑

i=1

[

H(Y i|M
′) − H(Y i|Xi, M

′, S(i−1)ρ)

]}

(vii)
= lim

n′→∞

1

n′

n′

∑

i=1

[

lim
ρ→∞

1

ρ
I(Xi; Y i, M

′)

]

(viii)
= lim

n′→∞

1

n′

n′

∑

i=1

b′(i)

[

lim
ρ→∞

1

ρ
I(Xi; Zi)

]

(ix)

≤ lim
n′→∞

1

n′

n′

∑

i=1

b′(i)CX→Z

(x)
= CX→Z lim

n′→∞

n′ − ℓ′

n′
= (1 − q)CX→Z .

Equality (i) follows from the definition of mutual information
and the chain rule for entropy;(ii) follows from the fact
that M ′ is independent ofXn′

1 ; (iii) follows from the chain
rule for entropy;(iv) is valid because the channel is used
without feedback;(v) is valid because conditioning does
not increase entropy;(vi) follows because the channel is
finite-state (knowledge of stateS(i−1)ρ decouples the past
Xi−1

1 , Y i−1
1 ); (vii) holds because the channel is indecom-

posable andρ → ∞; (viii) follows from arguments similar
to those in the proof of Theorem 1;(ix) uses the fact
that CX→Z = max limρ→∞

1
ρ
I(Xi;Zi); and (x) uses the

definition for b′(i). Now, we can finally combine

lim
n′→∞

1

n′

[

lim
ρ→∞

1

ρ
I(Xn′

1 ; Y n′

1 , M ′)

]

≤ lim
n′→∞

(
n′ − ℓ′

n′

)

· CX→Z

i.e.
lim

n→∞
I(Xn

1 ; Y n
1 , M) ≤ (1 − q) · CX→Z . (24)

Equality in (24) can be achieved by choosingp(xn′

i ) =
∏n′

i=1 p∗(xi), where p∗(xi) is the capacity achieving distri-
bution for the channel(X → Z). �
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