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Abstract—We derive the capacities of a class of channels, existing LDPC codes to the thresholds. We show that LDPC
either memoryless or indecomposable finite-state, that also suffe codes constructed specifically for the IFSC are not nedéssar
from bursts of erasures. For such channels, we analyze the 4444 for the IFSC-BUEC concatenation. Next, we demonstrate
performances of low-density parity-check (LDPC) codes and cazi that the methods in [5]-[7] for enhancing LDPC codes over
ensembles under belief propagation (BP) decoding, using density - Y :
evolution (DE) techniques. Although known LDPC codes perform  BUECs are also effective for the IFSC-BUEC concatenation,
well in non-erasure-affected channels, their performances aréar  and that, in some instances, they result in codes that beat
from the capacities when both random errors and erasures are the DE thresholds. However, we demonstrate that despge thi
present. We show that enhancing the codes’ erasure handling gnpancement, the performances of existing methods are stil
using published methods beats, in some instances, the BP thresh-]c f th it f the IESC-BUEC i i
olds. However, to achieve capacity, codes must be constructedl t ar rom the capaciies or the -bu concatenations.
tackle both effects simultaneously. This suggests that to achieve the capacities of the IFSGEBUE
| INTRODUCTION concatenation, we must construct LDPC codes specificatly fo

_ : S ~ the IFSC-BUEC concatenation.

Aside from the primary impairment by random noise, & Qrganization: Section Il defines the channels under con-
secondary effect in the magnetic data storage channel is Higeration and presents their capacities with proofs. iGect
occasional occurrence of intense transient noise in the-reg| introduces the density evolution algorithm and threlsiso
back signal, when the read-back head collides with diglympuytation for LDPC codes over this class of channels. In
surface contaminants (e.g., dust particles) and heats g fogection IV, we compare the performances of two types of

short period of time. This friction-induced thermal eff@@n | ppc codes, designed with random error and erasure handling
be modeled, information-theoretically, as a burst of em@&u separately. Section V concludes the paper.

In this paper we consider a channel that can be represented
as a concatenation of two channels: II. CHANNELS AND CAPACITIES

1) The first channel is either a memoryless channel or an_, i . .
) y First we define the channel under consideration. The channel

indecomposable finite-state channel (IFSC), and . .
2) the second channel is a burst erasure channel BuEd > Y) is a concatenation of t_he channgls’ — 7) .and
) ( )X — Y). The channelX — Z) is assumed to be either a

. . (Z
we call_the resulting _channel the IFSC-BUEC concatenatio lemoryless or an indecomposable finite-state machine chan-
We derive the capacity for such a concatenation to be t

duct of th i f h ch | &. The channe{Z — Y) is considered to be a burst erasure
product of the capacities ot each channel. channel with parametey. The BUEC(Z — Y') behaves as
In the second part of the paper, we consider the perf

) ) ilows: whenn symbolsZ} = [Zy,--- , Z,] are transmitted
mances of low-density parity-check (LDPC) codes for t rough the channel (here we can let — oo), exactly

IFSC-BUEC concatenated channel. LDPC codes were fII’Stq consecutive symbol€! "L = [Z,. - | Z;4nq_1] are

. . n .
introduced by Gallager [1] and have been shown either %¥ased, where is a variable denoting the start of the burst.

code consruction [2] or density evolution [3] to approalh t e start positiori could be deterministic or random. We shall

capacities of many memoryless and finite-state channels [grove that the capacity of the chaniiél — Y'), denoted by

[4]. In separate developments, several researchers [5lave C equals '

shown how to construct LDPC codes that enhance their burst: "

erasure correcting capabilities under belief propagatizimn) Cx—y =(1-q)Cx_z @

decoding. However, we are not aware of any studies of LDPC

codes conducted for an IFSC-BUEC concatenation, and wbereCx . is the capacity of the channéX — 7).

conduct such a study here. We shall first considen to be finite, and; to be a rational
First we develop the density evolution (DE) algorithmumberg = % and prove (1) for the case thgk — Z) is a

to compute noise tolerance thresholds for the IFSC-BuE@emoryless channel. The proof for the general €aseg < 1
concatenation, and then we compare the performancesaofli(X — Y) an indecomposable channel is a simple (though



- ‘l\lenmr,\'lesﬂ‘ a, Burst Erasure RN M) where
b(i) = Z Pr(M = m) (10)
mé(i—~L,1
Fig. 1. Model of Memoryless Channel with Burst Erasure # ]
and .
_ o . . o Zb(i)=n4. (1)
tedious) modification of this basic proof, and we give itsteke Py

in the Appendix. Similarly, the second term on the right-hand side of (4) can

. ) be expanded as follows:
A. Capacity of a Memoryless Channdl with Burst Erasure n
Let the channel( X — Z) be memoryless. The channel

H(YPIXT, M) =y HYX], M, Y ™)
(Z —Y) is a burst erasure channel with input-output law =1

Zi ¢ [M.M+1) @ i=1
where equality(a) follows from the memorylessness of the

where M € {1,2,---,n — £+ 1} is a random variable, cnannel i — 7). Now, combine (4), (9), and (12) to get
independent of X or Z, indicating the starting index of the

burst erasure of length. Here,% = ¢. Fig. 1 depicts the
channel(X — Y).

@ N X M) = S b - HZ1 X
v {o isprares =N HEIX, M) Z;b(z) H(ZiIX:)  (12)

n

SIXTS Y M) < 23 b) [H(Z0) — HZi1X0)

Theorem 1: The capacity for the channel described by Fig. . o
1 and the channel law (2) is == b(i) - I(Xs; Z;)
n
=1
Cx—y=(1-9Cx—z. 3 1 n
<= max Y (i) 1(X35 20)
Proof: The proof proceeds as follows. First we will show np@y)
that 2I(X7;Y", M) < (1 — q)Cx—z. Then we will show 1<
that the upper bound is attainable, i.e. that there exists a = ;Zb(i)- Ll}(ng) (X33 Z3)
distributionp(«}) = p*(27) that induces the information rate i=1 '
lI(X{LYln M)|p( y=p* (z7 = (1— )C . c) 1 -
n ) ’ z)=p* (z7) qQ)Ux 2z (:) 1 o). [1(X:: 7 )
Let us first provel I(X7; Y7, M) < (1 — q)Cx_.z. Since n b0 [1X5 Zlptay o]

M and X7 are independent, we have I

R @ ¢
= g b(@i) Cx—z = (1= —-)Cx—z. (13
I(XT5Y(", M) =t

= H(Y]*, M) — H(Y]*, M|XT) Here, equality (b) follows from the memorylessness of
= [H(Y]|M) + H(M)] — [H(M|XP) + H(Y]*| M, X)] the channel X — Z), equality (¢) uses p*(xz;) =

= H(Y M) — HY | X, M) ) argmax,,,) [(Xi; Z;), and(d) follows from (11).

= I(XT; Y| M). (5) Now, we will prove that there exists a distributipz}) =

_ . _ _ p*(a7) for which L7(X7;Yy", M) meets (13) with equality.
The first term in (4) is upperbounded as follows: Let p*(a7) = [[', p*(z;) be the distribution that achieves
the capacityCx_.z, i.e., p*(-) is the distribution of the inde-
" - _ pendent and identically-distributed (i.i.d.) capacigh&ving
HYTIM) < ;H(YZ'M) input for the memoryless channeX(— Z). Sincep*(z}) =
0 onett1 [T, p*(x:), we have
=3 > PrM=m) HYIM=m).  (6)

=1 m=1

Py (Y1 Im) = ZPY;L\XT,M(?J?|$?7W) pxp v (2T m)

Notice 3 (i) n|,.n * (M
mon=m={ 4,y (EENIS @ PICEREERREE
:{ ?H(Z) %8252} : ®) " -
¢ ’ 2 pvppeparyilat,m) - [ [ o @)
Using (7) and (8), we further manipulate (6) as xy @
n n—~0+1 n
HOPIM) <Y HEGIM) = Y Pr(M=m) > H(Z) DS T v e wilsm) -7 @)
i=1 m=1 i¢[m,m+1) z" =1

1
n

=Y H(Z) Y Pr(M=m)=) bi)-H(Z) () - ﬁpmM(yi\m) (14)
=1 i=1

mé(i—~£,i] i=1
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Fig. 2. Channel Model for Indecomposable FSC with Burst Ekeasu  For memoryless binary-input symmetric-output channels, n
merical evaluation of the thresholds can be easily obtained
. n from the discretized density evolution introduced in [1Bjr
wher.e equality (e) fOHOW.S . the*facnt thatXlnaDd M IFSCs, specifically intersymbol interference (ISI) chdane
are independent; equalityf) usesp®(zf) = TI;»"(2i); thresholds can be computed using the method outlined in [4].
and equality (g) follows from the memorylessn.essn Of te \\/hen random errors are combined with burst erasures in the
chsmne*l K — 2). FrOT (14) we Sonclude that $(a) = channel, the density evolution algorithm remains unchdnge
[liey p (le)' thennH(}:l M) =3y HYi|M). It follows o oot for the pdf of the channel output. It was shown in [11]
that if p(a) = [Tj—; p" (:), we get for memoryless additive white Gaussian noise (AWGN) chan-

1 1 — nels with erasures and in [12] for partial response channels
A XY M)y =pe@p) = 3 ZI (Xi:Ye, M)lp@)=p*(=0)  with erasures that the pdf of the log-likelihood ratio (LL&¥)
— the channel outpu® is
1 .
= 5 2P 2Dyt =p o F6(€) = (1= 0)- fol€) + -6 (19)
=1
=(1-9)Cx_z wheref»(€) is the output message pdf of the noise-only chan-

nel andd(-) is the Dirac delta function. If we utilizg(, (&) as
the density of the message from the channel to the decoder, we
B. Capacity of a Channel with Memory and Burst Erasure can conduct the DE algorithm for either memoryless channels

Here, we shall consider only discrete indecomposable fini® IFSCs with burst erasures. The threshold computation the
state channels as defined by Gallager [8]. The overall ctianffdlows [10] or [4], respectively.
under consideration is a concatenation of an IFSC—{ 7)

and a burst erasure channél (~ Y) whose channel input- o ]
output law is On one hand, the degree distribution of a given LDPC

‘ code determines its performance threshold in the preseince o
Yi :{ eZ ;; %%12 (15) random errors. On the other hand, the burst erasure perfor-
_ ) mance under BP decoding is characterized by the burst erasur
where M € {1,2,---,n — (+ 1} is a random variable, ., ahility or efficiency, as defined in [5]. However, it is not

independent of X or Z, indicating the starting index of thesbu clear how a code performs if the channel Hmth random

erasure of lengtld. The burst erasure channel is parametrizegd, s ang erasure bursts, Here, we examine such a scenario.
by the factorg, where exactly;-n symbols of the IFSC outputs In particular, we want to examine 2 types of codes.
are erased and — oo. Fig. 2 depicts the channeK(— Y).

Theorem 2: The capacity for the channel described by Fig.
2 and the channel law (15) is

which ends the proof. |

IV. LDPC CoDE PERFORMANCE

1) LDPC codes and code ensembles that perform well
in memoryless or finite-state channels are well known
[9],[4]. We want to examine how such codes perform

Cx—oy =(1-q¢)Cx-z. (16) when the channel also has burst erasures.

2) There exist several methods in the literature to construc
LDPC codes that handle well bursts of erasures when

1. LDPC CODES ANDDENSITY EVOLUTION no other channel impairment (such as additive noise) is

THRESHOLDS present in the channel [5]-[7].

The asymptotic belief propagation (BP) decoding perfoffhe simulation results presented in this section will demon
mance for an ensemble of random LDPC codes with strate that applying methods to construct codes of type 2)
given degree distribution can be computed using a technigeen produce codes that beat the thresholds for codes of type
called density evolution (DE) [9]. Specifically, the avesagl), i.e., the methods in [5]-[7] can enhance the performance
asymptotic behavior for a given class of LDPC codes caf LDPC codes over channels with both random errors and
be evaluated from the probability density functions (pdf§) burst erasures. However, we will also see that while in some
the messages in the iterative decoding process. Denote itigtances the BP thresholds are beaten, the performances of
decoding error probability in thé-th iteration bypﬁf). In either codes of type 1) or those enhanced by methods in 2) are
the limit as the code length — oo and decoding iteration far from the capacities given by Theorem 1 and Theorem 2.
¢ — oo, the “zero-error” noise standard deviatitimeshold Hence, we will conclude that in order to achieve the capacity
o* is defined as of a channel that has both random errors and erasures, we
must construct codes that tackle both effesitaultaneously.

Here we generate several common codes of regular degrees
where the supremum is taken over all noise standard dengati@nd compare their bit-error rate (BER) performances with
o for which the capacities and threshold bounds, SMfR and SNR-(q)

A sketch of the proof is given in the Appendix.

oc* =supo (17)
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Fig. 3. Comparison of finite-length LDPC codes to capacity SR and BP threshold SNR (¢) for AWGN-BUEC concatenations with erasure ragio
equaling 0, 0.07, 0.0827, and 0.009.

respectively, for the AWGN channel and BUEC concatenation. V. CONCLUSION

The parity-check matrices used are for a rate 0.9, length We presented and proved the capacities of a class of
n = 4560, (3, 30) regular quasi-cyclic (QC) LDPC codechannels, either memoryless or indecomposable finite;stat
Our goal is to manipulate the original finite-length QC codgjith hoth random errors and burst erasures. Enhancing the
(denoted by Orig in Fig. 3) using simple column swaps Qfrasure handling of LDPC codes over these channels using
variable-node permutations (swaps) to achieve or appro%"g\l/ished methods beats, in some cases, the BP thresholds.

enhanced codes are constructed from the following permufgekie hoth effects simultaneously.

tion methods: the greedy search and swap (GSS) algorithm [5]

the pivot searching and swapping (PSS) method in [6], and the APPENDIX
simulated annealing (SA) approach in [7]. We plot the codes SKETCH OF THEPROOF OFTHEOREM 2 .
performances on the concatenated channels with incregsing A sketch of the proof proceeds as follows. We consider
I sing the channel in blocks gf symbols. Let us introduce

values. the following notation:

p - block size

n - number of blocks

M - index of the first erased symbol

We see from Fig. 3a that for short burstg & 0), the wheren =n’ - p.
BP thresholds are reasonably clpse to capacity. However) gt thei-th block be defined as A
as the burst ratiog; get Iarggr (F|g._3b-d), the thre;holds_ X, a [X(o1)pr1s X(i1)pras s Xip] = Xzzp—l)erl‘
diverge from capacity by an increasingly large margin. It is _ A
clear that existing LDPC codes are not adequate solutiof¢ denote contiguous blocks by, = [x;, X, ... X ].
for achieving capacity. Construction of special codes that\We emulate the proof used for Theorem 1 (the memoryless
simultaneously addresses erasure bursts and random irrogfiannel X’ — 7). First we show that the IFSCX( — 2)
necessary. However, permuted suboptimal codes do perfd?aves asymptotically as a block-memoryless channel&nd a
better than non-permuted ones. In some scenarios, judigiou? consequence the capacity of the chanigl-¢ Y) is upper
permuted finite-length LDPC codes beat the random LDA®unded by(l — ¢)Cx_.z. Then we will show that there
code thresholds. For example, in Fig. 3c,dgaises, the code €Xists a block dIStflbUtlom(lﬁ ) = p*(a}) that induces
produced by GSS [5] consistently beats the correspondifitg information rateim,, . 7 (X7 Y7, M) |par)=p=(a7) =
threshold values SNR(¢). Since for a moderate length coddl — 4)Cx—z.
with regular (i.e. suboptimal) degree distribution, theaezity A )
SNR.(g) is not within reach using simple permutations, to Lete = [e,---,¢] be a block of erasures. We define a new
achieve capacity, a combination of two techniques is needed 0 . .
First, degree distribution optimization to guide finitexgh block-channel whose channel input-output law is
code construction. Second, judicious permutation of aefinit y - ¢ if any symbol inZ; equalse

=i zZr otherwise.
length code to enhance performance. (i=1)p+1

(20)



Let ¢/, where |[£| < ¢ < |£]| 4+ 1, be the number of erased i) i ,
ANl LS
n! —oo Tl

blocks and letV’ be the index of the first erased blodk, =
min {i|Y, = e} Clearly, the number of erased symbols in the

lim 7I(X Z,)
p—oo P

sequenc&’? = [, Y, .-, Y, ]istp, while the number o) ,
of erased symbols in the seqﬁenkflé [Y1,Ys,---,Y,] is s pm oo Zb )Cx—z
¢ < ¢'-p. Notice, however, thatlim i/ — lim © =q. Denote (@) n — 0
’Z;‘;o(x’ n n—oo n = Cx_z lim o = (1 — q)CX_,Z‘
by n, = ¢ - p — ¢ the extra erased symbols introduced b

(20). “The numbem cannot be higher thapp. So, the ratio %quahty (¢) follows from the definition of mutual information
of number of extra erased symbol$ to the total number of and the chain rule for entrop)(u) follows from the fact
symbolsn satisfies that M’ is independent ofX?’; (iii) follows from the chain
ne -t 2 3, (21) rule for entropy;(iv) is valid because the channel is used

without feedback;(v) is valid because conditioning does

When bothn’ — oo andp — oo,/the fraction of extra erasednot increase entropy(vi) follows because the channel is

n n'-p np n

symbols goes to zero, i.e/lim Be 0. fin_ite-sta_te (knowledge of stat(;_,), decouples the past
pos X1 YY), (vii) holds because the channel is indecom-

Since the fraction of erased symobls goes to @/as> oo, posable ang — oo; (viii) follows from arguments similar

lim 7I(X1,Y1  M|So) = lim | lim 7I(Xn .y, M|So) to those in the proof of 'I;heorem 1iz) uses the fact

noo 1 n/—o0 | p—oo n'p that Cx—z = maxlim,. - 1(X;;Z;); and () uses the

L . definition for b’(¢). Now, we can finally combine
=lim — { lim I(X?’;Y?/,M’)} 22)

n’/—oo — 00 1 1 ’ ’ Iy
ol s lim — {lim Srxryr ,M’)} < lim (" )-CX_>Z
i i n’—oo N° | p—oo p n’—oo n
wheresSj is the state of the IFSCX — Z) attime 0. Note that
(22) is valid because the chaniél — Z) is indecomposable '€ lm IOXPSYE M) < (1—q) - C 24)
so that the information rate does not depend on the initdbst n—oo < LTTLTTAS DXz
Let . . . . ’
n’ Equality in (24) can be achieved by choosipgz? ) =
b'(i) = Z Pr(M" =m) @3) T, p*(z;), wherep*(z;) is the capacity achieving distri-
clmt bution for the channe{X — Z). [ ]
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