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A PosterioriEquivalence: A New Perspective for
Design of Optimal Channel Shortening Equalizers
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Abstract— The problem of channel shortening equalization for In this work we take revisit the problem equalizer design in
optimal detection in ISI channels is considered. The proble the context of optimal (MAP) detection of the input. The main
is to choose a linear equalizer and a partial response target .,ntribution of this paper is a new perspective for the pobl

filter such that the combination produces the best detection f ch | shorteni lization in t f1h d .
performance. Instead of using the traditional approach of MMsg O channel shortening equalization in terms of the un Bgyi

equalization, we directly seek all equalizer and target pas that & posteriori probabilities (APPs) rather than the traditional
yield optimal detection performance in terms of the sequene approach of using the MMSE equalization error as the caiteri
or symbol error rate. This leads to a new notion ofa posteriori  [1-6]. We pose the questioin what sense should the target
equivalence between the equalized and target channels with  -panne| pe equivalent to the equalized channel to achiese be

simple characterization in terms of their underlying probability detection performance®Phe answer to this question naturall
distributions. Using this characterization we show the suprising P a y

existence an infinite family of equalizer and target pairs fowhich ~ leads us to a new notion @ posteriori equivalenc¢APE)

any maximum a posteriori (MAP) based detector designed for the between the equalized channel and the target channel. We
target channel is simultaneously MAP optimal for the equalzed  show that this form of equivalence, which is expressed imser
channel. For channels whose input symbols have equal energy ot hejr underlyinga posteriori probabilities, guarantees no

such asg-PSK, the MMSE equalizer designed with a monic target f | due t lizati dto th ti
constraint yields a solution belonging to this optimal famiy of ~P€rformance loss due to equalization compared to the optima

designs. Although, these designs produce IIR target filtersthe ~detector for the original channel. This result thus proside
ideas are extended to design good FIR targets. For an arbitrg  new recipe for equalizer and target design, which is differe
choice of target and equalizer, we derive an expression fothe  from the heuristic approach of matching the responses of the
probability of sequence detection error. This expressions used target and the equalized channel. We also prove that there is

to design optimal FIR targets and IIR equalizers and to quan . . .
the FIF? apgroximation pgnalty. g quantfy a family of IIR equalizers and targets which guarantee APE.

Index Terms— Intersymbol interference, linear equalization,
channel shortening, partial response, target design, MAP etec-

tion, decision feedback. . . ) )
This paper is organized as follows. In Sectidnk Il and

[Mwe review the background material on optimal sequence
. INTRODUCTION detection and linear equalization. In Sectlod IV we conside

The problem of designing channel shortening equalize{%e problem of sequence detection for the equalized channel

for maximume-likelihood sequence detection in inter—syﬂnb% eui?/ ﬁ:ﬁg;o:r: dmi?;n;it|hZ%rreatilga(irrgf‘:cl;tt:iggtlijg?%ﬁsg&
interference (ISI) channels has been widely studied [1H3¢ q Y '

function of the equalizer is to modify the channel respomse az Z%T)‘T’I:/dfr:;r?ﬁgcs:,\'/Ingﬁ;hc:“ggﬁzg oduersrieztélctjs.v\llir:hmaullamlr ,onic
reduce the length of the ISl in the system thereby reduci d 9

n e . .
the complexity of the sequence detector. Traditionally thtacllrget cons_tralnt yields an optimal solution for ISI chasne
en the input symbols have equal energy. Unfortunately,

equalizer is designed so that the equalized channel respoW

approximates a pre-specified short FIR sequence called {pug equivalence conditions usually hold only for IIR tamget

partial response(PR) target. Two commonly studied classe aking th(_a result_s somewhat useless for channel shortening
of equalizers are the zero-forcing equalizer (ZFE) and th pwever, in Sectioll Y| we extend the results to FIR target

minimum mean-squared error (MMSE) equalizer. The ZF _sign where we seek the best FIR target f'md lIR equalizer
forces the equalized channel response to match the tarwép a small but af:ceptable FIR approxmatl_on penalty.” We
erive an expression for the sequence detection erroramate,

response exactly. The undesired effect of zero forcing ISe this as a performance measure for the filter design. For
that it colors the noise spectrum and may amplify the noiéslém licity of thepanal sis we consider onlv IR equali e‘flge'
significantly. In contrast, the MMSE equalizer minimizeg th implictty ysIS W ! y qualiz

. Co S oblem of FIR equalizer design would entail the additional
variance of the equalization error, but the error is sign

dependent. In both cases the goal is to make the equali I’:ﬁkOf optimizing the processing delay. We refer the reduler

channel responseloseto the target response. However, thS _sétgclrlosr Lrs]s(ianprlc\)/lbl\l/lesn:Eoen SSItiIzmaltTcI;g Xliiri‘:\ri?;rezig]lgs?selrgag
ultimate goal of the channel shortening equalization oughtty R e al'g er desi nq ould be' caually im or}[/ant in our
be a detection performance measure such as the sequenc8 r quatiz 'gn wou qually Imp 't in ou
problem, but is beyond the scope of this paper. Finally, in
symbol error rate.

Section[VI] we apply our theory to an example ISI channel

The authors are with Seagate Research, Pittsburgh, PA 152®a2il: with binary and non-binary inputs to confirm our predictions
ramanv@ieee.org, fatih.erden@seagate.com through computer simulation.
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A. Definitions and Notation special case we also shall consider independent and idéwntic

Let a denote a discrete-time sequengs, : n € Z}. If a _distributed (1ID) inputs withS, (w) = 1. An example for the
has finite energy its discrete-time Fourier transform israfi INPUt symbol set is th€)-phase PSK constellation,
as — 270/Q ., —
. C={V2e*9 . qg=0,...,Q -1
Ffa} = Alw) = Zane_-”“". { 1 Q-1
n in the complex case or the BPSK (bipolar binary) constelfati
The convolution of two sequencesandb is denoted bye = € = {—1,+1} in the real case.
ax*b:
Cn = Zambn,m. Il. OPTIMAL SEQUENCEDETECTION

Suppose that a message= {z,, : m = 0,...,M — 1}
Let 4 denote the discrete delta functiofy; = 0 for n # 0 of finite lengthM symbols is transmitted through the channel
andd, = 1. Define the inner product between two sequencg®). The received signal is given by

a andb as M1

T
_ m=0

. 1
(a,b) :zn:anbn: %/

wherex denotes complex conjugation for scalars or conjugat§lnce the additive noise is white Gaussian, we have

s

transposition for matrices. Thus, the normafs P(y|z) o exp ( B D(y, m)) @)
1/2 202,
lall = (a,a)"/~.
. . ) where
Given a sequence, let a be obtained by time-reversal and Mol
conjugation ofa, i.e., Dy, ) Z . Z h/nfmxm’Q 5)
ap =a’,,. " m=0

with the summation oven carried over the finite region of
interest where the samplegs are available.
Given the output sequenag the maximuma posteriori

The Fourier transform o& is A*(w). Thus, we readily obtain
the following identity:

(axb,c)=(b,axc) (1) (MAP) estimate ofx is given by
i.e., the adjoint of the convolution operation withis convo- & % arg max P(x|y) = arg max P(y|x)P(x)
lution with d. * Dy, ) *
Let « and y denote real or complex stationary random = argmin (L;B — log P(;p)) (6)
processes. The cross-correlation function is defined by ® 207

rov — c~1E(g ) where P(x) is the prior probability distribution orne. If
n mtnYm this distribution is uniform, then[]6) reduces to maximum-
where E(-) denotes expectation angdis the number of real likelihood (ML) detection of the input sequence:

dimensions per sample, i.e;, = 1 for real processes and
¢ = 2 for complex ones. The autocorrelation®fis obtained
by settingy = «. The power spectral density afis S, (w) =

& =argmin D(y,z) = ||y — hxz|>. (7)

Unfortunately, the direct use of the above expression is

F{ree}. We writex L y if r*¥ = 0. limited due to its computational complexity which grows
exponentially with the length of the ISI. However, whép

B. ISI Channel Model is a short FIR sequence, the above cost function can be

Consider the following discrete-time model for a real offinimized exactly and computationally efficiently usingeth

complex-valued linear time invariant system Viterbi glgorlthm which was originally devised to decode

convolutional codes [9-11].
y=h*xx+w (2)
wherez = {z,,} is the input to the channeb = {h,,} [1l. REVIEW OF LINEAR EQUALIZATION

is the channel impulse response amd= {w,} is additive In order to implement the Viterbi algorithm to solve the
white Gaussian noise witl$,,(w) = ¢2. Assume thath ML sequence detectio](7) with manageable complexity, we
has finite energy but is possibly non-causal and infinite. Timeed to reduce the length of the ISI in the system. This is
channel model[{2) is usually the base-band representatisually accomplished by using a linear equalizer to cooliti
after whitened matched filtering [9] and describes a variethie channel response to match a pre-spectfieget response
of communication systems. When the target is a short FIR filter, it is calledpartial

In the case of complex channels, the noise is assumedrégponse(PR) target. The Viterbi detector operates on the
be circularly symmetric. Thus, the real and imaginary conequalized channel to perform sequence detection pretgndin
ponents of the noise samples are independent with variaticat the samples were the output of a hypothetical target
o2. Let the input power spectral density % (w). As a channel.
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Let f = {f.} andg = {g.} denote the equalizer and targeB. Minimum Mean Squared Error (MMSE) Equalizer

filters respectively. For the moment assume that the tagget i p widely used equalizer in practical systems is the MMSE

fixed. Fig.[1 illustrates the system with an equalizer whosgyalizer which is designed to minimize the variance of the
output is equalization erroe defined as

z=frxy=frxhxx+ frxw

=lxx+u

edéfg*:c—f*y. (12)

The MMSE equalizer ensures thatl y, which yields
wherel = f x h is the the response of the equalized channel

andu = f ~ w is the output noise whose power spectral F(w) = Sﬂ”(w)QH (w)G(w)2 (13)
density i8S, (w) = |F(w)[2Sw (W) = 02 |F(w)[. [H(w)[?Sz(w) + o3,
Definition 1: The target channels a hypothetical channel where S,.(w) is the power spectral densities of the input
defined by The spectral density of the estimation error is given by
z= gxxT—+7v (9) S (w) _ |G(w)|251 (w)o'?u (14)

| H(W)]2S.(w) + 02
wherez is the input,v is additive white Gaussian noise with ()] (. )t )
S,(w) = 02, andz is the output. The advantage of the MMSE design over the ZFE is that the

The original channel with the equalizer is illustrated isPectrum of the MMSE noisé (IL4) is less colored and always
Fig. [ and the target channel that approximates it is shogfaller than the ZFE noisé (11) and spectral nullstiw)
in Fig. [2. Traditionally, the equalizer and target are desity C2USeé no problems. However, is signal dependent, which
to make the equalized channel respolsgoseto targetg, May cause the Viterbi detection to be suboptimal.
while keeping the noise white.

C. Target Design
Wnp Instead of choosing a fixed target, we seek the best target
A of a fixed length. In practice, the target is usually desigioed
Yn
)

an MMSE equalizer. Thus, we minimize the variance of the
F —%n MMSE equalization errof{34):

T H

1"
Fig. 1. The equalized channel mgln%/ Se(w)dw (15)

where the targeg is assumed to have lengih

Un 92{907917"'791/71}-

The resulting cost function is a simple quadratic functidn o

the target filter taps. Clearly, with no further constraiotsg
we obtain the trivial solutioy = 0. Therefore, an additional

Tn G Zn in the ! !
constraint is imposed og such as thaunit-energy constraint

2 __
Fig. 2. The target channel Z gn =1 (16)
n

or themonic constraint

A. Zero Forcing Equalizer (ZFE) go = 1. (17)

The ZFE modifies the channel response to match the targetsometimes thaunit-tap constraintg, = 1 for some k.
filter exactly, i.e.,l = g. Thus, in the frequency domain, thein each of these cases, the optimal target, known as the

equalizer is given by generalized partial respons&PR) target, is found easily by
G(w) solving [I%) subject to the appropriate constraints.
F(w) = m (10) For illustrative purposes, we derive the solution to the imon
design in the lIR limit L. — oo), where the problem can be
The spectral density of the noiseis expressed in the frequency domain as
2 GW)I? , 1T |GW)P S (w)oy
Su(w) = [F(w)["Sw(w) = |H(w)|20w- (11) mgln ~or L HW)PS:(w) + o2, dw (18)

An undesirable problem with zero-forcing equalizationhiatt over all causal targetg with go = 1.

when the channel respondé(w)| has a spectral null or attains The causal and monic constraint gnis cumbersome to
very small values, the equalized noise is highly colored amapress directly in the frequency domain. However, we know
has large variance. The ZFE is rarely used for this reason.that among all the causal and stable spectral factof}of) =
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|G(w)|? the value ofgy is maximized for the minimum-phaseposteriori probabilities (APPs). It has been observed that the

factor [12]. This maximum value is given by
1 s
log go = —/ log Q(w)dw
2 J_ .

Therefore, we rewrite the optimization (18) in terms(@fw)

as
1 (™ QW)S.(w)o?
mn%/ [H(@)2S, () + 02

such that

™

log Q(w)dw

=0.
21

(19)

The Lagrangian

[T Q(w)Sy(w)o?2 dw T
Llad) = / H(@)2S, (@) + 0% A/_73"“2(“”‘“’

is stationary at the solution. Using calculus of variations
obtain

|H (w)[*Se (w) + o3

Sy (w)o
A

Sz (w)

where the Lagrange multipliex is chosen to satisfyf (19):

or o (T G )

G)P? = Qw) =X

2
w

= SIH@P + (20)

)\:exp(—

monic design performs better in detection than other design
criteria such as the energy constraipf](16) or thst-tap
constrainton the target. In the following section, we shall
formally prove this conjecture.

In practice, we need to design FIR equalizers and targets
with unknown channel and noise characteristics. In thi® cas
the second order statistics of the channel input and output
are estimated using training and subsequently used tordesig
FIR filters. The solutions to these problems for the various
target constraints is described in [1, 6, 20]. We point oat th
this method is also applicable if the noise is colored bezaus
the design ensures that the noise whitening is automaticall
absorbed into the equalizgh.

IV. SEQUENCEDETECTION FOR THEEQUALIZED
CHANNEL

Traditionally, the sequence detection is performed in two
steps. The first step is to equalize the channel output. The
next step is to perform the detection pretending that the
equalizer output (Fig.[d) were the output of the hypothetical
target channel (Fid.]2). In other words, although the secgien
detector is optimally designed for the target channel itris,
reality, applied to the equalized channel. In this sectian w
consider the performance of such a detector. For simplafity
analysis we assume that the target and equalizer are IIR and
the target is causal. We consider the design of FIR targets in

The optimalG (w) is the causal minimum-phase spectral factopection\V.

of Q(w), and the MMSE equalize[(13) reduces to
A HY(w)
Y )

(21)

Consider the system described by (8), restated below:
z=Ilxx+ frw.

By design, the above channel approximates the target channe

The spectrum of the estimation err¢r14) is white for thi@). The conditional probability of the output of the target

solution:
Se(w) = A. (22)

Henceforth, we refer to this solution as th@nic desigror

monic solutionimplicitly associating the optimal target with where

the MMSE equalizer. For the special case of zero-mean 11D

inputs with S, (w) = 1, the above solution reduces to
H(w)G(w)
[H(W)[? + 3,

A (H@) +02)

w

Flw) = (23)

|Gw)* = (24)

channel is
- D zZ,x
P(z|z) x exp ( - (202 )) (25)
- M-1 2
m=0

with the summation overn carried over a finite region of
interest where the samples &fare available. The following
result provides an alternate expressionjft(r%, x) which will

be useful in proving a form of equivalence between the target

Coincidentally, this solution is related to the linear MMSEhannel and the equalized channel.

decision feedback equallzer (DFE) for the glven ISI channel Lemma 1: Suppose the equa“zg'rand targey are chosen
[13-17]. The MMSE-DFE structure is optimal in achievingych thatj « f = ah for somea > 0, then

the capacity for an ISI channel with additive white Gaussian

noise [16—19]. However, it is not immediately obvious orreve
always true that the above equalizer and target filters woul
be optimal for sequence detection of (non-Gaussian) inpu

symbols.

D(z,x) — ||2|* = (x, s x @) + a(D(y, @) - |lyl)*

Weres:g*g—ah*h. .
Proof: We begin by expandin@(z, ) as follows

As a caveat we reiterate that the sequence detection is not [)(z7 x) =z —gx*z|?

meant to be implemented with decision feedback. We still
use the Viterbi algorithm or a MAP based algorithm such
as the forward-backward algorithm to compute the syn@bol

= ||z||2 —2R(g*x,z) + (g*x, g *x x)
= ||z|]> — 2R(@, G * f ry) + (@, G~ g * )
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where ®® denotes the real part. The last step follows bfor the targetg nor thato? is the variance of equalization
applying [1) and using = f xy. Using the hypothesis thaterror. Although this approach is radically different frotmet
g * f = ah we obtain traditional approach in the literature on channel shongni
~ . . equalization [1, 3, 6], it is essential to derive the corfeatn of
D(zx) = ||z|* = 20R(h x y, @) + (@, § x g x z). (27) equivalencdetween the target and equalized channels defined
Meanwhile, a similar argument shows that below.
5 Definition 2: The equalized channel is equivalent to the
D(y, ) =ly - h*w”" ) target channel in the posteriori sense if they produce the
= |y|?> - 2R(hxy,x) + (hxh*xx,x). (28) samea posteriori probability for the input given the output.
From [27) and[(28), we obtain the desired result ;r:liDsE;orm of equivalence is called posteriori equivalence
D(z,x) — ||z|? = (x, s x) + (D(y, x) — ||y|)? Evidently, this definition of equivalence is the most natura
one from the perspective of MAP detection. As a caveat, we
point out thatPr(Z = z) and P(Z = z) need not be equal,
i.e., the equalizer output would not be a typical output of the
A. Equivalence of Equalized Channel and Target Channel target channel. The above observation may be stated stigcinc

We now interpret Lemma&ll in terms of the underlyin@s follows:
probability distributions. Let upper-case letters demaredom ~ Theorem 1:The equalized channell(8) with the prior dis-
variables and lower-case letters denote realizations edeth tribution P(z) and the target channell(9) with the prior
random variables. Suppose th&tw) is a stable filter, i.e., distribution P(z) area posterioriequivalent.
it has no spectral nulls or singularities. Then= f x y is In general, the MMSE or ZFE equalizers do not guarantee
invertible. Hence, for the equalized channel this form of equivalence even though they attempt to make the
equalized channel response close to the target response.
P(z|z) = P(zly) o« P(x)P(y|x) Corollary 1: Suppose that the target and equalizer are cho-
x P(z)exp ( _ D(y’w))' sen to be the monic solutiof (20) arid](21). Furthermore, let
203, o2 =\ and let
where the constants of proportionality above (and hent®for
are always independent af Using Lemm41l and noting that P(z) x P(x) exp (M)
y and z are constants, we obtain 2
D(z,z) (x,sxx) be the input prior distribution for the target chan@l (9)gn£h
5002 9002 ) (29) S(w) = A\/S:(w). Then, the equalized channel is equivalent
v v ) to the target channel in the posteriorisense.
Suppose that the hypothetical target channel is assigned an pyyof: Observe that the monic targ€120) and equalizer

input prior distributionP () which is possibly different from ) satisfy the hypotheses in Lemifla 1 if we set \/o?2

wheres = g« g — ah % h. n

P(z|2) x P(x)exp ( .

P(x). The a posterioriprobability of x is and S(w) = \/S,(w). Therefore, by[[@L)¢? = ac? = A.
D(z,z) The claimed result follows from Theorenh 1. [

P(x|2) oc P(x)P(2|z) o P(z)exp ( T T g2 ) (30)  The above result shows that we can use the monic design
! for optimal MAP detection provided that we use the prior
'§fstribution P(x) for the target channel. In many cases, the

input is 11D with a flat spectrum{,;(w) = 1) implying that

Comparing [(2B) and[(30), we see that by setting the no
varianceo? and the input prior distributio®®(z) of the target

channel[(B) to P(x) = P(x), i.e., we do not need a different prior PDF for
o2 def ac? (31) the target channel.
~ (@, s %) Remark 2:If we pretend that the equalizer outputcame
P(x) x P(x)exp (727) (32) from the output of the target channel with a carefully chosen

input prior distribution, then all MAP-based detection &g
we ensure that the posteriori PDFs for the equalized andrithms designed for the target channel work optimally when
target channels are equal: applied to the equalized channel. These algorithms include
- N 5 hard-decision decoding such as the Viterbi algorithm, and
P(X =a|Z =z)=Pr(X =2|Z =z) soft-decision decoding such as soft-output Viterbi aldponi
with the understanding that the left-hand side is the ARBOVA) and the BCJR algorithm. Soft-decision algorithms,
corresponding to the equalized ISI chanriél (2) with a priamlike the Viterbi algorithm, use an extra parameter, \ie t
P(x) onzx, while the right-hand side is the APP correspondingariance of the additive noise in the channel. When applying
to thetarget channel(@) with input PDFP(:B). soft decoding to the target channel, we must ugeas this
Remark 1:We reiterate that the target channel is a hyariance parameter. Our calculation above showdBaimply
pothetical channel and we are free to treat its parameterequals), the equalization error variance (s€el(22)). This fact
ando? as well as its input PDFP(x) asdesign parameters is routinely assumed in many system designs with no rigorous
We assume neither thgt is the MMSE equalizer designedjustification but it is fortunately the correct value to use.
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V. PRACTICAL CONSIDERATIONS B # o2, the solution corresponds to an monic design for
We now consider some practical implications of our main 2 different noise level. However, this mismatch causes
result in Sectior V. Henceforth, we assume tiiz) is a no performance loss in sequence detection. Curiously,

uniform distribution over the set of allowed code sequences ~ SOMe negative valugs € (—inf,, | H(w)|*, 0) also yield

In this case, the MAP sequence estimdfe (6) coincides with optimal solutions even though they do not represent the
the ML estimate[{[7). variance of any meaningful noise.

Theorem 2:Suppose that all the input sequences in the Remark 3:The above argument shows that the monic de-
message codebook have equal energy and that the equlizéign is an optimal choice if the input spectrum is white.

and targelg are chosen such that However, suppose that channel input spectrum is colored,
perhaps by the use of spectral shaping codes. Then, the monic
G (W) F(w) = aH™(w) (33) design [2L) has the required form in TheorEm 2. However,
|G(W)]? = a(|H(w)|* + B) (34) the target[(20) does not because it depend$ do). Hence,

the monic design may be suboptimal for colored inputs. In

fact, for optimality we must perform the monic design for the

target and equalizer with an IID input regardless of whether

the actual input is white or colored. This is particularlyer

& = argmin D(y, ) = argmin D(z, z). (35) at low SNRs where the,, is large and the second term in
* * (20) dominates. At high SNR values, the effect of the input

: . . spectral color on training diminishes.
Proof: In the time domain, the hypotheses imply thatp ¢

s=gxg—ah+h = a3é andg « f = ah. Therefore, A M , L

- ) _ . Matched Filter Equalizat

P(x) = P(x). The proof now readily follows by applying ac_e Her _qua zation ] ) _

Theorenf1. m We briefly examine the special case of the solutions in
Theorent® is applicable, for example, if the input symboisheorem2 when we le — oo. This _corr2esp0nds to the

are elements of th@-phase PSK constellation, i.e., € ¢ = Monic solution for a very low SNR, i.eg;, — oo. For

for somea > 0 and 3 € R that produces a valid:(w), then
we can setP(x) = P(x). Furthermore, ifP(x) is uniform,
the optimal estimate of the input is

{(V2e727/Q ; ¢ = 0,...,Q — 1} in the complex case or the CONvenience, we letr = 3 without loss of generality. Then,
BPSK constellatiorC = {—1,+11 in the real case, since all @3) and [3#) imply that
message sequences have equal energy. IG(w)|? = B2(1 + [H(w)[267Y) (36)

Clearly, for this special family of equalizer and targetfitt
there is no performance loss in sequence detection if \@ad .
minimize the surrogate cost functial(z, «) instead of the F(w) =pH(Ww)"/G"(w).
original costD(y, ). The practical implications of this resultFor 5 > 1, we use[(3B) to express(w) as
are that in the IIR limit we can achieve optimal sequence 1
detection using any solution from the family (see also [21]) Gw) =+ Aw)+0(57)

In general, these targets are as long as the channel itsgfiere A(w) must be causal iG(w) is minimum-phase. Thus,
However, we require a short FIR target for a Viterbi-basegs 3 — oo we have F(w) approaches thenatched filter
implementation. We address this problem in Sedfidn VI wherg*(w). Now, observe that

we show how to design good FIR targets to minimize the

detection error rates. GW)P =821+ (A(w) + A*(@))B~! + 0(5_2)}

Note that the parameter is merely a scaling factor (the Comparing this with[[36), we obtain
target and equalizer scale ggx) but 3 affects the shape
of the filters. Thus, we have a degree of freedom in design A(w) + A% (w) = [HW)]? +O(87).
represented by;. We also have the freedom to choose th?herefore, in the time-domain
phase response af(w). However, the most logical choice

LS h H
would be to chooseG(w) as the causal minimum-phase T'n if n>0
spectral factor of[(34). We now consider several intergstin an=1<1h/2 ifn=0
cases in the family of optimal solutions: 0, if n<0

1) The casex =1 andf = 0 produces . . . . .
) p P wherer” = h« h is the auto-correlation function df. Using

IG(W)]> = |H(w)]? g=pB5+a+0(B") itis readily verified that
and D — |z — 2
)= 2 _ G R A S
= = TN = ||z||” — * T, 2 r,gxg*T
ol — Pl — 28R, ) ~ (. 052 + O(1)
which is an all-pass zero-forcing equalizer filter which n ri = Tz m\Taxe
keeps the noise white. Since||z||? is constant for all inputs sequences ahe- oo,

2) Settinga = \/o2 andj3 = o2 yields the monic solution we deduce that the ML estimation rule becomes
(see [2B) and[(24)) folS,(w) = 1, proving its con-

. AR, . inD(z,x) = R(x,z — : 37
jectured optimality in the asymptotic (IIR) case. When ars (z,) arg max (@2 —axaz) (37)



VERSION FEBRUARY 2, 2008 7

We interpret the above calculations as follows. The eqgealizsignal-to-noise ratioof the system
is a matched fil_ter:f =h an_d the termz — a x x repre- IR(e, p» h* e)[?
sents the equalizer output with the post-cursor ISI removed SNR = max —
using decision feedback. The estimator simply maximizes th v |(g—pxh)xe—v||>+0o2|pxe|?
correlation between this sequence with the input. wherep = f x g, g = g x g, andv is any sequence with the
It is easy to verify thatiz, a x ©) = 1||h » z||%. Thus, the same temporal support as the dominant error sequence
matched filter equalization structure may be derived astern Theorem[B is proved in Append[ | using error analysis
tively directly from LemmelL by lettingy = § and f = h. similar to that of standard Viterbi detection [9, 22]. Notat
This approach gives us the following rule for ML estimatiorihe bit error rate (BER) also takes the same fornPg$ but
has a different constant than The above result is applicable

& = argmax R(x, z) — 1|\h*m|\2 for FIR and IIR equalizers and targets. The optimal equelize
® 2 f and targey are chosen to maximiZ&\R subject to relevant
which is equivalent to[{37). constraints.

For practical reasons, we seek FIR targets, since the detect
implementation complexity is exponential in the targegtin
VI. OPTIMAL FIR TARGET DESIGN The constraint on the equalizer length is less importargesin

In the previous sections we showed the existence a famijf cCOmPlexity growth is only linear. For simplicity we asse
of equalizers and targets that achieve the optimal sequefidt the equalizer is IR but the target is FIR with lengthin
detection performance if we pretend that the equalizerlﬂutﬁ Is case, it s more convenient to maxu_‘n[iNR overp and
came from the target channel. Unfortunately, the optimdl becausef andg can be recovered uniquely fropand g
target, being the minimum phase spectral factor of (24), hg¥ spectral factorlzat_lon. Not_e thatis IR but g, being the
the same length as the original channel (except in rare cagt&ocorrelation function of, is FIR. Furthermore, we have
where it can be shorter). As such, we have not reduced f&~) = 0. We write SNR = max, SNR(p, ¢, v) where
detector complexity by equalization. S def |R(e,p*h*e)|?

In this section, we consider the more practical problem NR(p.q,v) =
of the design of FIR targets to achieve the best detectiRp
performance. We consider only real channels with BPSK inpuf)
symbols ¢ = {—1,+1}). With some effort, these result can SNR(p, q,v) = SNR(p, q + 3,v — f3e)
be generalized to complex channels or non-binary inputs as )
well for any (p,q,v) and 8 € R. Moreover, if v has the same

Suppose thaic® is the actual input to the channel, and tempqra}l §u.pport as, then so does’ = v — fje. Since we
is the ML sequence estimate. Then- (& — z°) is anerror are m.|n|m|2|ngSNR(p,q,v) over allv, we conclude that the
sequenceWe say that two error sequences belong to the saffgantity
equivalence clas# they are related to each other by a time- max SNR(p, q, v). (38)
shift or phase-rotation (or sign-change). Of all error ssyes, P
adominant error sequende one that which minimize§e||> would remain unchanged if we replageby q + 34. This
whereé = hxe is the noise-free channel response to the inpanables us to temporarily replace constraiiitv) > 0 by
e. We calle a dominantoutput error sequence qo = 0 for the sake of the maximization. Having rid of the
Clearly, dominant error sequences are not unique becagg@straint onQ(w), the maximization is readily transformed
all sequences in the equivalence class of a dominant ert@© a quadratic minimization. As a final step, we add a
sequences are also dominant. However, we shall assume fdficiently large to the solutionQ(w) to make it satisfy
there is a unique dominant equivalence class whose repregéfw) > 0.
tative elemente has the canonical formg, # 0 ande, =0  The analytical solution td_(38) is presented in the Appendix
for n < 0. Indeed, some channels could have a multipliciffll We also show there that the noise variance in the hypethet
of dominant events that belong to the different equivalenég@l target channel noise variande](31) is sevfo= A, the
classes. In that case our probability of error estimate doulagrange multiplier used in the optimization.

(g —p*h)xe—v|?>+02|[pxel
W observe that

be scaled by the multiplicity factor. Clearly, the above maximization admits infinitely many
Let Q,(-) be the Gaussiaf)-function solutions parameterized by As the target length approaches
infinity, these solutions converge precisely to the famify o

Q,(z) = 1 /°° o221 solutions in Theorerfl2. In this limit the equalizer and targe

VoY ' filters of Theorenlll maximize the effective SNR. Furthermore

. . . this maximum value is
We now estimate the probability of sequence detection error Ihxel?
* e

for any choice of target and equalizer in terms of e SNRpax = ———5——. (39)
function. Ow

Theorem 3:At high SNR, the probability of sequence de- In practice we are interested in FIR equalizers for ease of
tection error for a real BPSK channel is given B¢ ~ implementation. We point out that we could still maximize
kQ4(vVSNR) for some constant with SNR is the effective the effective SNR, albeit numerically, over all FIR targatsi
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uses no channel shortening equalization. It is clear th#t bo
the reduced complexity detectors performanc identicaith w
a small penalty relative to the full complexity detector.eTh
optimality of the monic design is predicted by Theorgm 2 for
the case of lIR filters. Indeed, we observe numerically that t
monic design is nearly optimal for FIR filters as well.

0.2

°
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Fig. 3. FIR approximation loss vs. target length

10
equalizers with length constraints. If we choose to use
equalizers, we would have the additional task of optimiz
the processing delay which is an important design parar

[6-8]. 10, 5 10 15
SNR (dB)

VIl. EXAMPLES Fig. 4. Comparison of BER performance of two designs for tyirsignaling

We now illustrate our results of the preceeding sectionk wit Next, we consider the same ISI chanel with an 11D ternary
?gssgr?gple Consider the real 1SI chaniél (2) with |mpulse Ut (e, € C — {_\/72_’ 0_,+\/ﬁ}) which has unit
/2 0<p <8 average symbol energy. This input symbols themselves have
h, = ’ . unequal energy. Recall the results for the IIR case in Sectio
{0 otherwise. [Vithat the optimal sequence detector for the equalizedmblan
needs to pretend that it sees the output oftdrget channel

with 1D binary input symbols, € ¢ = {~1, +1}) and SNR with the input prior distribution is given by (82):

defined as|h||?/02 whereco? is the noise variance.
We first study the effect of the target length on the effective . (x,s*x)

SNR of the system. The optimal equalizers and targets are P(x) oc exp (T)

computed for target lengths of 2 and longer and the resultin

values ofSNR are calculated. Indeed, in the IIR limit for theWheres = g x g — ah x h. Thus, the optimal detector needs

target length we obtain the maximum valBliR ... given by o minimize the cost function

(39). Fig.[3 shows théIR approximation l0sS(SNR .y —

SNR), for various finite target lengths at an SNR of 10dB. In

this example the optimal length-3 target incurs about Qd&75 where the second term is correction term that originate® fro

penalty in performance and the performance loss for lonage input prior distributionP(x). For the choice of equalizer

min (||z — g xz|* — (@, s x )
T

targets diminishes quickly. and target in Theorefl 2, we have
Next, we evaluate the BER performance of the reduced ot )
complexity detectors. At each SNR we design the optimal s = gxg—ahxh=a36.

length-3 target and IIR equalizer truncated to 21-taps-(cep, . {x,sxx) = af|z|*, which depends on the energy

tered at the origin). The equalizer is sufficiently long sinc h ™ fion t ; . v fopdi
it captures most of the energy in the equalizer taps. TI% € seguence. The correction 1erm IS an 1SSUe only fomsign

dominant error event for this channel és— {1,—1}. We constellations unequal symbol energies. For the monietarg
also design length-21 MMSE equalizers (centered at 0) aft thMSElfaqu_allzer deS|gE, wehhameé e(?uals. the vgnance
length-3 targets described in Sectiod 11l for thenictarget of'the equalization erron. Thus, the cost function reduces to
const_ralnt. . . . min (Hz—g*mHQ—)\HmHQ).

Using computer simulations we compare the two designs z
in terms of their BER performance for IID binary inputs. ThéVe directly adapt this expression to the FIR case as well by
two systems use the Viterbi algorithm to perform the seqeensubtracting\|z,,|? from the trellis branch metric at time. In
detection. The results are shown in Hiyj. 4 along with the BERct, the detector would be suboptimal without the coroacti
of the full complexity Viterbi detector (witt2®-states) that term, as we confirm below.
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We design a length-3 monic GPR target and a length-Bde code sequences have equal energy, we showed that the
MMSE equalizer for this channel and calculate the symbthonic solution,” i.e., the MMSE equalizer designed for a
error rates (SER) numerically using the Viterbi algorithmmonic constrained target, is shown to belong to this optimal
Fig.[H shows the SER obtained with and without the correctiéamily of designs. We also observed that the monic solution
term in the trellis branch metric. The figure also shows thR SEnust be designed for spectrally white inputs even if thealctu
for the full complexity Viterbi detector (witt8® states) that input is colored. The family of designs produces IIR filtars i
uses no channel shortening equalization. There is a smiall general, making their practical use somewhat limited, wher
noticeable gain in detection performance with the coroecti as for a low complexity implementation of optimal sequence
term. It must be noted that this modification does not requidetection (using Viterbi or BCJR-like algorithms) we remui
much more detector complexity. As becomes smaller (at short FIR targets.
higher SNRs) the correction term to becomes smaller alsoWe also derived an expression for the probability of se-
and indeed, the performances gain due to the correction tegoence detection error assuming 11D inputs for arbitrarg Fl
diminishes at high SNRs. or IR targets and equalizers. Using this as a performance

measure, we propose a design algorithm to find the optimal IIR
SER Performance equalizer and FIR target. Indeed, in the IIR limit for thegetr
0 , these solution coincide with the previously derived optitia

10 T T T T T T T T T T T
+— Without Correction Terrh: family of designs that satisfy APE.

el comm o [ These results are applied to an example ISI channel. Nu-
' merically, we observe that for 1ID inputs, we obtain nearly
optimal performance using the monic design. for input digna
constellations with unequal symbol energies we also need to
treat the input PDFP(:B) for the target channel as a design
parameter. The optimal detector is designed for the target
channel with the priorP(x) incorporated into the Viterbi
branch metric as a correction term, which would normally

\ have been ignored if we simply use the monic design. This is

N

Symbol Error Rate
i
oS,

N

i
o,
s

illustrated for the 11D ternary signaling example (Hig. Sheve
we see a small but noticeable gain by using the correctiom.ter

10 ‘ ‘
0 5 10 15 APPENDIX |

SNR (dB)
PROOF OFTHEOREMI[3|

Fig. 5. Comparison of SER performance for ternary input aigg Suppose that® € X is the transmitted sequence, wheve
is the set of sequences that are equally likely to be trabeehit
The channel and equalizer outputs are= h x « + w and
VIIl. SUMMARY z = f »y respectively. All sequences in the codebook have

Although a large body of literature exists for the design gtdual energy because the input symbols are IID and binary.
optimal FIR targets and equalizers, the implicit assunmptio hus, the target channel input is also treated as being IID:
in virtually all existing work on this subject is that MMSE P(z) = P(x).
equalization is optimal. The purpose of this work was to The Viterbi detector for the equalized channel computes the
question that assumption. The main contribution of thiskwogedquencer that minimizesD(z, ). Thus, the probability of
is a new perspective for the problem of channel shortenig§duence detection error is
equalization in terms of the underlying posteriori proba- seq ~ ~ o o
bilities unlike the traditional approach of using the MSME Pt = Pl{D(z’m) < D(z,2°) for somez # 2 }
equalization error as the criterion. We introduced the iofea < Z Z P{D(z,m) < D(z’mO)} (40)
posterioriequivalence (APE) between the equalized and target X TOEX pEX\T0
channels. Under this form of equivalence, any MAP-baseol1 h q foll ; h ion b q .
decoding algorithm designed for the target channel wowdd alvhere the se(;]on step follows from the union bound. Using
work optimallywhen applied to the equalized channel. In othépe property that
words, as far as MAP de_coding is concerned we can pretend la|? - ||b]|> = R(a — b,a + b) (41)
that the equalized channisl the target channel.

In our analysis of the problem we tregt g, o2 (noise for anya andb, where® denotes the real part, we obtain
variance in the target channel) and in some cases even the -

~ > o\ __ 2 o2
input PDF P(x) for the hypothetical target channel as design (z,2) = D(z,2°) = ||z — g z[|" — ||z — g xz°|
parameters. The equivalence is expressed as a set of atgebra =—AR(grx",z—gxx") (42)
conditions on the design parameters. The APE condition%

. o . . . ._“where
admit an infinite family solutions or designs for the equaliz © def T+ T°
xr = .

and target. In the special case that the input is IID and all 9
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Applying (@) to [42) and writingz = f xy wherey = where M is the length of the input codewords. The above

hx (x* —x~) +w we obtain calculations are similar to probability of error analys f
~ ~ oy o _ classical Viterbi detection [9].
D(z,x) - D(z,2°) = 4R(x ’gff*h*m ) The only remaining step is to estimate the variance of
+AR(x",gx (g — frh)xxT) A(e,z"). First note that

—AR(x™, g * f xw)

Ale,zT) =Rle,(q—p*xh)xx™
=4(op(x”) + Az, ") —p(z7)) (e,x™) =R(e,(q—prh)xz™)

=R(a,z™)
where , wherea = (g — p x h) x e. Now, A(e,z") is zero-mean
o(x) def Rx",pxhxx”) (43) becausert is zero-mean. Hence, the conditional variance of
gy def - n Ae,zt)is
Alx™,x") =R, (g—prh)xz") (44)
— def _
P(x”) = Rz, prw) (45) 1
def . var(A(e, z™)) = X (o) (Ae,zt))?
p=gx*f (46) atex+t(e)
g gxg. (47) _ ﬁ Y [Rlaz )
e
Note thaty)(z~) ~ N(0,02||p = ||?) is normally dis- ztext(e)
tributed. Therefore, Since the input is binary with symbols beirgl, X (™)
Mz, z") def P{D(z,:c) - D(z,mo)} contains all sequencest that satisfy
= P{)(x) — Az, a") > ¢(x7)}. (48) en #0 = 1 =0.
Thus, [40) can be rewritten as It is an easy exercise to check that
1 _ var(A(e,z ™)) = Z |an|?
P < — Oz, ™ ’ "
e - |X| Z Z ( ) {n:e,=0}

- #AO0zteX+(x)

: which may also be written as
where X*(x™) is the set of sequences" such thatz™ + y

x~ andzt — 2~ are valid sequences i’. Note thatx™ is var(A(e,z ™)) = min ||a — v|?
uniformly distributed int* (=) when conditioned oz ~. In °
the high SNR regime, it is a good approximation to assume

that dominant error sequences are the only source of d&tectnere v is a vector whose temporal support is the same as

errors. This allows us to fix™ = e for any error sequence ipat of e. Combining [@B), [49),[(80), and (53), we obtain
e € £ in the equivalence clas$ of dominant error sequences.pseq ~ /-;Qg(\/SN—R) where

This yields

=min|[(g—p*h)xe—v|? (53)

h 2
se: |5| =+ SNR: |§R<e’p* *e>|
P < 1y e ) min, (g — B *h) xe — v]]? + 03 [p* |
o [Re,p hxe)f?

Ellxt = max —
:LJTﬁEMau&mﬂ o (g —brh)xe—vl2+ob|prel?
is the effective SNRf the system. |

with the expectation taken over™ given thatz~ = e. For
analytical tractability, we assume that(e,z™) is approxi-

el ’ APPENDIXII
mately normally distributed. Thud, (48) yields ANALYTICAL SOLUTION TO (38)
pred o KQ((bEZ;) (a9)  The maximization[(38) may be rewritten as
g

min ||(q — pxh)xe—v|*+ o2 |prel
where P,q,v

subject togy = 0 and

o?(e) = var(A(e, ™)) 4+ o2 ||[px || (50)
X+ R(e,pxhxe) =1 (54)
n =gl e (51) < >
| X thereby removing the scaling invariance of the solutions.

The constants is evidently the product of the number ofDefineS = {l:e; # 0} = {s1,...,5s}. Then
allowable dominant error sequencgd and the probability,

_ —jlw
|X*(e)|/|X|, thatz° will allow that error sequence. The bit Viw) = sze
error rate (BER) is approximated by ZGSL
Pbit _ U)H(e) psed (52) Q(W) =2 Z q COS(Z(U).
€ M ¢ =1
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wherev;, l € Sandq : 1 =1,..., L are the FIR parameters.for some3, which have the required form in Theorér 2 for

Therefore, a = \/o2. Therefore,[(31) suggests that we must set
QW)E(w) —V(w) = B(w)z 5
o, = aa =\
where .
In the FIR case, however, the problem of choosing the correct
B(w) = (B1 Bs(w)) value of o2 is somewhat ambiguous because FIR solutions
Bi(w) =2E(w )(cm( w) cos(2w) cos(Lw)) do not satisfy the hypotheses in Theorem 2. We nominally
Bsy(w) = — (e—jslw . e—,jSJw) seto? = X in the FIR case as well. This is a good first
’ ’ . approximation and fine-tuning this parameter may produce
T = (Q1, oty 4Ly Usy, ) Us.;) better results.
Finally, let
def REFERENCES
R(w) = P(w)H(w)E(w). (55)

(1]
In terms of the above quantities, we can rewrite the optimiza
tion as 2]

min % {/ |B(w)x — R(w)|*dw + 2 / |R(w)/H (w)|*dw

subject to
€ R / R*(w)E(w)dw
™

All integrals are taken ovdr, 7]. The cost function reduces (51

min [%3‘3/ (A w

where A(w) =1+ 02 /|H(w)|* and

1 *
C= %/B (w)B(w)dw

Using variational calculus we obtain

Aw)R(w) — B(w)x = \E(w)

(3]

(4

— 1. (56)

W2 - 2R(w)*B(w)cc)dw + m*cm] .

(7]
(8]
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[10]
1
-— | B* d =0
5 (W)R(w)dw + Cx "
where )\ is a Lagrange multiplier. Solving the above simulta-
neous equations yields [12]

L) = BWwiz +AE(Ww) [13]
R(w) 15 »
B _ B*(w)E(w)
where | [ B"(w)B() 116)
D=5 / AW ™

Finally P(w) can be solved froni(55). Note thatis uniquely
determined by the constraiif {56). However, we could choo[se
an arbitrary value fol (such as\ = 1) since it merely scales
the solution without altering the value 6N\R. (18]
In the long target (IIR) limit, it is easy to see that the
solutions converge to the following limits: [19]
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