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A PosterioriEquivalence: A New Perspective for
Design of Optimal Channel Shortening Equalizers
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Abstract— The problem of channel shortening equalization for
optimal detection in ISI channels is considered. The problem
is to choose a linear equalizer and a partial response target
filter such that the combination produces the best detection
performance. Instead of using the traditional approach of MMSE
equalization, we directly seek all equalizer and target pairs that
yield optimal detection performance in terms of the sequence
or symbol error rate. This leads to a new notion ofa posteriori
equivalence between the equalized and target channels witha
simple characterization in terms of their underlying probability
distributions. Using this characterization we show the surprising
existence an infinite family of equalizer and target pairs for which
any maximum a posteriori (MAP) based detector designed for the
target channel is simultaneously MAP optimal for the equalized
channel. For channels whose input symbols have equal energy,
such asq-PSK, the MMSE equalizer designed with a monic target
constraint yields a solution belonging to this optimal family of
designs. Although, these designs produce IIR target filters, the
ideas are extended to design good FIR targets. For an arbitrary
choice of target and equalizer, we derive an expression for the
probability of sequence detection error. This expression is used
to design optimal FIR targets and IIR equalizers and to quantify
the FIR approximation penalty.

Index Terms— Intersymbol interference, linear equalization,
channel shortening, partial response, target design, MAP detec-
tion, decision feedback.

I. I NTRODUCTION

The problem of designing channel shortening equalizers
for maximum-likelihood sequence detection in inter-symbol
interference (ISI) channels has been widely studied [1–5].The
function of the equalizer is to modify the channel response to
reduce the length of the ISI in the system thereby reducing
the complexity of the sequence detector. Traditionally, the
equalizer is designed so that the equalized channel response
approximates a pre-specified short FIR sequence called the
partial response(PR) target. Two commonly studied classes
of equalizers are the zero-forcing equalizer (ZFE) and the
minimum mean-squared error (MMSE) equalizer. The ZFE
forces the equalized channel response to match the target
response exactly. The undesired effect of zero forcing is
that it colors the noise spectrum and may amplify the noise
significantly. In contrast, the MMSE equalizer minimizes the
variance of the equalization error, but the error is signal
dependent. In both cases the goal is to make the equalized
channel responseclose to the target response. However, the
ultimate goal of the channel shortening equalization oughtto
be a detection performance measure such as the sequence or
symbol error rate.

The authors are with Seagate Research, Pittsburgh, PA 15222. Email:
ramanv@ieee.org, fatih.erden@seagate.com

In this work we take revisit the problem equalizer design in
the context of optimal (MAP) detection of the input. The main
contribution of this paper is a new perspective for the problem
of channel shortening equalization in terms of the underlying
a posteriori probabilities (APPs) rather than the traditional
approach of using the MMSE equalization error as the criterion
[1–6]. We pose the question:In what sense should the target
channel be equivalent to the equalized channel to achieve best
detection performance?The answer to this question naturally
leads us to a new notion ofa posteriori equivalence(APE)
between the equalized channel and the target channel. We
show that this form of equivalence, which is expressed in terms
of their underlyinga posteriori probabilities, guarantees no
performance loss due to equalization compared to the optimal
detector for the original channel. This result thus provides a
new recipe for equalizer and target design, which is different
from the heuristic approach of matching the responses of the
target and the equalized channel. We also prove that there is
a family of IIR equalizers and targets which guarantee APE.

This paper is organized as follows. In Sections II and
III we review the background material on optimal sequence
detection and linear equalization. In Section IV we consider
the problem of sequence detection for the equalized channel.
We present our main theoretical results includinga posteriori
equivalence and its algebraic characterization. In Section V
we consider practical implications of our results. In particular,
we show that the MMSE equalizer designed with a monic
target constraint yields an optimal solution for ISI channels
when the input symbols have equal energy. Unfortunately,
the equivalence conditions usually hold only for IIR targets,
making the results somewhat useless for channel shortening.
However, in Section VI we extend the results to FIR target
design where we seek the best FIR target and IIR equalizer
with a small but acceptable “FIR approximation penalty.” We
derive an expression for the sequence detection error rate,and
use this as a performance measure for the filter design. For
simplicity of the analysis we consider only IIR equalizers.The
problem of FIR equalizer design would entail the additional
task of optimizing the processing delay. We refer the readerto
[6–8] for the problem on optimizing the processing delay for
systems using MMSE equalization. A similar analysis related
to FIR equalizer design would be equally important in our
problem, but is beyond the scope of this paper. Finally, in
Section VII we apply our theory to an example ISI channel
with binary and non-binary inputs to confirm our predictions
through computer simulation.
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A. Definitions and Notation

Let a denote a discrete-time sequence{an : n ∈ Z}. If a

has finite energy its discrete-time Fourier transform is defined
as

F{a} = A(ω) =
∑

n

ane
−jnω.

The convolution of two sequencesa andb is denoted byc =
a ⋆ b:

cn =
∑

m

ambn−m.

Let δ denote the discrete delta function:δn = 0 for n 6= 0
andδ0 = 1. Define the inner product between two sequences
a andb as

〈a, b〉 =
∑

n

a∗nbn =
1

2π

∫ π

−π

A∗(ω)B(ω)dω

where∗ denotes complex conjugation for scalars or conjugate-
transposition for matrices. Thus, the norm ofa is

‖a‖ = 〈a,a〉1/2.

Given a sequencea, let ä be obtained by time-reversal and
conjugation ofa, i.e.,

än = a∗−n.

The Fourier transform of̈a is A∗(ω). Thus, we readily obtain
the following identity:

〈a ⋆ b, c〉 = 〈b, ä ⋆ c〉 (1)

i.e., the adjoint of the convolution operation witha is convo-
lution with ä.

Let x and y denote real or complex stationary random
processes. The cross-correlation function is defined by

rxy
n = ζ−1

E(xm+ny
∗
m)

whereE(·) denotes expectation andζ is the number of real
dimensions per sample, i.e.,ζ = 1 for real processes and
ζ = 2 for complex ones. The autocorrelation ofx is obtained
by settingy = x. The power spectral density ofx is Sx(ω) =
F{rxx}. We write x ⊥ y if rxy = 0.

B. ISI Channel Model

Consider the following discrete-time model for a real or
complex-valued linear time invariant system

y = h ⋆ x + w (2)

where x = {xm} is the input to the channel,h = {hm}
is the channel impulse response andw = {wn} is additive
white Gaussian noise withSw(ω) = σ2

w. Assume thath
has finite energy but is possibly non-causal and infinite. The
channel model (2) is usually the base-band representation
after whitened matched filtering [9] and describes a variety
of communication systems.

In the case of complex channels, the noise is assumed to
be circularly symmetric. Thus, the real and imaginary com-
ponents of the noise samples are independent with variance
σ2

w. Let the input power spectral density beSx(ω). As a

special case we also shall consider independent and identically
distributed (IID) inputs withSx(ω) = 1. An example for the
input symbol set is theQ-phase PSK constellation,

C = {
√

2ej2πq/Q : q = 0, . . . , Q− 1}

in the complex case or the BPSK (bipolar binary) constellation
C = {−1,+1} in the real case.

II. OPTIMAL SEQUENCEDETECTION

Suppose that a messagex = {xm : m = 0, . . . ,M − 1}
of finite lengthM symbols is transmitted through the channel
(2). The received signal is given by

yn =
M−1
∑

m=0

hn−mxm + wn. (3)

Since the additive noise is white Gaussian, we have

P (y|x) ∝ exp
(

− D(y,x)

2σ2
w

)

(4)

where

D(y,x) =
∑

n

∣

∣

∣
yn −

M−1
∑

m=0

hn−mxm

∣

∣

∣

2

(5)

with the summation overn carried over the finite region of
interest where the samplesyn are available.

Given the output sequencey, the maximuma posteriori
(MAP) estimate ofx is given by

x̂
def
= arg max

x

P (x|y) = arg max
x

P (y|x)P (x)

= argmin
x

(D(y,x)

2σ2
w

− logP (x)
)

(6)

where P (x) is the prior probability distribution onx. If
this distribution is uniform, then (6) reduces to maximum-
likelihood (ML) detection of the input sequence:

x̂ = arg min
x

D(y,x) = ‖y − h ⋆ x‖2. (7)

Unfortunately, the direct use of the above expression is
limited due to its computational complexity which grows
exponentially with the length of the ISI. However, whenhn

is a short FIR sequence, the above cost function can be
minimized exactly and computationally efficiently using the
Viterbi algorithm which was originally devised to decode
convolutional codes [9–11].

III. R EVIEW OF L INEAR EQUALIZATION

In order to implement the Viterbi algorithm to solve the
ML sequence detection (7) with manageable complexity, we
need to reduce the length of the ISI in the system. This is
usually accomplished by using a linear equalizer to condition
the channel response to match a pre-specifiedtarget response.
When the target is a short FIR filter, it is called apartial
response(PR) target. The Viterbi detector operates on the
equalized channel to perform sequence detection pretending
that the samples were the output of a hypothetical target
channel.
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Let f = {fn} andg = {gn} denote the equalizer and target
filters respectively. For the moment assume that the target is
fixed. Fig. 1 illustrates the system with an equalizer whose
output is

z = f ⋆ y = f ⋆ h ⋆ x + f ⋆w

= l ⋆ x + u (8)

wherel = f ⋆ h is the the response of the equalized channel
and u = f ⋆ w is the output noise whose power spectral
density isSu(ω) = |F (ω)|2Sw(ω) = σ2

w|F (ω)|2.
Definition 1: The target channelis a hypothetical channel

defined by

z̃ = g ⋆ x + v (9)

wherex is the input,v is additive white Gaussian noise with
Sv(ω) = σ2

v , and z̃ is the output.
The original channel with the equalizer is illustrated in

Fig. 1 and the target channel that approximates it is shown
in Fig. 2. Traditionally, the equalizer and target are designed
to make the equalized channel responsel close to targetg,
while keeping the noise white.

H Fxn

wn

zn

yn

Fig. 1. The equalized channel

xn G z̃n

vn

Fig. 2. The target channel

A. Zero Forcing Equalizer (ZFE)

The ZFE modifies the channel response to match the target
filter exactly, i.e.,l = g. Thus, in the frequency domain, the
equalizer is given by

F (ω) =
G(ω)

H(ω)
. (10)

The spectral density of the noiseu is

Su(ω) = |F (ω)|2Sw(ω) =
|G(ω)|2
|H(ω)|2σ

2
w. (11)

An undesirable problem with zero-forcing equalization is that
when the channel response|H(ω)| has a spectral null or attains
very small values, the equalized noise is highly colored and
has large variance. The ZFE is rarely used for this reason.

B. Minimum Mean Squared Error (MMSE) Equalizer

A widely used equalizer in practical systems is the MMSE
equalizer which is designed to minimize the variance of the
equalization errore defined as

e
def
= g ⋆ x − f ⋆ y. (12)

The MMSE equalizer ensures thate ⊥ y, which yields

F (ω) =
Sx(ω)H∗(ω)G(ω)

|H(ω)|2Sx(ω) + σ2
w

(13)

whereSx(ω) is the power spectral densities of the inputx.
The spectral density of the estimation error is given by

Se(ω) =
|G(ω)|2Sx(ω)σ2

w

|H(ω)|2Sx(ω) + σ2
w

. (14)

The advantage of the MMSE design over the ZFE is that the
spectrum of the MMSE noise (14) is less colored and always
smaller than the ZFE noise (11) and spectral nulls inH(ω)
cause no problems. However,e is signal dependent, which
may cause the Viterbi detection to be suboptimal.

C. Target Design

Instead of choosing a fixed target, we seek the best target
of a fixed length. In practice, the target is usually designedfor
an MMSE equalizer. Thus, we minimize the variance of the
MMSE equalization error (14):

min
g

1

2π

∫ π

−π

Se(ω)dω (15)

where the targetg is assumed to have lengthL:

g = {g0, g1, . . . , gL−1}.

The resulting cost function is a simple quadratic function of
the target filter taps. Clearly, with no further constraintson g

we obtain the trivial solutiong = 0. Therefore, an additional
constraint is imposed ong such as theunit-energy constraint

∑

n

g2
n = 1 (16)

or themonic constraint

g0 = 1. (17)

or sometimes theunit-tap constraintgk = 1 for some k.
In each of these cases, the optimal target, known as the
generalized partial response(GPR) target, is found easily by
solving (15) subject to the appropriate constraints.

For illustrative purposes, we derive the solution to the monic
design in the IIR limit (L → ∞), where the problem can be
expressed in the frequency domain as

min
g

=
1

2π

∫ π

−π

|G(ω)|2Sx(ω)σ2
w

|H(ω)|2Sx(ω) + σ2
w

dω (18)

over all causal targetsg with g0 = 1.
The causal and monic constraint ong is cumbersome to

express directly in the frequency domain. However, we know
that among all the causal and stable spectral factors ofQ(ω) =
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|G(ω)|2 the value ofg0 is maximized for the minimum-phase
factor [12]. This maximum value is given by

log g0 =
1

2π

∫ π

−π

logQ(ω)dω.

Therefore, we rewrite the optimization (18) in terms ofQ(ω)
as

min
g

1

2π

∫ π

−π

Q(ω)Sx(ω)σ2
w

|H(ω)|2Sx(ω) + σ2
w

dω

such that

1

2π

∫ π

−π

logQ(ω)dω = 0. (19)

The Lagrangian

L(q, λ) =

∫ π

−π

Q(ω)Sx(ω)σ2
wdω

|H(ω)|2Sx(ω) + σ2
w

− λ

∫ π

−π

logQ(ω)dω

is stationary at the solution. Using calculus of variations, we
obtain

|G(ω)|2 = Q(ω) = λ
|H(ω)|2Sx(ω) + σ2

w

Sx(ω)σ2
w

=
λ

σ2
w

|H(ω)|2 +
λ

Sx(ω)
(20)

where the Lagrange multiplierλ is chosen to satisfy (19):

λ = exp
(

− 1

2π

∫ π

−π

log
( |H(ω)|2Sx(ω) + σ2

w

Sx(ω)σ2
w

)

dω
)

.

The optimalG(ω) is the causal minimum-phase spectral factor
of Q(ω), and the MMSE equalizer (13) reduces to

F (ω) =
λ

σ2
w

H∗(ω)

G∗(ω)
(21)

The spectrum of the estimation error (14) is white for this
solution:

Se(ω) = λ. (22)

Henceforth, we refer to this solution as themonic designor
monic solutionimplicitly associating the optimal target with
the MMSE equalizer. For the special case of zero-mean IID
inputs withSx(ω) = 1, the above solution reduces to

F (ω) =
H∗(ω)G(ω)

|H(ω)|2 + σ2
w

(23)

|G(ω)|2 =
λ

σ2
w

(|H(ω)|2 + σ2
w) (24)

Coincidentally, this solution is related to the linear MMSE
decision feedback equalizer (DFE) for the given ISI channel
[13–17]. The MMSE-DFE structure is optimal in achieving
the capacity for an ISI channel with additive white Gaussian
noise [16–19]. However, it is not immediately obvious or even
always true that the above equalizer and target filters would
be optimal for sequence detection of (non-Gaussian) input
symbols.

As a caveat we reiterate that the sequence detection is not
meant to be implemented with decision feedback. We still
use the Viterbi algorithm or a MAP based algorithm such
as the forward-backward algorithm to compute the symbola

posteriori probabilities (APPs). It has been observed that the
monic design performs better in detection than other design
criteria such as the energy constraint (16) or theunit-tap
constraint on the target. In the following section, we shall
formally prove this conjecture.

In practice, we need to design FIR equalizers and targets
with unknown channel and noise characteristics. In this case
the second order statistics of the channel input and output
are estimated using training and subsequently used to design
FIR filters. The solutions to these problems for the various
target constraints is described in [1, 6, 20]. We point out that
this method is also applicable if the noise is colored because
the design ensures that the noise whitening is automatically
absorbed into the equalizerf .

IV. SEQUENCEDETECTION FOR THEEQUALIZED

CHANNEL

Traditionally, the sequence detection is performed in two
steps. The first step is to equalize the channel output. The
next step is to perform the detection pretending that the
equalizer outputz (Fig. 1) were the output of the hypothetical
target channel (Fig. 2). In other words, although the sequence
detector is optimally designed for the target channel it is,in
reality, applied to the equalized channel. In this section we
consider the performance of such a detector. For simplicityof
analysis we assume that the target and equalizer are IIR and
the target is causal. We consider the design of FIR targets in
Section VI.

Consider the system described by (8), restated below:

z = l ⋆ x + f ⋆w.

By design, the above channel approximates the target channel
(9). The conditional probability of the output of the target
channel is

P (z̃|x) ∝ exp
(

− D̃(z,x)

2σ2
v

)

(25)

where

D̃(z̃,x) =
∑

n

∣

∣

∣
z̃n −

M−1
∑

m=0

gn−mxm

∣

∣

∣

2

. (26)

with the summation overn carried over a finite region of
interest where the samples ofz̃ are available. The following
result provides an alternate expression forD̃(z̃,x) which will
be useful in proving a form of equivalence between the target
channel and the equalized channel.

Lemma 1:Suppose the equalizerf and targetg are chosen
such thaẗg ⋆ f = αḧ for someα > 0, then

D̃(z,x) − ‖z‖2 = 〈x, s ⋆ x〉 + α(D(y,x) − ‖y‖)2

wheres = g̈ ⋆ g − αḧ ⋆ h.
Proof: We begin by expanding̃D(z,x) as follows

D̃(z,x) = ‖z − g ⋆ x‖2

= ‖z‖2 − 2ℜ〈g ⋆ x, z〉 + 〈g ⋆ x, g ⋆ x〉
= ‖z‖2 − 2ℜ〈x, g̈ ⋆ f ⋆ y〉 + 〈x, g̈ ⋆ g ⋆ x〉



VERSION FEBRUARY 2, 2008 5

where ℜ denotes the real part. The last step follows by
applying (1) and usingz = f ⋆ y. Using the hypothesis that
g̈ ⋆ f = αḧ we obtain

D̃(z,x) = ‖z‖2 − 2αℜ〈ḧ ⋆ y,x〉 + 〈x, g̈ ⋆ g ⋆ x〉. (27)

Meanwhile, a similar argument shows that

D(y,x) = ‖y − h ⋆ x‖2

= ‖y‖2 − 2ℜ〈ḧ ⋆ y,x〉 + 〈ḧ ⋆ h ⋆ x,x〉. (28)

From (27) and (28), we obtain the desired result

D̃(z,x) − ‖z‖2 = 〈x, s ⋆ x〉 + α(D(y,x) − ‖y‖)2

wheres = g̈ ⋆ g − αḧ ⋆ h.

A. Equivalence of Equalized Channel and Target Channel

We now interpret Lemma 1 in terms of the underlying
probability distributions. Let upper-case letters denoterandom
variables and lower-case letters denote realizations of these
random variables. Suppose thatF (ω) is a stable filter, i.e.,
it has no spectral nulls or singularities. Then,z = f ⋆ y is
invertible. Hence, for the equalized channel

P (x|z) = P (x|y) ∝ P (x)P (y|x)

∝ P (x) exp
(

− D(y,x)

2σ2
w

)

.

where the constants of proportionality above (and henceforth)
are always independent ofx. Using Lemma 1 and noting that
y andz are constants, we obtain

P (x|z) ∝ P (x) exp
(

− D̃(z,x)

2ασ2
w

+
〈x, s ⋆ x〉

2ασ2
w

)

. (29)

Suppose that the hypothetical target channel is assigned an
input prior distributionP̃ (x) which is possibly different from
P (x). The a posterioriprobability of x is

P (x|z̃) ∝ P̃ (x)P (z̃|x) ∝ P̃ (x) exp
(

− D̃(z̃,x)

2σ2
v

)

. (30)

Comparing (29) and (30), we see that by setting the noise
varianceσ2

v and the input prior distributioñP (x) of the target
channel (9) to

σ2
v

def
= ασ2

w (31)

P̃ (x) ∝ P (x) exp
(〈x, s ⋆ x〉

2σ2
v

)

(32)

we ensure that thea posteriori PDFs for the equalized and
target channels are equal:

P (X = x|Z = z) = PT (X = x|Z̃ = z)

with the understanding that the left-hand side is the APP
corresponding to the equalized ISI channel (2) with a prior
P (x) onx, while the right-hand side is the APP corresponding
to the target channel(9) with input PDFP̃ (x).

Remark 1:We reiterate that the target channel is a hy-
pothetical channel and we are free to treat its parametersg

andσ2
v as well as its input PDF̃P (x) as design parameters.

We assume neither thatf is the MMSE equalizer designed

for the targetg nor that σ2
v is the variance of equalization

error. Although this approach is radically different from the
traditional approach in the literature on channel shortening
equalization [1, 3, 6], it is essential to derive the correctform of
equivalencebetween the target and equalized channels defined
below.

Definition 2: The equalized channel is equivalent to the
target channel in thea posteriori sense if they produce the
samea posteriori probability for the input given the output.
This form of equivalence is calleda posteriori equivalence
(APE).

Evidently, this definition of equivalence is the most natural
one from the perspective of MAP detection. As a caveat, we
point out thatPT (Z̃ = z) andP (Z = z) need not be equal,
i.e., the equalizer outputz would not be a typical output of the
target channel. The above observation may be stated succinctly
as follows:

Theorem 1:The equalized channel (8) with the prior dis-
tribution P (x) and the target channel (9) with the prior
distribution P̃ (x) area posterioriequivalent.

In general, the MMSE or ZFE equalizers do not guarantee
this form of equivalence even though they attempt to make the
equalized channel response close to the target response.

Corollary 1: Suppose that the target and equalizer are cho-
sen to be the monic solution (20) and (21). Furthermore, let
σ2

v = λ and let

P̃ (x) ∝ P (x) exp
( 〈x, s ⋆ x〉

2λ

)

be the input prior distribution for the target channel (9) where
S(ω) = λ/Sx(ω). Then, the equalized channel is equivalent
to the target channel in thea posteriorisense.

Proof: Observe that the monic target (20) and equalizer
(21) satisfy the hypotheses in Lemma 1 if we setα = λ/σ2

w

and S(ω) = λ/Sx(ω). Therefore, by (31),σ2
v = ασ2

w = λ.
The claimed result follows from Theorem 1.

The above result shows that we can use the monic design
for optimal MAP detection provided that we use the prior
distribution P̃ (x) for the target channel. In many cases, the
input is IID with a flat spectrum (Sx(ω) = 1) implying that
P̃ (x) = P (x), i.e., we do not need a different prior PDF for
the target channel.

Remark 2: If we pretend that the equalizer outputz came
from the output of the target channel with a carefully chosen
input prior distribution, then all MAP-based detection algo-
rithms designed for the target channel work optimally when
applied to the equalized channel. These algorithms include
hard-decision decoding such as the Viterbi algorithm, and
soft-decision decoding such as soft-output Viterbi algorithm
(SOVA) and the BCJR algorithm. Soft-decision algorithms,
unlike the Viterbi algorithm, use an extra parameter, viz. the
variance of the additive noise in the channel. When applying
soft decoding to the target channel, we must useσ2

v as this
variance parameter. Our calculation above show thatσ2

v simply
equalsλ, the equalization error variance (see (22)). This fact
is routinely assumed in many system designs with no rigorous
justification but it is fortunately the correct value to use.
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V. PRACTICAL CONSIDERATIONS

We now consider some practical implications of our main
result in Section IV. Henceforth, we assume thatP (x) is a
uniform distribution over the set of allowed code sequences.
In this case, the MAP sequence estimate (6) coincides with
the ML estimate (7).

Theorem 2:Suppose that all the input sequences in the
message codebook have equal energy and that the equalizerf

and targetg are chosen such that

G∗(ω)F (ω) = αH∗(ω) (33)

|G(ω)|2 = α(|H(ω)|2 + β) (34)

for someα > 0 andβ ∈ R that produces a validG(ω), then
we can setP̃ (x) = P (x). Furthermore, ifP (x) is uniform,
the optimal estimate of the input is

x̂ = arg min
x

D(y,x) = argmin
x

D̃(z,x). (35)

Proof: In the time domain, the hypotheses imply that
s = g̈ ⋆ g − αḧ ⋆ h = αβδ and g̈ ⋆ f = αḧ. Therefore,
P̃ (x) = P (x). The proof now readily follows by applying
Theorem 1.

Theorem 2 is applicable, for example, if the input symbols
are elements of theQ-phase PSK constellation, i.e.,xn ∈ C =
{
√

2ej2πq/Q : q = 0, . . . , Q − 1} in the complex case or the
BPSK constellationC = {−1,+1} in the real case, since all
message sequences have equal energy.

Clearly, for this special family of equalizer and target filters
there is no performance loss in sequence detection if we
minimize the surrogate cost functioñD(z,x) instead of the
original costD(y,x). The practical implications of this result
are that in the IIR limit we can achieve optimal sequence
detection using any solution from the family (see also [21]).
In general, these targets are as long as the channel itself.
However, we require a short FIR target for a Viterbi-based
implementation. We address this problem in Section VI where
we show how to design good FIR targets to minimize the
detection error rates.

Note that the parameterα is merely a scaling factor (the
target and equalizer scale as

√
α) but β affects the shape

of the filters. Thus, we have a degree of freedom in design
represented byβ. We also have the freedom to choose the
phase response ofG(ω). However, the most logical choice
would be to chooseG(ω) as the causal minimum-phase
spectral factor of (34). We now consider several interesting
cases in the family of optimal solutions:

1) The caseα = 1 andβ = 0 produces

|G(ω)|2 = |H(ω)|2

and

F (ω) =
H∗(ω)

G∗(ω)
=
G(ω)

H(ω)

which is an all-pass zero-forcing equalizer filter which
keeps the noise white.

2) Settingα = λ/σ2
w andβ = σ2

w yields the monic solution
(see (23) and (24)) forSx(ω) = 1, proving its con-
jectured optimality in the asymptotic (IIR) case. When

β 6= σ2
w, the solution corresponds to an monic design for

a different noise level. However, this mismatch causes
no performance loss in sequence detection. Curiously,
some negative valuesβ ∈ (− infω |H(ω)|2, 0) also yield
optimal solutions even though they do not represent the
variance of any meaningful noise.

Remark 3:The above argument shows that the monic de-
sign is an optimal choice if the input spectrum is white.
However, suppose that channel input spectrum is colored,
perhaps by the use of spectral shaping codes. Then, the monic
design (21) has the required form in Theorem 2. However,
the target (20) does not because it depends onSx(ω). Hence,
the monic design may be suboptimal for colored inputs. In
fact, for optimality we must perform the monic design for the
target and equalizer with an IID input regardless of whether
the actual input is white or colored. This is particularly true
at low SNRs where theσw is large and the second term in
(20) dominates. At high SNR values, the effect of the input
spectral color on training diminishes.

A. Matched Filter Equalization

We briefly examine the special case of the solutions in
Theorem 2 when we letβ → ∞. This corresponds to the
monic solution for a very low SNR, i.e.,σ2

w → ∞. For
convenience, we letα = β without loss of generality. Then,
(33) and (34) imply that

|G(ω)|2 = β2(1 + |H(ω)|2β−1) (36)

and
F (ω) = βH(ω)∗/G∗(ω).

For β ≫ 1, we use (36) to expressG(ω) as

G(ω) = β +A(ω) +O(β−1)

whereA(ω) must be causal ifG(ω) is minimum-phase. Thus,
as β → ∞ we haveF (ω) approaches thematched filter
H∗(ω). Now, observe that

|G(ω)|2 = β2
[

1 + (A(ω) +A∗(ω))β−1 +O(β−2)
]

Comparing this with (36), we obtain

A(ω) +A∗(ω) = |H(ω)|2 +O(β−1).

Therefore, in the time-domain

an =











rh
n if n > 0

rh
0 /2 if n = 0

0, if n < 0

whererh = ḧ ⋆h is the auto-correlation function ofh. Using
g = βδ + a +O(β−1) it is readily verified that

D̃(z,x) = ‖z − g ⋆ x‖2

= ‖z‖2 − 2ℜ〈g ⋆ x, z〉 + 〈x, g̈ ⋆ g ⋆ x〉
= β2‖x‖2 − 2β(ℜ〈x, z〉 − 〈x,a ⋆ x〉) +O(1)

Since‖x‖2 is constant for all inputs sequences andβ → ∞,
we deduce that the ML estimation rule becomes

arg min
x

D̃(z,x) = arg max
x

ℜ〈x, z − a ⋆ x〉. (37)
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We interpret the above calculations as follows. The equalizer
is a matched filter:f = ḧ and the termz − a ⋆ x repre-
sents the equalizer output with the post-cursor ISI removed
using decision feedback. The estimator simply maximizes the
correlation between this sequence with the input.

It is easy to verify that〈x,a ⋆ x〉 = 1
2‖h ⋆ x‖2. Thus, the

matched filter equalization structure may be derived alterna-
tively directly from Lemma 1 by lettingg = δ and f = ḧ.
This approach gives us the following rule for ML estimation

x̂ = argmax
x

ℜ〈x, z〉 − 1

2
‖h ⋆ x‖2

which is equivalent to (37).

VI. OPTIMAL FIR TARGET DESIGN

In the previous sections we showed the existence a family
of equalizers and targets that achieve the optimal sequence
detection performance if we pretend that the equalizer output
came from the target channel. Unfortunately, the optimal
target, being the minimum phase spectral factor of (24), has
the same length as the original channel (except in rare cases
where it can be shorter). As such, we have not reduced the
detector complexity by equalization.

In this section, we consider the more practical problem
of the design of FIR targets to achieve the best detection
performance. We consider only real channels with BPSK input
symbols (C = {−1,+1}). With some effort, these result can
be generalized to complex channels or non-binary inputs as
well.

Suppose thatx◦ is the actual input to the channel, andx̂

is the ML sequence estimate. Thene = (x̂ − x◦) is anerror
sequence. We say that two error sequences belong to the same
equivalence classif they are related to each other by a time-
shift or phase-rotation (or sign-change). Of all error sequences,
a dominant error sequenceis one that which minimizes‖ẽ‖2

whereẽ = h⋆e is the noise-free channel response to the input
e. We call ẽ a dominantoutput error sequence.

Clearly, dominant error sequences are not unique because
all sequences in the equivalence class of a dominant error
sequences are also dominant. However, we shall assume that
there is a unique dominant equivalence class whose represen-
tative elemente has the canonical form:e0 6= 0 and en = 0
for n < 0. Indeed, some channels could have a multiplicity
of dominant events that belong to the different equivalence
classes. In that case our probability of error estimate would
be scaled by the multiplicity factor.

Let Qg(·) be the GaussianQ-function

Qg(x) =
1√
2π

∫ ∞

x

e−t2/2dt.

We now estimate the probability of sequence detection error
for any choice of target and equalizer in terms of theQ-
function.

Theorem 3:At high SNR, the probability of sequence de-
tection error for a real BPSK channel is given byP seq

e ≃
κQg(

√
SNR) for some constantκ with SNR is the effective

signal-to-noise ratioof the system

SNR = max
v

|ℜ〈e,p ⋆ h ⋆ e〉|2
‖(q − p̈ ⋆ ḧ) ⋆ e − v‖2 + σ2

w‖p ⋆ e‖2

wherep = f ⋆ g̈, q = g ⋆ g̈, andv is any sequence with the
same temporal support as the dominant error sequencee.

Theorem 3 is proved in Appendix I using error analysis
similar to that of standard Viterbi detection [9, 22]. Note that
the bit error rate (BER) also takes the same form asP seq

e but
has a different constant thanκ. The above result is applicable
for FIR and IIR equalizers and targets. The optimal equalizer
f and targetg are chosen to maximizeSNR subject to relevant
constraints.

For practical reasons, we seek FIR targets, since the detector
implementation complexity is exponential in the target length.
The constraint on the equalizer length is less important since
the complexity growth is only linear. For simplicity we assume
that the equalizer is IIR but the target is FIR with lengthL. In
this case, it is more convenient to maximizeSNR overp and
q becausef andg can be recovered uniquely fromp andq

by spectral factorization. Note thatp is IIR but q, being the
autocorrelation function ofg, is FIR. Furthermore, we have
Q(ω) ≥ 0. We write SNR = maxv SNR(p, q,v) where

SNR(p, q,v)
def
=

|ℜ〈e,p ⋆ h ⋆ e〉|2
‖(q − p̈ ⋆ ḧ) ⋆ e − v‖2 + σ2

w‖p ⋆ e‖2

Now observe that

SNR(p, q,v) = SNR(p, q + βδ,v − βe)

for any (p, q,v) and β ∈ R. Moreover, if v has the same
temporal support ase, then so doesv′ = v − βe. Since we
are minimizingSNR(p, q,v) over all v, we conclude that the
quantity

max
p,v

SNR(p, q,v). (38)

would remain unchanged if we replaceq by q + βδ. This
enables us to temporarily replace constraintQ(ω) ≥ 0 by
q0 = 0 for the sake of the maximization. Having rid of the
constraint onQ(ω), the maximization is readily transformed
into a quadratic minimization. As a final step, we add a
sufficiently largeβ to the solutionQ(ω) to make it satisfy
Q(ω) ≥ 0.

The analytical solution to (38) is presented in the Appendix
II. We also show there that the noise variance in the hypothet-
ical target channel noise variance (31) is set toσ2

v = λ, the
Lagrange multiplier used in the optimization.

Clearly, the above maximization admits infinitely many
solutions parameterized byβ. As the target length approaches
infinity, these solutions converge precisely to the family of
solutions in Theorem 2. In this limit the equalizer and target
filters of Theorem 1 maximize the effective SNR. Furthermore,
this maximum value is

SNRmax =
‖h ⋆ e‖2

σ2
w

. (39)

In practice we are interested in FIR equalizers for ease of
implementation. We point out that we could still maximize
the effective SNR, albeit numerically, over all FIR targetsand
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Fig. 3. FIR approximation loss vs. target length

equalizers with length constraints. If we choose to use FIR
equalizers, we would have the additional task of optimizing
the processing delay which is an important design parameter
[6–8].

VII. E XAMPLES

We now illustrate our results of the preceeding sections with
an example. Consider the real ISI channel (2) with impulse
response

hn =

{

e−n/2, 0 ≤ n ≤ 8

0 otherwise.

with IID binary input symbols (xn ∈ C = {−1,+1}) and SNR
defined as‖h‖2/σ2

w whereσ2
w is the noise variance.

We first study the effect of the target length on the effective
SNR of the system. The optimal equalizers and targets are
computed for target lengths of 2 and longer and the resulting
values ofSNR are calculated. Indeed, in the IIR limit for the
target length we obtain the maximum valueSNRmax given by
(39). Fig. 3 shows theFIR approximation loss, (SNRmax −
SNR), for various finite target lengths at an SNR of 10dB. In
this example the optimal length-3 target incurs about 0.075dB
penalty in performance and the performance loss for longer
targets diminishes quickly.

Next, we evaluate the BER performance of the reduced
complexity detectors. At each SNR we design the optimal
length-3 target and IIR equalizer truncated to 21-taps (cen-
tered at the origin). The equalizer is sufficiently long since
it captures most of the energy in the equalizer taps. The
dominant error event for this channel ise = {1,−1}. We
also design length-21 MMSE equalizers (centered at 0) and
length-3 targets described in Section III for themonic target
constraint.

Using computer simulations we compare the two designs
in terms of their BER performance for IID binary inputs. The
two systems use the Viterbi algorithm to perform the sequence
detection. The results are shown in Fig. 4 along with the BER
of the full complexity Viterbi detector (with28-states) that

uses no channel shortening equalization. It is clear that both
the reduced complexity detectors performanc identically with
a small penalty relative to the full complexity detector. The
optimality of the monic design is predicted by Theorem 2 for
the case of IIR filters. Indeed, we observe numerically that the
monic design is nearly optimal for FIR filters as well.
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Fig. 4. Comparison of BER performance of two designs for binary signaling

Next, we consider the same ISI chanel with an IID ternary
input (xn ∈ C = {−

√

3/2, 0,+
√

3/2}) which has unit
average symbol energy. This input symbols themselves have
unequal energy. Recall the results for the IIR case in Section
IV that the optimal sequence detector for the equalized channel
needs to pretend that it sees the output of thetarget channel
with the input prior distribution is given by (32):

P̃ (x) ∝ exp
( 〈x, s ⋆ x〉

2σ2
v

)

wheres = g̈ ⋆ g − αḧ ⋆ h. Thus, the optimal detector needs
to minimize the cost function

min
x

(

‖z − g ⋆ x‖2 − 〈x, s ⋆ x〉
)

where the second term is correction term that originates from
the input prior distributionP̃ (x). For the choice of equalizer
and target in Theorem 2, we have

s
def
= g̈ ⋆ g − αḧ ⋆ h = αβδ.

Therefore,〈x, s⋆x〉 = αβ‖x‖2, which depends on the energy
of the sequence. The correction term is an issue only for signal
constellations unequal symbol energies. For the monic target
and MMSE equalizer design, we haveαβ equals the variance
of the equalization error,λ. Thus, the cost function reduces to

min
x

(

‖z − g ⋆ x‖2 − λ‖x‖2
)

.

We directly adapt this expression to the FIR case as well by
subtractingλ|xn|2 from the trellis branch metric at timen. In
fact, the detector would be suboptimal without the correction
term, as we confirm below.
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We design a length-3 monic GPR target and a length-21
MMSE equalizer for this channel and calculate the symbol
error rates (SER) numerically using the Viterbi algorithm.
Fig. 5 shows the SER obtained with and without the correction
term in the trellis branch metric. The figure also shows the SER
for the full complexity Viterbi detector (with38 states) that
uses no channel shortening equalization. There is a small but
noticeable gain in detection performance with the correction
term. It must be noted that this modification does not require
much more detector complexity. Asλ becomes smaller (at
higher SNRs) the correction term to becomes smaller also
and indeed, the performances gain due to the correction term
diminishes at high SNRs.
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Fig. 5. Comparison of SER performance for ternary input signaling

VIII. SUMMARY

Although a large body of literature exists for the design of
optimal FIR targets and equalizers, the implicit assumption
in virtually all existing work on this subject is that MMSE
equalization is optimal. The purpose of this work was to
question that assumption. The main contribution of this work
is a new perspective for the problem of channel shortening
equalization in terms of the underlyinga posteriori proba-
bilities unlike the traditional approach of using the MSME
equalization error as the criterion. We introduced the ideaof a
posterioriequivalence (APE) between the equalized and target
channels. Under this form of equivalence, any MAP-based
decoding algorithm designed for the target channel would also
work optimallywhen applied to the equalized channel. In other
words, as far as MAP decoding is concerned we can pretend
that the equalized channelis the target channel.

In our analysis of the problem we treatf , g, σ2
v (noise

variance in the target channel) and in some cases even the
input PDFP̃ (x) for the hypothetical target channel as design
parameters. The equivalence is expressed as a set of algebraic
conditions on the design parameters. The APE conditions
admit an infinite family solutions or designs for the equalizer
and target. In the special case that the input is IID and all

the code sequences have equal energy, we showed that the
“monic solution,” i.e., the MMSE equalizer designed for a
monic constrained target, is shown to belong to this optimal
family of designs. We also observed that the monic solution
must be designed for spectrally white inputs even if the actual
input is colored. The family of designs produces IIR filters in
general, making their practical use somewhat limited, where
as for a low complexity implementation of optimal sequence
detection (using Viterbi or BCJR-like algorithms) we require
short FIR targets.

We also derived an expression for the probability of se-
quence detection error assuming IID inputs for arbitrary FIR
or IIR targets and equalizers. Using this as a performance
measure, we propose a design algorithm to find the optimal IIR
equalizer and FIR target. Indeed, in the IIR limit for the target
these solution coincide with the previously derived optimal IIR
family of designs that satisfy APE.

These results are applied to an example ISI channel. Nu-
merically, we observe that for IID inputs, we obtain nearly
optimal performance using the monic design. for input signal
constellations with unequal symbol energies we also need to
treat the input PDFP̃ (x) for the target channel as a design
parameter. The optimal detector is designed for the target
channel with the priorP̃ (x) incorporated into the Viterbi
branch metric as a correction term, which would normally
have been ignored if we simply use the monic design. This is
illustrated for the IID ternary signaling example (Fig. 5) where
we see a small but noticeable gain by using the correction term.

APPENDIX I
PROOF OFTHEOREM 3

Suppose thatx◦ ∈ X is the transmitted sequence, whereX
is the set of sequences that are equally likely to be transmitted.
The channel and equalizer outputs arey = h ⋆ x + w and
z = f ⋆ y respectively. All sequences in the codebook have
equal energy because the input symbols are IID and binary.
Thus, the target channel input is also treated as being IID:
P̃ (x) = P (x).

The Viterbi detector for the equalized channel computes the
sequencex that minimizesD̃(z,x). Thus, the probability of
sequence detection error is

P seq
e = P

{

D̃(z,x) < D̃(z,x◦) for somex 6= x◦
}

≤ 1

|X |
∑

x◦∈X

∑

x∈X\x◦

P
{

D̃(z,x) < D̃(z,x◦)
}

(40)

where the second step follows from the union bound. Using
the property that

‖a‖2 − ‖b‖2 = ℜ〈a − b,a + b〉 (41)

for any a andb, whereℜ denotes the real part, we obtain

D̃(z,x) − D̃(z,x◦) = ‖z − g ⋆ x‖2 − ‖z − g ⋆ x◦‖2

= −4ℜ〈g ⋆ x−, z − g ⋆ x+〉 (42)

where

x± def
=

x ± x◦

2
.
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Applying (1) to (42) and writingz = f ⋆ y wherey =
h ⋆ (x+ − x−) + w we obtain

D̃(z,x) − D̃(z,x◦) = 4ℜ〈x−, g̈ ⋆ f ⋆ h ⋆ x−〉
+ 4ℜ〈x−, g̈ ⋆ (g − f ⋆ h) ⋆ x+〉
− 4ℜ〈x−, g̈ ⋆ f ⋆w〉

≡ 4(φ(x−) + ∆(x−,x+) − ψ(x−))

where

φ(x−)
def
= ℜ〈x−,p ⋆ h ⋆ x−〉 (43)

∆(x−,x+)
def
= ℜ〈x−, (q − p ⋆ h) ⋆ x+〉 (44)

ψ(x−)
def
= ℜ〈x−,p ⋆w〉 (45)

p
def
= g̈ ⋆ f (46)

q
def
= g̈ ⋆ g. (47)

Note thatψ(x−) ∼ N(0, σ2
w‖p ⋆ x−‖2) is normally dis-

tributed. Therefore,

Π(x−,x+)
def
= P

{

D̃(z,x) < D̃(z,x◦)
}

= P
{

ψ(x−) − ∆(x−,x+) > φ(x−)
}

. (48)

Thus, (40) can be rewritten as

P seq
e ≤ 1

|X |
∑

x− 6=0

∑

x+∈X+(x−)

Π(x−,x+)

whereX+(x−) is the set of sequencesx+ such thatx+ +
x− andx+ − x− are valid sequences inX . Note thatx+ is
uniformly distributed inX+(x−) when conditioned onx−. In
the high SNR regime, it is a good approximation to assume
that dominant error sequences are the only source of detection
errors. This allows us to fixx− = e for any error sequence
e ∈ E in the equivalence classE of dominant error sequences.
This yields

P seq
e ≤ |E|

|X |
∑

x+

Π(e,x+)

=
|E||X+(e)|

|X | EΠ(e,x+)

with the expectation taken overx+ given thatx− = e. For
analytical tractability, we assume that∆(e,x+) is approxi-
mately normally distributed. Thus, (48) yields

P seq
e ≃ κQ

(φ(e)

σ(e)

)

(49)

where

σ2(e) = var(∆(e,x+)) + σ2
w‖p ⋆ x−‖2 (50)

κ = |E| |X
+(e)|
|X | . (51)

The constantκ is evidently the product of the number of
allowable dominant error sequences|E| and the probability,
|X+(e)|/|X |, that x◦ will allow that error sequence. The bit
error rate (BER) is approximated by

P bit
e =

wH(e)

M
P seq

e (52)

whereM is the length of the input codewords. The above
calculations are similar to probability of error analysis for
classical Viterbi detection [9].

The only remaining step is to estimate the variance of
∆(e,x+). First note that

∆(e,x+) = ℜ〈e, (q − p ⋆ h) ⋆ x+〉
= ℜ〈a,x+〉

where a = (q − p̈ ⋆ ḧ) ⋆ e. Now, ∆(e,x+) is zero-mean
becausex+ is zero-mean. Hence, the conditional variance of
∆(e,x+) is

var(∆(e,x+)) =
1

|X+(e)|
∑

x+∈X+(e)

(∆(e,x+))2

=
1

|X+(e)|
∑

x+∈X+(e)

|ℜ〈a,x+〉|2.

Since the input is binary with symbols being±1, X+(x−)
contains all sequencesx+ that satisfy

en 6= 0 =⇒ x+
n = 0.

It is an easy exercise to check that

var(∆(e,x+)) =
∑

{n:en=0}

|an|2

which may also be written as

var(∆(e,x+)) = min
v

‖a − v‖2

= min
v

‖(q − p̈ ⋆ ḧ) ⋆ e − v‖2 (53)

wherev is a vector whose temporal support is the same as
that of e. Combining (43), (49), (50), and (53), we obtain
P seq

e ≃ κQg(
√

SNR) where

SNR ≃ |ℜ〈e,p ⋆ h ⋆ e〉|2
minv ‖(q − p̈ ⋆ ḧ) ⋆ e − v‖2 + σ2

w‖p ⋆ e‖2

= max
v

|ℜ〈e,p ⋆ h ⋆ e〉|2
‖(q − p̈ ⋆ ḧ) ⋆ e − v‖2 + σ2

w‖p ⋆ e‖2

is theeffective SNRof the system.

APPENDIX II
ANALYTICAL SOLUTION TO (38)

The maximization (38) may be rewritten as

min
p,q,v

‖(q − p̈ ⋆ ḧ) ⋆ e − v‖2 + σ2
w‖p ⋆ e‖2

subject toq0 = 0 and

ℜ〈e,p ⋆ h ⋆ e〉 = 1 (54)

thereby removing the scaling invariance of the solutions.
DefineS = {l : el 6= 0} = {s1, . . . , sJ}. Then

V (ω) =
∑

l∈S

vle
−jlω

Q(ω) = 2

L
∑

l=1

ql cos(lω).
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wherevl, l ∈ S andql : l = 1, . . . , L are the FIR parameters.
Therefore,

Q(ω)E(ω) − V (ω) = B(ω)x

where

B(ω) =
(

B1(ω) B2(ω)
)

B1(ω) = 2E(ω)
(

cos(ω) cos(2ω) · · · cos(Lω)
)

B2(ω) = −
(

e−js1ω, · · · , e−jsJ ω
)

x =
(

q1, · · · , qL, vs1
, · · · , vsJ

)T

Finally, let

R(ω)
def
= P (ω)H(ω)E(ω). (55)

In terms of the above quantities, we can rewrite the optimiza-
tion as

min
1

2π

[

∫

|B(ω)x −R(ω)|2dω + σ2
w

∫

|R(ω)/H(ω)|2dω
]

subject to

1

2π
ℜ

∫

R∗(ω)E(ω)dω = 1. (56)

All integrals are taken over[−π, π]. The cost function reduces
to

min
[ 1

2π
ℜ

∫

(

A(ω)|R(ω)|2 − 2R(ω)∗B(ω)x
)

dω + x∗Cx
]

whereA(ω) = 1 + σ2
w/|H(ω)|2 and

C =
1

2π

∫

B∗(ω)B(ω)dω.

Using variational calculus we obtain

A(ω)R(ω) − B(ω)x = λE(ω)

− 1

2π

∫

B∗(ω)R(ω)dω + Cx = 0

whereλ is a Lagrange multiplier. Solving the above simulta-
neous equations yields

R(ω) =
B(ω)x + λE(ω)

A(ω)

x = λ(C − D)−1

∫

B∗(ω)E(ω)

2πA(ω)
dω

where

D =
1

2π

∫

B∗(ω)B(ω)

A(ω)
dω.

Finally P (ω) can be solved from (55). Note thatλ is uniquely
determined by the constraint (56). However, we could choose
an arbitrary value forλ (such asλ = 1) since it merely scales
the solution without altering the value ofSNR.

In the long target (IIR) limit, it is easy to see that the
solutions converge to the following limits:

f ⋆ g̈ = p → λḧ

σ2
w

,

g̈ ⋆ g = q → λ(h ⋆ ḧ + β)

σ2
w

for someβ, which have the required form in Theorem 2 for
α = λ/σ2

w. Therefore, (31) suggests that we must set

σ2
v = ασ2

w = λ.

In the FIR case, however, the problem of choosing the correct
value of σ2

v is somewhat ambiguous because FIR solutions
do not satisfy the hypotheses in Theorem 2. We nominally
set σ2

v = λ in the FIR case as well. This is a good first
approximation and fine-tuning this parameter may produce
better results.
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